劉磊,蘇杰 ,馬昊 ,張漢,高玉微
(1.河北大學(xué) 電子信息工程學(xué)院,河北 保定 071002;2.中國(guó)科學(xué)院 半導(dǎo)體研究所,北京 100083)
熱電材料所獨(dú)有的Seebeck效應(yīng)和Peltier效應(yīng)使其在溫差發(fā)電與溫差制冷方面有著廣泛的應(yīng)用,如空間飛行器的電源、測(cè)溫?zé)崤?,以及CCD相機(jī)與激光器的制冷器等方面[1].同時(shí),電子技術(shù)與微納技術(shù)的不斷發(fā)展對(duì)熱電材料的要求越來越高,而相對(duì)于傳統(tǒng)的塊體材料,熱電薄膜材料具備更優(yōu)異的物理性能與工藝適配性[2].Bi2Te3以及其衍生化合物被認(rèn)為是近室溫范圍內(nèi)熱電優(yōu)值最好的熱電材料,近年來Bi2Te3薄膜與其低維納米材料的制備與研究工作備受國(guó)內(nèi)外研究者關(guān)注[3-9].
Bi2Te3薄膜的制備主要利用快速蒸發(fā)[10]、有機(jī)物氣相淀積(MOVCD)[11]和分子束外延(MBE)技術(shù)[12],但這些制備工藝往往需要復(fù)雜的設(shè)備,工藝成本較高.而電沉積技術(shù)具有薄膜制備溫度低、沉積薄膜面積大、成本低等優(yōu)點(diǎn),非常適用于Bi2Te3薄膜的制備.目前國(guó)外利用電沉積技術(shù)制備Bi2Te3薄膜已經(jīng)見諸報(bào)道[13-15],國(guó)內(nèi)楊君友等[16]利用電化學(xué)原子層外延技術(shù)成功制備了Bi2Te3薄膜,王為等[17]也利用電沉積技術(shù)制備了Bi2Te3納米線,但總體上看國(guó)內(nèi)對(duì)于Bi2Te3材料的電沉積制備研究還較少,有待進(jìn)一步深入.本文首先利用電化學(xué)沉積技術(shù)通過循環(huán)伏安法確定Bi2Te3薄膜共沉積電位,然后利用X線衍射分析(XRD)、掃描電鏡(SEM)和原子力顯微鏡(AFM)對(duì)沉積薄膜成分和形貌進(jìn)行了表征.
(1)
(2)
-560 mV處的還原峰可能是高價(jià)氧化態(tài)Te還原為低價(jià)氧化態(tài)的結(jié)果.
a ba.15 mmol/L Bi3+;b.10 mmol/L HTe.圖1 Bi3+和分別在1 mol HNO3酸溶液中的循環(huán)伏安測(cè)試曲線Fig.1 Cyclic voltammogram of Bi3+ and HTe in 1 mol HNO3
(3)
圖2 15 mmol/L Bi3+和10 mmol/共存1 mol HNO3酸溶液中的循環(huán)伏安測(cè)試曲線Fig.2 Cyclic voltammogram of 15mmol/L Bi3+and 10mmol/L HTe coexist in 1mol HNO3
利用掃描電鏡(SEM)觀察了退火后的-50 mV,20 mA·cm-2條件下電沉積得到的Bi2Te3薄膜,結(jié)果如圖4所示.由圖4可知,電沉積得到的Bi2Te3薄膜為典型的多晶薄膜,且多晶顆粒致密均勻,晶粒大小約在1×0.3 μm左右.利用X線能譜分析(EDAX)確定了Bi原子為39.7%,Te原子為60.3%,符合Bi2Te3的化學(xué)計(jì)量比.
圖3 電沉積Bi2Te3薄膜的X線衍射 Fig.3 X-ray diffraction pattern of electrodeposited Bi2Te3 film
圖4 Bi2Te3薄膜的掃描電鏡分析Fig.4 SEM image of electrodeposited Bi2Te3 film
為進(jìn)一步了解電沉積條件對(duì)電沉積薄膜質(zhì)量的影響,先后在20,50,80,110 mA·cm-24種沉積電流密度下制備Bi2Te3薄膜,以上4種電流密度對(duì)應(yīng)的沉積電位均為-50 mV.對(duì)不同條件下制備的Bi2Te3薄膜在高真空200 ℃下退火20 min,然后利用AFM觀察了其表面形貌,結(jié)果如圖5所示.由圖5可知,沉積電流密度為20 mA·cm-2條件下得到的Bi2Te3薄膜的晶粒尺寸與SEM觀察的結(jié)果基本吻合,晶粒大小約在1×0.3 μm左右.隨沉積電流的增大,晶粒尺寸明顯減小,110 mA·cm-2沉積電流密度下得到的晶粒大小約為0.3×0.3 μm左右,而且表面粗糙度隨沉積電流增大而減小,這是由于沉積電流密度增大一方面使薄膜生長(zhǎng)速率增大,另一方面也使得襯底表面成核密度增大,因此使晶粒的平均尺寸減小.
a.20 mA·cm-2;b.50 mA·cm-2;c.80 mA·cm-2;d.110 mA·cm-2.圖5 不同沉積電流密度下的Bi2Te3薄膜原子力顯微鏡圖像Fig.5 AFM images of Bi2Te3 films electrodeposited under different current densities
參 考 文 獻(xiàn):
[1] ROWE D M. CRC Handbook of Thermoelectrics[M]. New York:CRC Press, 1995.
[2] ROWE D M. Thermoelectrics Handbook Nano to Macro[M]. Taylor & Francis:CRC Press, 2006.
[3] ZHANG Y, WANG X L, YEOH W K, et al. Electrical and thermoelectric properties of single-wall carbon nanotube doped Bi2Te3[J]. Applied Physics Letters, 2012, 101:031909.
[4] ZHANG Y L, MEHTA R J, BELLEY M, et al. Lattice thermal conductivity diminution and high thermoelectric power factor retention in nanoporous macroassemblies of sulfur-doped bismuth telluride nanocrystals[J]. Applied Physics Letters, 2012, 100:193113
[5] TAKASHIRI M, TAKIISHI M, TANAKA S, et al. Thermoelectric properties of n-type nanocrystalline bismuth-telluride-based thin films deposited by flash evaporation[J]. Journal of Applied Physics, 2007, 101(7):074301.
[6] DESALEGNE T, VIVEK G, RAHMAN M, et al. Atomically-thin crystalline films and ribbons of bismuth telluride[J]. Applied Physics Letters, 2010, 96: 053107.
[7] ZHU W, YANG J Y, GAO X H, et al. Effect of potential on bismuth telluride thin film growth by electrochemical atomic layer epitaxy[J]. Electrochimica Acta, 2005, 50(20): 4041-4047.
[8] WANG W, HUANG Q H, JIA F L, et al. Electrochemically assembled p-type Bi2Te3nanowire arrays[J]. Journal of Applied Physics, 2004, 96(1): 615-618.
[9] MICHEL S, DILIBERTO S, BOULANGER C, et al. Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: effect of chemical and electrochemical parameters[J]. Journal of Crystal Growth, 2005, 277(1-4): 274-283.
[10] TAKASHIRI M, MIYAZAKI K, TANAKA S, et al. Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films[J]. Journal of Applied Physics, 2008, 104:084302.
[11] KIM J H, JEONG D Y, KIM J S. Metal organic vapor phase epitaxy of BiSbTe3 films on 001 GaAs vicinal substrates[J]. Journal of Applied Physics, 2006, 100:123501.
[12] PERANIO N, EIBL O. Structural and thermoelectric properties of epitaxially grown Bi2Te3thin films and superlattices[J]. Journal of Applied Physics, 2006, 100:114306.
[13] MARTIN-GONZALEZ M, PRIETO A L, GRONSKY R, et al. Insights into the electrodeposition of Bi2Te3[J]. Journal of the Electrochemical Society, 2002, 149(11): C546-C554.
[14] FRARI D D, DILIBERTO S, STEIN N, et al. Pulsed electrodeposition of (Bi1-xSbx)2Te3thermoelectric thin films[J].Journal of Applied Electrochemistry, 2006, 36(4): 449-454.
[15] YOO B, XIAO F, BOZHILOV K N, et al. Electrodeposition of thermoelectric superlattice nanowires[J].Advanced Material, 2007, 19:296-299.
[16] 侯杰, 楊君友, 朱文, 等. Bi2Te3熱電薄膜的電化學(xué)原子層外延制備[J]. 功能材料, 2006, 37(7):1054-1056
HOU Jie, YANG Junyou, ZHU Wen, et al. The Bi2Te3thin film deposition on Au substrate using electrochemical atomic layer epitaxy[J]. Journal of Functional Materials, 2006, 37(7):1054-1056.
[17] 賈法龍, 王為, 黃慶華, 等. 電化學(xué)法制備Bi2Te3納米線用于微型溫差發(fā)電器[J]. 納米技術(shù)與精密工程, 2006, 4(1):20-24.
JIA Falong, WANG Wei, HUANG Qinghua, et al. Electrochemical fabrication of Bi2Te3nanowire arrrays for thermoelectric microgenerator[J]. Nanotechnology and Precision Engineering, 2006, 4(1):20-24.