何紅梅等
摘要建立了超高效液相色譜串聯(lián)質(zhì)譜法(UPLCMS/MS)測定辣椒和土壤中溴氰蟲酰胺及其代謝物(J9Z38)殘留量的方法,研究了溴氰蟲酰胺和J9Z38在辣椒和土壤上的降解特性。樣品經(jīng)乙腈提取后用C18固相萃取柱凈化,采用梯度洗脫程序、BEH C18色譜分離柱、應用UPLCMS/MS正離子掃描測定溴氰蟲酰胺和J9Z38。進行了添加濃度為0.01、0.10 和1.00 mg/kg的回收實驗,溴氰蟲酰胺和J9Z38在辣椒和土壤中的日內(nèi)平均回收率為88.6%~105.7%,日內(nèi)相對標準偏差為3.8%~15.1%;日間平均回收率為91.4%~105.3%
1引言
溴氰蟲酰胺是杜邦公司繼氯蟲苯甲酰胺之后成功開發(fā)的第二代魚尼丁受體激活劑類高效、低毒的二酰胺類殺蟲劑,大鼠急性經(jīng)口LD50>5000 mg/kg\[1\],可有效防治鱗翅目、半翅目和鞘翅目等昆蟲\[2~5\],在田間使用時主要降解產(chǎn)物為J9Z38,結構式見圖1\[6,7\]。溴氰蟲酰胺可分散油懸浮劑已在我國取得登記,主要用于防治小白菜、豇豆、大蔥、西瓜、黃瓜、番茄和棉花上的害蟲,但是,中國、歐盟、美國等都尚未制定溴氰蟲酰胺和J9Z38的最大殘留限量值(MRL)。
目前,有關溴氰蟲酰胺及其代謝物的殘留降解的報道有: 溴氰蟲酰胺在黃瓜、西紅柿[6]、小白菜[8]、土壤和蔥[9]上的降解動態(tài); Hu等\[10\]報道了溴氰蟲酰胺在西瓜和土壤上的殘留降解動態(tài);Zhang等\[7\]報道了稻稈、稻田水中溴氰蟲酰胺降解動態(tài);Sergio等\[11\]報道了質(zhì)譜法篩選檸檬、山核桃、大豆油和玉米粉中溴氰蟲酰胺;Schwarz等\[12\]報道了液相色譜質(zhì)譜法檢測生菜、柑桔、小麥和玉米中的溴氰蟲酰胺;其余是關于溴氰蟲酰胺的合成和應用研究進展的報道\[13~17\],未見關于溴氰蟲酰胺和J9Z38在辣椒上的殘留方法和降解報道。本研究建立了超高效液相色譜串聯(lián)質(zhì)譜法檢測辣椒和土壤中溴氰蟲酰胺和J9Z38殘留量的方法,首次進行溴氰蟲酰胺及其代謝物在辣椒上的降解研究,揭示了藥物在辣椒上的降解特性,也為此藥物檢測提供了參考方法。
2實驗部分
2.1儀器與試劑
Waters ACQUITY UPLC 和 Xevo TQ MS(美國Waters公司)、固相萃取儀(美國Supelco公司)、YP402N電子天平(上海精密科學儀器有限公司)、R201旋轉蒸發(fā)器(上海申勝生物技術有限公司)、循環(huán)水式多用真空泵(杭州大衛(wèi)科教儀器有限公司)、HH4 恒溫水浴鍋和SHZ82型氣浴恒溫振蕩器(江蘇金壇億通電子有限公司)。
乙腈和甲醇(色譜純,美國Fisher公司)、甲酸(色譜純,Roe Scientific INC.)、純凈水(娃哈哈公司)、酸性/中性/堿性氧化鋁(75~150 μm,層析用,上海五四化學試劑廠)、弗羅里硅土(165~245 μm,農(nóng)殘級,振翔公司)、HLB固相萃取小柱(60 mg,美國Waters公司)、玻璃層析柱(0.1 cm × 25 cm)。溴氰蟲酰胺、J9Z38標準品由美國杜邦公司提供。其它試劑均為分析純。[TS(]圖1溴氰蟲酰胺及其代謝物J9Z38的結構式3結果與討論
3.1色譜與質(zhì)譜條件優(yōu)化
為了獲得藥物較好的保留、分離和響應,本實驗采用了梯度洗脫程序,比較了流動相中水相為純水(A)、 0.1%甲酸(B)、 5 mmol/L醋酸銨(C)和0.1%甲酸5 mmol/L醋酸銨溶液(D)時藥物的響應,結果見圖2a,當流動相水相為B時J9Z38響應最好,而流動相水相為C時溴氰蟲酰胺響應最好,在“犧牲”溴氰蟲酰胺部分響應的基礎上選擇了水相為B的流動相。
參考報道文獻,確定掃描方式、 母離子和子離子后,在0.5~3.5 kV之間優(yōu)化了毛細管電壓、 在0~70 V之間優(yōu)化了錐孔電壓、 在0~60 V之間優(yōu)化了碰撞能量。最終確定毛細管電壓為3.0 kV;溴氰蟲酰胺的錐孔電壓為20 V,J9Z38的的錐孔電壓為50 V;離子對的碰撞能量優(yōu)化見圖2b,溴氰蟲酰胺的定性離子對為m/z 475/444,定量離子對為m/z 475/286,碰撞能量分別為15和20 V;J9Z38的定性離子對為m/z 457/299,定量離子對為m/z 457/188,碰撞能量均為35 eV。
3.2凈化方法的確定
考察了藥物在氧化鋁和弗羅里硅土柱上的保留情況,用10%乙酸乙酯石油醚溶液15 mL 上樣,依次用20 mL不同比例的乙酸乙酯石油醚溶液、10 mL乙腈和10 mL甲醇淋洗,結果見表1。從表1可見,溴氰蟲酰胺和J9Z38在氧化鋁和弗羅里硅土柱上保留差異較大,故又考察了藥物在HLB固相萃取柱上的保留情況,用15%甲醇溶液10 mL上樣,依次用3 mL水、3 mL 40%甲醇、2 mL乙腈洗脫,結果表明,只有乙腈洗脫出藥物,回收率均為100%,故前處理中采用HLB小柱凈化。
3.4準確度和精確度
在空白土壤和辣椒樣品中進行了0.01, 0.1和1.0 mg/kg添加回收實驗,每個濃度重復6次,按前處理方法提取、凈化。土壤和辣椒中溴氰蟲酰胺和J9Z38的日內(nèi)平均回收率為88.6%~105.7%,日內(nèi)相對標準偏差為3.8%~15.1%(表2)。在辣椒和土壤中選取0.01, 0.1和1.0 mg/kg添加濃度,每天做6個平行, 連續(xù)做3d,計算得溴氰蟲酰胺和J9Z38的日間平均回收率為91.4%~105.3%,日間相對標準偏差為4.9%~12.3%,結果見表3??梢?,本方法滿足殘留分析要求,為該類藥物檢測提供了參考方法。3.5溴氰蟲酰胺和J9Z38在辣椒和土壤中的殘留降解研究
溴氰蟲酰胺和J9Z38在辣椒和土壤中的殘留降解方程、相關系數(shù)、降解半衰期見表4,降解曲線圖見圖4。2011和2012年溴氰蟲酰胺在辣椒中降解半衰期分別為9.2和11.2 d,在土壤中降解半衰期分別為9.2和20.8 d;J9Z38在辣椒中殘留量低于定量限,2011年J9Z38在土壤中的殘留量為0.004~0.016 mg/kg,但無明顯降解規(guī)律,2012年J9Z38在土壤中的降解半衰期為9.4 d。表5列出了35 d實驗期間內(nèi)的日均最低和最高溫度、日均降水量和日均日照時間。從表5可見,2011年的日均降水量遠多于2012年,這可能是導致溴氰蟲酰胺在辣椒和土壤中降解2011年比2012年快的原因。溴氰蟲酰胺在辣椒中降解半衰期比Dong等\[6\]報道黃瓜(2.2 d)和西紅柿(2.8 d), Sun等\[8\]報道小白菜(2.9~6.4 d), 趙坤霞等\[9\]報道蔥(1.3~2.5 d)的降解半衰期長;溴氰蟲酰胺在土壤中降解半衰期與Dong等\[6\]報道土壤(9.5 d)和Sun等\[7\]報道土壤(8.7~18.2 d)相似,比趙等\[16\]報道在蔥中降解半衰期(2.6~4.3 d)長,這些可能與蔬菜的品種、試驗地的土壤、氣候條件、施藥、采樣等因素有關。
7Zhang P, Hu X, Zhao H, Wu M, He H, Zhang C, Tang T, Ping L, Li Z. Chemosphere, 2013, 93: 190-195
8Sun J P, Feng N, Tang C F, Qin D M. Bull. Environ. Contam. Toxicol., 2012, 89(4): 845-852
9ZHAO KunXia, SUN JianPeng, QIN DongMei, TANG CongFeng. Environ. Sci. Technol., 2014, 37(2): 89-95
趙坤霞, 孫建鵬, 秦冬梅, 湯叢峰. 環(huán)境科學與技術, 2014, 37(2): 89-95
10Hu X Q, Zhang C P, Zhu Y H, Wu M, Cai X M, Ping L F, Li Z . J. AOAC. Int., 2013, 96(6): 1448-1452, 1455
11Sergio C N, James J S, Anne M P, Joseph P M, John H M. J. Agric. Food Chem., 2011, 59(14): 7557-7568
12Schwarz T, Snow T A, Santee C J, Mulligan C C, Class T, Wadsley M P, Nanita S C. J. Agric. Food Chem., 2011, 59: 814-821
13ZHENG XueSong, LAI TianCai, SHI LiBo, LU WeiPing. Agrochem., 2012, 51(8): 554-557, 580
鄭雪松, 賴添財, 時立波, 盧偉平. 農(nóng)藥, 2012, 51(8): 554-557, 580
14YANG GuiQiu, ZHANG Yu, YANG HuiBing, WU HongFei, YU HaiBo, LI Bin. Modern Agrochem., 2012, 11(1): 22-24, 29
楊桂秋, 張 宇, 楊輝斌, 吳鴻飛, 于海波, 李 斌. 現(xiàn)代農(nóng)藥, 2012, 11(1): 22-24, 29
15LIU Hao, OUYANG GuiPing, GE ChengLin, HAN XinZheng, ZHANG YongLu, ZHOU BingSen. Modern Agrochem., 2012, 11(2): 1-7
劉 浩, 歐陽貴平, 葛成林, 韓新正, 張永露, 周炳森. 現(xiàn)代農(nóng)藥, 2012, 11(2): 1-7
16HUANG YaoLiang, WANG XiangLin, XU Hong, CAO ShunGang. J. Zhejiang Agric. Sci., 2013, 5: 571-572
黃耀亮, 王祥林, 許 洪, 曹舜剛. 浙江農(nóng)業(yè)科學, 2013, 5: 571-572
17CHAI BaoShan, HE XiaoMin, WANG JunFeng, LI ZhiNian, LIU ChangLing. Agrochem., 2010, 49: 167-169
柴寶山, 何曉敏, 王軍鋒, 李志念, 劉長令. 農(nóng)藥, 2010, 49(3): 167-169
AbstractAn analytical method based on ultra performance liquid chromatographytandem mass spectrometry was developed for the determination of cyantraniliprole and its main metabolite J9Z38 residues in pepper and soil. The fate of cyantraniliprole and J9Z38 in pepper and soil was also evaluated. The target compounds were extracted with acetonitrile, cleaned up by C18 cartridge, and further analyzed by gradient ultra performance liquid chromatographytandem mass spectrometry with electrospray ionization in positive mode (ESI+) using a UPLC BEH C18 Column. The method was validated using fortified pepper and soil. Intraday mean recoveries of cyantraniliprole and J9Z38 at three spiked levels (0.01, 0.10 and 1.00 mg/kg) ranged from 88.6% to 105.7% with relative standard deviations of 3.8%-15.1%. Interday mean recoveries of cyantraniliprole and J9Z38 were found between 91.4% and 105.3% with relative standard deviations of 4.9%-12.3% at three spiked levels. Limits of quantification (LOQs) of cyantraniliprole and J9Z38 were 0.1 and 0.2 μg/kg, respectively. Linear calibration functions with correlation coefficients of r>0.9992 were obtained in the concentration range of 2.0-128.0 μg/L. This method was applied to the analysis of cyantraniliprole and J9Z38 residues in real pepper and soil samples selected from field. The results of the residue dynamic experiment showed that the halflife of cyantraniliprole ranged from 9.2 to 11.2 days in pepper and from 9.2 to 20.8 days in soil. While, the residues of J9Z38 in pepper were below LOQ, and the halflife of J9Z38 in soil was 9.4 days. The degradation speed of cyantraniliprole increased with the increase of the precipitation.
KeywordsCyantraniliprole; J9Z38; Pepper; Residue; Ultra performance liquid chromatographytandem mass spectrometry
7Zhang P, Hu X, Zhao H, Wu M, He H, Zhang C, Tang T, Ping L, Li Z. Chemosphere, 2013, 93: 190-195
8Sun J P, Feng N, Tang C F, Qin D M. Bull. Environ. Contam. Toxicol., 2012, 89(4): 845-852
9ZHAO KunXia, SUN JianPeng, QIN DongMei, TANG CongFeng. Environ. Sci. Technol., 2014, 37(2): 89-95
趙坤霞, 孫建鵬, 秦冬梅, 湯叢峰. 環(huán)境科學與技術, 2014, 37(2): 89-95
10Hu X Q, Zhang C P, Zhu Y H, Wu M, Cai X M, Ping L F, Li Z . J. AOAC. Int., 2013, 96(6): 1448-1452, 1455
11Sergio C N, James J S, Anne M P, Joseph P M, John H M. J. Agric. Food Chem., 2011, 59(14): 7557-7568
12Schwarz T, Snow T A, Santee C J, Mulligan C C, Class T, Wadsley M P, Nanita S C. J. Agric. Food Chem., 2011, 59: 814-821
13ZHENG XueSong, LAI TianCai, SHI LiBo, LU WeiPing. Agrochem., 2012, 51(8): 554-557, 580
鄭雪松, 賴添財, 時立波, 盧偉平. 農(nóng)藥, 2012, 51(8): 554-557, 580
14YANG GuiQiu, ZHANG Yu, YANG HuiBing, WU HongFei, YU HaiBo, LI Bin. Modern Agrochem., 2012, 11(1): 22-24, 29
楊桂秋, 張 宇, 楊輝斌, 吳鴻飛, 于海波, 李 斌. 現(xiàn)代農(nóng)藥, 2012, 11(1): 22-24, 29
15LIU Hao, OUYANG GuiPing, GE ChengLin, HAN XinZheng, ZHANG YongLu, ZHOU BingSen. Modern Agrochem., 2012, 11(2): 1-7
劉 浩, 歐陽貴平, 葛成林, 韓新正, 張永露, 周炳森. 現(xiàn)代農(nóng)藥, 2012, 11(2): 1-7
16HUANG YaoLiang, WANG XiangLin, XU Hong, CAO ShunGang. J. Zhejiang Agric. Sci., 2013, 5: 571-572
黃耀亮, 王祥林, 許 洪, 曹舜剛. 浙江農(nóng)業(yè)科學, 2013, 5: 571-572
17CHAI BaoShan, HE XiaoMin, WANG JunFeng, LI ZhiNian, LIU ChangLing. Agrochem., 2010, 49: 167-169
柴寶山, 何曉敏, 王軍鋒, 李志念, 劉長令. 農(nóng)藥, 2010, 49(3): 167-169
AbstractAn analytical method based on ultra performance liquid chromatographytandem mass spectrometry was developed for the determination of cyantraniliprole and its main metabolite J9Z38 residues in pepper and soil. The fate of cyantraniliprole and J9Z38 in pepper and soil was also evaluated. The target compounds were extracted with acetonitrile, cleaned up by C18 cartridge, and further analyzed by gradient ultra performance liquid chromatographytandem mass spectrometry with electrospray ionization in positive mode (ESI+) using a UPLC BEH C18 Column. The method was validated using fortified pepper and soil. Intraday mean recoveries of cyantraniliprole and J9Z38 at three spiked levels (0.01, 0.10 and 1.00 mg/kg) ranged from 88.6% to 105.7% with relative standard deviations of 3.8%-15.1%. Interday mean recoveries of cyantraniliprole and J9Z38 were found between 91.4% and 105.3% with relative standard deviations of 4.9%-12.3% at three spiked levels. Limits of quantification (LOQs) of cyantraniliprole and J9Z38 were 0.1 and 0.2 μg/kg, respectively. Linear calibration functions with correlation coefficients of r>0.9992 were obtained in the concentration range of 2.0-128.0 μg/L. This method was applied to the analysis of cyantraniliprole and J9Z38 residues in real pepper and soil samples selected from field. The results of the residue dynamic experiment showed that the halflife of cyantraniliprole ranged from 9.2 to 11.2 days in pepper and from 9.2 to 20.8 days in soil. While, the residues of J9Z38 in pepper were below LOQ, and the halflife of J9Z38 in soil was 9.4 days. The degradation speed of cyantraniliprole increased with the increase of the precipitation.
KeywordsCyantraniliprole; J9Z38; Pepper; Residue; Ultra performance liquid chromatographytandem mass spectrometry
7Zhang P, Hu X, Zhao H, Wu M, He H, Zhang C, Tang T, Ping L, Li Z. Chemosphere, 2013, 93: 190-195
8Sun J P, Feng N, Tang C F, Qin D M. Bull. Environ. Contam. Toxicol., 2012, 89(4): 845-852
9ZHAO KunXia, SUN JianPeng, QIN DongMei, TANG CongFeng. Environ. Sci. Technol., 2014, 37(2): 89-95
趙坤霞, 孫建鵬, 秦冬梅, 湯叢峰. 環(huán)境科學與技術, 2014, 37(2): 89-95
10Hu X Q, Zhang C P, Zhu Y H, Wu M, Cai X M, Ping L F, Li Z . J. AOAC. Int., 2013, 96(6): 1448-1452, 1455
11Sergio C N, James J S, Anne M P, Joseph P M, John H M. J. Agric. Food Chem., 2011, 59(14): 7557-7568
12Schwarz T, Snow T A, Santee C J, Mulligan C C, Class T, Wadsley M P, Nanita S C. J. Agric. Food Chem., 2011, 59: 814-821
13ZHENG XueSong, LAI TianCai, SHI LiBo, LU WeiPing. Agrochem., 2012, 51(8): 554-557, 580
鄭雪松, 賴添財, 時立波, 盧偉平. 農(nóng)藥, 2012, 51(8): 554-557, 580
14YANG GuiQiu, ZHANG Yu, YANG HuiBing, WU HongFei, YU HaiBo, LI Bin. Modern Agrochem., 2012, 11(1): 22-24, 29
楊桂秋, 張 宇, 楊輝斌, 吳鴻飛, 于海波, 李 斌. 現(xiàn)代農(nóng)藥, 2012, 11(1): 22-24, 29
15LIU Hao, OUYANG GuiPing, GE ChengLin, HAN XinZheng, ZHANG YongLu, ZHOU BingSen. Modern Agrochem., 2012, 11(2): 1-7
劉 浩, 歐陽貴平, 葛成林, 韓新正, 張永露, 周炳森. 現(xiàn)代農(nóng)藥, 2012, 11(2): 1-7
16HUANG YaoLiang, WANG XiangLin, XU Hong, CAO ShunGang. J. Zhejiang Agric. Sci., 2013, 5: 571-572
黃耀亮, 王祥林, 許 洪, 曹舜剛. 浙江農(nóng)業(yè)科學, 2013, 5: 571-572
17CHAI BaoShan, HE XiaoMin, WANG JunFeng, LI ZhiNian, LIU ChangLing. Agrochem., 2010, 49: 167-169
柴寶山, 何曉敏, 王軍鋒, 李志念, 劉長令. 農(nóng)藥, 2010, 49(3): 167-169
AbstractAn analytical method based on ultra performance liquid chromatographytandem mass spectrometry was developed for the determination of cyantraniliprole and its main metabolite J9Z38 residues in pepper and soil. The fate of cyantraniliprole and J9Z38 in pepper and soil was also evaluated. The target compounds were extracted with acetonitrile, cleaned up by C18 cartridge, and further analyzed by gradient ultra performance liquid chromatographytandem mass spectrometry with electrospray ionization in positive mode (ESI+) using a UPLC BEH C18 Column. The method was validated using fortified pepper and soil. Intraday mean recoveries of cyantraniliprole and J9Z38 at three spiked levels (0.01, 0.10 and 1.00 mg/kg) ranged from 88.6% to 105.7% with relative standard deviations of 3.8%-15.1%. Interday mean recoveries of cyantraniliprole and J9Z38 were found between 91.4% and 105.3% with relative standard deviations of 4.9%-12.3% at three spiked levels. Limits of quantification (LOQs) of cyantraniliprole and J9Z38 were 0.1 and 0.2 μg/kg, respectively. Linear calibration functions with correlation coefficients of r>0.9992 were obtained in the concentration range of 2.0-128.0 μg/L. This method was applied to the analysis of cyantraniliprole and J9Z38 residues in real pepper and soil samples selected from field. The results of the residue dynamic experiment showed that the halflife of cyantraniliprole ranged from 9.2 to 11.2 days in pepper and from 9.2 to 20.8 days in soil. While, the residues of J9Z38 in pepper were below LOQ, and the halflife of J9Z38 in soil was 9.4 days. The degradation speed of cyantraniliprole increased with the increase of the precipitation.
KeywordsCyantraniliprole; J9Z38; Pepper; Residue; Ultra performance liquid chromatographytandem mass spectrometry