程斐等
摘要:利用國內(nèi)外已發(fā)表的10對標記引物對抗番茄黃化曲葉病毒病純合系“JZ-108”(Ty-1/Ty-1)、感病純合系“1712”(ty-1/ty-1)及雜交F1代的Ty-1抗性基因進行PCR擴增篩選,篩選出一對特異性引物SSR47,在抗病純合材料中產(chǎn)生750 bp的擴增片段,感病材料中產(chǎn)生640 bp的片段,抗病雜合材料中同時產(chǎn)生750 bp和640 bp的擴增片段,標記結果與田間鑒定完全一致,證明該標記能夠區(qū)分抗病材料、感病材料及雜合抗病材料,是與抗番茄黃化曲葉病毒病基因Ty-1緊密連鎖的共顯性標記。利用該標記對“JZ-108×1712”F2代的48個單株進行檢測,有8株為抗病純合基因型,19株為感病純合基因型,21株為抗病雜合基因型,其中抗病純合株與抗病雜合株田間表現(xiàn)均為抗病。經(jīng)反復驗證,結果準確可靠,該標記可用于對番茄抗病基因Ty-1的快速篩選鑒定。
關鍵詞:番茄黃化曲葉??;Ty-1;PCR
中圖分類號:Q785 文獻標識號:A 文章編號:1001-4942(2014)03-0005-05
AbstractThe resistant gene Ty-1 of homozygous resistant lines “JZ-108”(Ty-1/Ty-1), homozygous susceptible lines “1712” (ty-1/ty-1)and their F1 generation was amplified by PCR method using 10 pairs of marker primers published at home and abroad. The results showed that SSR47 was the specific primer which had a 750 bp amplification fragment in homozygous resistant lines, a 640 bp fragment in susceptible lines and both 750 bp and 640 bp fragments in heterozygous resistant lines. The detection results were completely consistent with those of field identification. So this co-dominant marker, tightly linked to Ty-1 gene, could distinguish homozygous and heterozygous resistant lines and susceptible lines. Forty-eight individuals from F2 generation of “JZ-108×1712” were detected. There were 8 homozygous resistant lines, 19 homozygous susceptible lines and 21 heterozygous resistant lines. Both homozygous and heterozygous resistant lines displayed resistance to tomato yellow leaf curl disease in the field. The replicated stable results proved that SSR47 could be used for rapid identification of Ty-1 resistant gene in tomato.
Key wordsTomato yellow leaf curl disease;Ty-1;PCR
番茄(Solanum lycopersicum)是中國種植面積最大的蔬菜作物之一,它品種多、產(chǎn)量高、營養(yǎng)豐富、用途廣泛,深受消費者的喜愛。目前病毒病是番茄生產(chǎn)中最常見的病害之一,其分布極為廣泛,危害嚴重,容易造成番茄品質(zhì)下降、產(chǎn)量銳減。其中番茄黃化曲葉病毒?。═omato Yellow Leaf Curl Virus Disease, TYLCVD)影響最為嚴重,已成為世界番茄生產(chǎn)的限制性因素[1],一旦發(fā)病很難被控制。
番茄黃化曲葉病毒病于20世紀30年代末在以色列首次被發(fā)現(xiàn)[2],是一類由煙粉虱(Bemisia tabaci)傳播的雙生病毒(Geminiviruses),為菜豆金色花葉病毒屬(Begonurvints)[3]。目前,在美洲、歐洲、中東地區(qū)、亞洲等世界各地均有發(fā)生[3~5]。該病于1991年在我國廣西南寧市郊首次發(fā)生,自2005年開始,在廣東、廣西、臺灣、江蘇、上海、浙江、北京、河南、河北、山東等地均有發(fā)生,呈現(xiàn)由南向北迅速蔓延的趨勢[6~8],給當?shù)氐姆焉a(chǎn)造成極其嚴重的損失。番茄抗TYLCV育種始于20世紀70年代,目前已培育出了一些抗病品種。近年來,隨著分子檢測鑒定技術及其它相關研究的發(fā)展,番茄抗TYLCV育種研究在各個方面都有了新的進展[9]。目前番茄黃化曲葉病毒病的抗病基因有Ty-1、Ty-2、Ty-3、Ty-3a、Ty-4和Ty-5等。1994年Zainir等[10]用普通栽培番茄種(M82-12-8)與野生智利番茄(LA1969)雜交,利用RFLP標記對BC2S1、BC2S2群體進行鑒定,將第一個抗番茄黃化曲葉病的主效基因Ty-1定位在6號染色體的RFLP標記TG297 (4 cM)和TG97 (8.6 cM)之間,距離為 6~10 cM。
番茄黃化曲葉病毒病屬檢疫性病害,利用常規(guī)方法進行抗病育種有較大困難,分子標記結合常規(guī)方法能高效、準確地進行抗病材料的篩選與鑒定。本試驗通過對國內(nèi)外已發(fā)表的一些標記引物進行篩選,旨在得到可以快速簡單準確的對抗病番茄材料進行檢測的引物,從而加快分子輔助育種的進程。
1材料與方法
1.1試驗材料
3討論
番茄黃化曲葉病毒病(TYLCVD)的傳毒介體煙粉虱的寄主廣泛,毒源植物種類眾多,使得TYLCV繁殖速度加快,加速了病害的暴發(fā),在實際生產(chǎn)中很難控制。培育抗病品種是控制此病毒的主要有效手段。目前,抗病品種主要通過國外引進,但國外品種一般價格較高且栽培特性與我國栽培環(huán)境存在差異,所以迫切需要培育國內(nèi)抗病新品種。分子標記輔助育種可以提高選擇性狀的效率,加快育種進程。簡單重復序列(Simple Sequence Repeat, SSR)與基因呈共顯性遺傳,可鑒別雜合子和純合子,操作簡便,結果穩(wěn)定可靠。
本試驗篩選出一條與抗病基因Ty-1緊密連鎖的SSR標記。利用篩選出的SSR標記引物SSR47對24份“JZ-108×1712”F1代單株材料進行檢測,均為雜合抗病基因型;對48份“JZ-108×1712” F2代單株材料進行檢測,21份材料表現(xiàn)為雜合抗病型,產(chǎn)生750、640 bp的擴增片段;19份材料表現(xiàn)為純合感病基因型,產(chǎn)生640 bp的片段;8份材料表現(xiàn)為純合抗病基因型,產(chǎn)生750 bp的片段。
國內(nèi)外在抗番茄黃化曲葉病毒病育種方面取得了比較顯著的成就,但目前的抗病品種大多只包含單個抗性基因。在病害大規(guī)模發(fā)生時,其抗性能力依然有限。因此,可以將多個抗性基因聚合到一個品種中以培育高抗性品種。有研究已證明通過聚合不同抗源的基因可以提高番茄對TYLCV的抗性[20]。付蓉蓉等[16]研究表明同時含有純合Ty-1和Ty-3抗性基因的番茄材料有更高更穩(wěn)定的抗性。余文貴等[21]認為將抗性基因累加到栽培品種是育種上培育持久抗性品種的有效手段之一。隨著番茄黃化曲葉病毒病抗性基因Ty-1、Ty-2、Ty-3、Ty-4及Ty-5的定位及分子標記工作的進行[10~12,22,23],育種學家可以利用相關的分子標記更加準確快速地篩選抗源材料,并結合傳統(tǒng)育種將這些抗性基因聚合到一個品種中,從而培育出具有更高、更廣、更持久抗性的番茄新品種。
參考文獻:
[1]余文貴, 趙統(tǒng)敏, 楊瑪麗,等. 番茄黃化曲葉病及其抗病育種研究進展[J]. 江蘇農(nóng)業(yè)學報, 2009,25(4):925-930.
[2]Pico B, Diezm J, Nuez F. Viral diseases causing the greatest economic losses to the tomato cropⅡ.The tomato yellow leaf curl virus: a review [J]. Sci. Hortic., 1996, 67(3/4): 151-196.
[3]Polston J E, Rosebrock T R, Sherwood T, et al. Appearance of Tomato yellow leaf curl virus in North Carolina[J].Plant Disease,2002,86(1):73.
[4]Accotto G P, Bragaloni M, Luison D, et al. First report of Tomato yellow leaf curl virus(TYLCV)in Italy[J].Plant Pathology,2003,52(6):799.
[5]Ueda S, Takeuchi S, Okayashi M, et al. Evidence of a new Tomato yellow leaf curl virus in Japan and its detection using PCR[J].Journal of General Plant Pathology,2005,71(4):319-325.
[6]周雪平, 崔曉峰, 陶小容. 雙生病毒——一類值得重視的植物病毒[J]. 植物病理報, 2003, 33(6): 487-492.
[7]趙統(tǒng)敏, 余文貴, 周益軍, 等. 江蘇省番茄黃化曲葉病毒病(TYLCV)的發(fā)生與診斷初報[J]. 江蘇農(nóng)業(yè)學報, 2007,23(6): 654-655.
[8]何自福, 虞皓, 毛明杰, 等. 中國臺灣番茄曲葉病毒侵染引起廣東番茄黃化曲葉病[J]. 農(nóng)業(yè)生物技術學報, 2007, 15(1): 119-123.
[9]褚云霞, 朱為民. 番茄抗黃化曲葉病毒育種研究進展[J]. 基因組學與應用生物學, 2009,28(3): 563-568.
[10]Zamir D, Eksteinmicheison Ⅰ, Zakay Y, et al. Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty-1[J]. Theor. Appl. Genet., 1994, 88(2): 141-146.
[11]Castro A P D, Blanca J M, Diez M J. Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato[J]. Eur. J. Plant Pathol., 2007, 117: 347-356.
[12]Ji Y, Schuster D J, Scott J W. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato[J]. Mol. Breeding, 2007,20(3): 271-284
[13]Ji Y F, Scott J W, Schuster D J, et al.Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus onchromosome 3 of tomato[J]. Journal of the American Society for Horticultural Science, 2009,134(2): 281-288.
[14]Garcia B E, Martin C T, Maxwell D P. Detection methods for the Ty-1 gene for resistance to begomoviruses on chromosome 6 of tomato[EB/OL]. 2007. http://www.plantpath.wisc.edu/GeminivirusResistantTomatoes/Markers/MAS-Protocols/IntroTy1.pdf.
[15]于力, 朱龍英, 萬延慧, 等. 多重PCR技術鑒定番茄Ty-1和Mi基因[J]. 分子植物育種, 2008(1): 165-169.
[16]付蓉蓉, 劉楊, 陳火英. 番茄黃化曲葉病的Ty-1和Ty-3抗性基因的PCR鑒定[J]. 分子植物育種, 2011(9): 1647-1652.
[17]韓璀璇, 宋建軍, 王琳珊,等. 番茄黃化卷葉病毒病抗病基因Ty-1的CAPS標記建立[J]. 中國農(nóng)學通報,2012, 28(1):195-200.
[18]Maxwell D P, Martn C, Salusm S, et al. Breeding tomatoes for resistance to tomato-infecting begomoviruses [M]. Madison: University of Wisconsin-Madison, 2006.
[19]Williamson V M, Ho J Y, Wu F F, et al. A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato[J]. Theor. Appl. Genet.,1999,87:757-763.
[20]Vidavski F, Czosnek H, Gazit S, et al. Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species[J].Plant Breeding, 2008, 127(6):1-7.
[21]余文貴, 趙統(tǒng)敏, 楊瑪麗, 等. 番茄黃化曲葉病及其抗病育種研究進展[J]. 江蘇農(nóng)業(yè)學報,2009,25(4): 925-930.
[22]Anbinder I, Reuveni M, Azari R,et al. Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum[J]. Theor. Appl. Genet., 2009, 119(3): 519-530.
[23]Hanson P M, Green S K, Kuo G. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato[J]. Tomato Genetic Cooperative Report, 2006, 56: 17-18.
[13]Ji Y F, Scott J W, Schuster D J, et al.Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus onchromosome 3 of tomato[J]. Journal of the American Society for Horticultural Science, 2009,134(2): 281-288.
[14]Garcia B E, Martin C T, Maxwell D P. Detection methods for the Ty-1 gene for resistance to begomoviruses on chromosome 6 of tomato[EB/OL]. 2007. http://www.plantpath.wisc.edu/GeminivirusResistantTomatoes/Markers/MAS-Protocols/IntroTy1.pdf.
[15]于力, 朱龍英, 萬延慧, 等. 多重PCR技術鑒定番茄Ty-1和Mi基因[J]. 分子植物育種, 2008(1): 165-169.
[16]付蓉蓉, 劉楊, 陳火英. 番茄黃化曲葉病的Ty-1和Ty-3抗性基因的PCR鑒定[J]. 分子植物育種, 2011(9): 1647-1652.
[17]韓璀璇, 宋建軍, 王琳珊,等. 番茄黃化卷葉病毒病抗病基因Ty-1的CAPS標記建立[J]. 中國農(nóng)學通報,2012, 28(1):195-200.
[18]Maxwell D P, Martn C, Salusm S, et al. Breeding tomatoes for resistance to tomato-infecting begomoviruses [M]. Madison: University of Wisconsin-Madison, 2006.
[19]Williamson V M, Ho J Y, Wu F F, et al. A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato[J]. Theor. Appl. Genet.,1999,87:757-763.
[20]Vidavski F, Czosnek H, Gazit S, et al. Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species[J].Plant Breeding, 2008, 127(6):1-7.
[21]余文貴, 趙統(tǒng)敏, 楊瑪麗, 等. 番茄黃化曲葉病及其抗病育種研究進展[J]. 江蘇農(nóng)業(yè)學報,2009,25(4): 925-930.
[22]Anbinder I, Reuveni M, Azari R,et al. Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum[J]. Theor. Appl. Genet., 2009, 119(3): 519-530.
[23]Hanson P M, Green S K, Kuo G. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato[J]. Tomato Genetic Cooperative Report, 2006, 56: 17-18.
[13]Ji Y F, Scott J W, Schuster D J, et al.Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus onchromosome 3 of tomato[J]. Journal of the American Society for Horticultural Science, 2009,134(2): 281-288.
[14]Garcia B E, Martin C T, Maxwell D P. Detection methods for the Ty-1 gene for resistance to begomoviruses on chromosome 6 of tomato[EB/OL]. 2007. http://www.plantpath.wisc.edu/GeminivirusResistantTomatoes/Markers/MAS-Protocols/IntroTy1.pdf.
[15]于力, 朱龍英, 萬延慧, 等. 多重PCR技術鑒定番茄Ty-1和Mi基因[J]. 分子植物育種, 2008(1): 165-169.
[16]付蓉蓉, 劉楊, 陳火英. 番茄黃化曲葉病的Ty-1和Ty-3抗性基因的PCR鑒定[J]. 分子植物育種, 2011(9): 1647-1652.
[17]韓璀璇, 宋建軍, 王琳珊,等. 番茄黃化卷葉病毒病抗病基因Ty-1的CAPS標記建立[J]. 中國農(nóng)學通報,2012, 28(1):195-200.
[18]Maxwell D P, Martn C, Salusm S, et al. Breeding tomatoes for resistance to tomato-infecting begomoviruses [M]. Madison: University of Wisconsin-Madison, 2006.
[19]Williamson V M, Ho J Y, Wu F F, et al. A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato[J]. Theor. Appl. Genet.,1999,87:757-763.
[20]Vidavski F, Czosnek H, Gazit S, et al. Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species[J].Plant Breeding, 2008, 127(6):1-7.
[21]余文貴, 趙統(tǒng)敏, 楊瑪麗, 等. 番茄黃化曲葉病及其抗病育種研究進展[J]. 江蘇農(nóng)業(yè)學報,2009,25(4): 925-930.
[22]Anbinder I, Reuveni M, Azari R,et al. Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum[J]. Theor. Appl. Genet., 2009, 119(3): 519-530.
[23]Hanson P M, Green S K, Kuo G. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato[J]. Tomato Genetic Cooperative Report, 2006, 56: 17-18.