徐亞洲,廖紅,張陸勇,李佳,龐濤*
(1. 中國(guó)藥科大學(xué)新藥篩選中心,江蘇 南京 210009;2. 中國(guó)科學(xué)院上海藥物研究所,國(guó)家新藥篩選中心,上海 201203)
腺苷一磷酸激活蛋白激酶激活劑研究進(jìn)展
徐亞洲1,廖紅1,張陸勇1,李佳2,龐濤1*
(1. 中國(guó)藥科大學(xué)新藥篩選中心,江蘇 南京 210009;2. 中國(guó)科學(xué)院上海藥物研究所,國(guó)家新藥篩選中心,上海 201203)
腺苷一磷酸激活蛋白激酶(AMPK)是調(diào)控能量代謝的重要激酶,在代謝障礙、心血管疾病及腫瘤等疾病的病理進(jìn)程中都有重要的調(diào)節(jié)作用。對(duì)AMPK的結(jié)構(gòu)及其生理調(diào)節(jié)作用進(jìn)行介紹,并重點(diǎn)綜述AMPK間接激活劑和直接激活劑的研究進(jìn)展,旨在為AMPK激活劑的深入開(kāi)發(fā)提供參考。
腺苷一磷酸激活蛋白激酶;間接激活劑;直接激活劑
腺苷一磷酸激活蛋白激酶(adenosine 5'-monophosphateactivated protein kinase, AMPK)廣泛存在于生物體內(nèi),對(duì)細(xì)胞能量代謝、生長(zhǎng)分化等發(fā)揮關(guān)鍵作用,是一種極其重要的蛋白激酶,其生物學(xué)效應(yīng)及其激活劑在臨床疾病治療方面的研究日益廣泛。目前認(rèn)為,AMPK作為靶點(diǎn)在治療心血管疾病、糖尿病[1]、肥胖癥[2]、中樞性疾病[3]以及癌癥[4]等方面有著很大的應(yīng)用潛力。
AMPK屬絲氨酸/蘇氨酸蛋白激酶,是由α、β和γ3個(gè)亞基組成的異源三聚體復(fù)合物(見(jiàn)圖1)。其中,α亞基為催化亞基,有α1和α2這2種亞型;β、γ亞基為調(diào)節(jié)亞基,有β1、β2、γ1、γ2和γ3亞型,各種亞型由獨(dú)立的基因編碼,可組成多種可能的復(fù)合體形式[5]。這些復(fù)合體在機(jī)體不同組織中有不同的表達(dá),且有可能發(fā)揮不同的作用,其中α2、β2在心臟和骨骼肌中高表達(dá),γ2在心臟、腦等少數(shù)組織中表達(dá),γ3只在骨骼肌中表達(dá),而α1、β1、γ1在機(jī)體各組織中普遍存在[6]。最新研究表明:人類(lèi)骨骼肌中AMPK復(fù)合體主要為α2β2γ3型[7],肝臟內(nèi)的AMPK復(fù)合體主要為α1β2γ1型[8]。
AMPK的α亞基N端含1個(gè)高度保守的催化結(jié)構(gòu)域,其172位蘇氨酸(Thr172)為磷酸化激活位點(diǎn),另外還包括1個(gè)自抑制區(qū)(auto-inhibitory domain,AID)以及C端1個(gè)與β亞基和γ亞基結(jié)合的區(qū)域。β亞基包含1個(gè)N端豆蔻?;稽c(diǎn)(N-terminal myristoylation site)、中間的糖原結(jié)合區(qū)域和C端1個(gè)與其他2個(gè)亞基的結(jié)合區(qū)。γ亞基4個(gè)胱硫醚-β-合成酶(cystathionine-β-synthase,CBS)序列,組成2個(gè)Bateman域,每個(gè)Bateman域能結(jié)合1個(gè)腺嘌呤核苷酸如AMP或ATP[6-7]。
圖1 腺苷一磷酸激活蛋白激酶結(jié)構(gòu)圖Figure 1 Structure of AMPK
目前認(rèn)為,體內(nèi)存在多種激酶可激活A(yù)MPK(見(jiàn)圖2),主要有2種:一是肝激酶B1(liver kinase B1,LKB1),依賴(lài)細(xì)胞內(nèi)AMP激活A(yù)MPK;二是鈣/鈣調(diào)蛋白依賴(lài)蛋白激酶激酶β(calcium/calmodulin-dependent protein kinase kinase beta,CaMKKβ),依賴(lài)第2信使鈣離子的參與[9]。LKB1存在于除Hela細(xì)胞外的大多數(shù)組織細(xì)胞內(nèi),而CaMKKβ在中樞系統(tǒng)中高度表達(dá)且發(fā)揮著重要作用[6,10]。此外,還存在轉(zhuǎn)化生長(zhǎng)因子β激活激酶(transforming growth factor beta-activated kinase-1,Tak1)能激活A(yù)MPK。這3種激酶都作用于α亞基上的Thr172位點(diǎn),使其磷酸化進(jìn)而激活A(yù)MPK[7]。體內(nèi)的蛋白磷酸酶2C(protein phosphotases 2C,PP2C)可催化AMPK的Thr172位點(diǎn)的去磷酸化[11],使其變成無(wú)活性形式。
生理狀態(tài)下,單磷酸腺苷(adenosine monophosphate,AMP)結(jié)合到γ亞基Bateman域上變構(gòu)激活A(yù)MPK,同時(shí)AMP與γ亞基的結(jié)合促進(jìn)α亞基上Thr172的磷酸化并阻礙PP2C的去磷酸化效應(yīng),從而大大增強(qiáng)了AMPK的活性[6,11]。研究表明,ATP可拮抗AMP結(jié)合到γ亞基上[12],因此,生理或病理狀態(tài)下只要能引起細(xì)胞內(nèi)AMP/ATP比值細(xì)微變化的因素均能影響AMPK活性,如運(yùn)動(dòng)、激素刺激、缺血、缺氧、氧化應(yīng)激等。激活的AMPK可激活其下游通路,從而發(fā)揮一系列重要作用,如調(diào)控營(yíng)養(yǎng)物質(zhì)代謝[1]、抑制促炎因子的合成釋放[13]、影響腫瘤細(xì)胞生長(zhǎng)[4]等。因此,AMPK已成為廣泛關(guān)注的多種疾病的治療新靶點(diǎn),其激活劑也成為藥物研究與開(kāi)發(fā)的熱點(diǎn)之一。
圖2 腺苷一磷酸激活蛋白激酶的生理調(diào)節(jié)Figure 2 Physiological regulation of AMPK
3.1 間接激活劑
很多藥物和激素可在體內(nèi)激活A(yù)MPK,但由于這些激活劑的作用機(jī)制尚未完全闡釋清楚,且目前的研究證明其并不能與AMPK直接作用,而是通過(guò)影響AMP/ATP比值或AMPK上游激酶活性等途徑間接激活A(yù)MPK,此類(lèi)激活劑被稱(chēng)為間接激活劑(部分間接激活劑的作用機(jī)制見(jiàn)圖3)。
圖3 腺苷一磷酸激活蛋白激酶間接激活劑的作用機(jī)制Figure 3 Activation mechanism of AMPK by indirect activators
3.1.1 5-氨基咪唑-4-甲酰胺核苷 5-氨基咪唑-4-甲酰胺核苷(5-aminoimidazole-4-carboxamide riboside,AICAR,1),又名阿卡地新(acadesine),是首個(gè)被發(fā)現(xiàn)的AMPK激活劑,現(xiàn)已作為研究工具廣泛用于AMPK的相關(guān)實(shí)驗(yàn)研究。AICAR在腺苷轉(zhuǎn)運(yùn)體的作用下進(jìn)入細(xì)胞,而后在腺苷激酶作用下轉(zhuǎn)化為單磷酸衍生物5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl-5'-monophosphate(ZMP)。ZMP與AMP類(lèi)似,可結(jié)合到AMPKγ亞基,變構(gòu)激活A(yù)MPK并阻礙AMPK的去磷酸化,但并不影響細(xì)胞內(nèi)AMP/ATP比值[14]。AICAR在2型糖尿病大鼠模型中可降低血漿三酰甘油酯和游離脂肪酸水平、增加機(jī)體葡萄糖清除率、減少肝糖原分解、抑制脂肪分解等,從而減輕代謝障礙的諸多癥狀[15]。AICAR在培養(yǎng)的垂體腫瘤細(xì)胞內(nèi)可降低p70S6激酶活性,抑制細(xì)胞生長(zhǎng)[16],且能在應(yīng)激條件下引起星形細(xì)胞癌凋亡并保護(hù)正常腦細(xì)胞[17]。但有研究表明,AICAR并不是選擇性AMPK激活劑,其可作用于其他AMP敏感酶,如抑制果糖-1,6-二磷酸酶的活性[18]、刺激糖原磷酸化酶[19],故在使用AICAR作為AMPK激活劑進(jìn)行研究時(shí)要考慮其可能影響體內(nèi)多種酶活性這一性質(zhì)。
AICAR可抑制核轉(zhuǎn)錄因子-κB(nuclear factor κB,NF-κB)和CCAAT增強(qiáng)子結(jié)合蛋白(CCAAT/enhancerbinding protein,C/EBP)轉(zhuǎn)錄因子進(jìn)而下調(diào)促炎因子、誘
[1]Zhang B B, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome[J]. Cell Metab, 2009, 9(5): 407–416.
[2]Steinberg G R, Kemp B E. AMPK in health and disease[J]. Physiol Rev, 2009, 89(3): 1025–1078.
[3]Richter E A, Ruderman N B. AMPK and the biochemistry of exercise:implications for human health and disease[J]. Biochem J, 2009, 418(2): 261–275.
[4]Fogarty S, Hardie D G. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer[J]. Biochim Biophys Acta, 2010, 1804(3): 581–591.
[5]Yun H, Ha J. AMP-activated protein kinase modulators: a patent review(2006-2010)[J]. Expert Opin Ther Pat, 2011, 21(7): 983–1005.
[6]Kim M, Tian R. Targeting AMPK for cardiac protection: opportunities and challenges[J]. J Mol Cell Cardiol, 2011, 51(4): 548–553.
[7]Witczak C A, Sharoff C G, Goodyear L J. AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cellular metabolism[J]. Cell Mol Life Sci, 2008, 65(23): 3737–3755.
[8]Wu J, Puppala D, Feng X, et al. Chemoproteomic analysis of intertissue and inter-species isoform diversity of AMP-activated protein kinase (AMPK) [J]. J Biol Chem, 2013, 288(50): 35904–35912.
[9]Carling D, Sanders M J, Woods A. The regulation of AMP-activated protein kinase by upstream kinases[J]. Int J Obes (Lond), 2008, 32( Suppl 4): S55–S59.
[10]Sandoval D A, Obici S, Seeley R J. Targeting the CNS to treat type 2 diabetes[J]. Nat Rev Drug Discov, 2009, 8(5): 386–398.
[11]Suter M, Riek U, Tuerk R, et al. Dissecting the role of 5’-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase[J]. J Biol Chem, 2006, 281(43): 32207–32216.
[12]Scott J W, Hawley S A, Green K A, et al. CBS domains form energysensing modules whose binding of adenosine ligands is disrupted by disease mutations[J]. J Clin Invest, 2004, 113(2): 274–284.
[13]Salt I P, Palmer T M. Exploiting the anti-inflammatory effects of AMP-activated protein kinase activation[J]. Expert Opin Investig Drugs, 2012, 21(8): 1155–1167.
[14]Gadalla A E, Pearson T, Currie A J, et al. AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus[J]. J Neurochem, 2004, 88(5): 1272–1282.
[15]Bergeron R, Previs S F, Cline G W, et al. Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats[J]. Diabetes, 2001, 50(5): 1076–1082.
[16]Tulipano G, Faggi L, Losa M, et al. Effects of AMPK activation and combined treatment with AMPK activators and somatostatin on hormone secretion and cell growth in cultured GH-secreting pituitary tumor cells[J]. Mol Cell Endocrinol, 2013, 365(2): 197–206.
[17]Mukherjee P, Mulrooney T J, Marsh J, et al. Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain[J]. Mol Cancer, 2008, 7: 37.
[18]Vincent M F, Erion M D, Gruber H E, et al. Hypoglycaemic effect of AICAriboside in mice[J]. Diabetologia, 1996, 39(10): 1148–1155.
[19]Longnus S L, Wambolt R B, Parsons H L, et al. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms[J]. Am J Physiol Regul Integr Comp Physiol, 2003, 284(4): R936–R944.
[20]Giri S, Nath N, Smith B, et al. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase[J]. J Neurosci, 2004, 24(2): 479–487.
[21]Kuo C L, Ho F M, Chang M Y, et al. Inhibition of lipopolysaccharideinduced inducible nitric oxide synthase and cyclooxygenase-2 gene expression by 5-aminoimidazole-4-carboxamide riboside is independent of AMP-activated protein kinase[J]. J Cell Biochem, 2008, 103(3): 931–940.
[22]?abuzek K, Liber S, Gabryel B, et al. AICAR(5-aminoimidazole-4-carboxamide-1-beta-4- ribofuranoside) increases the production of toxic molecules and affects the profile of cytokines release in LPS-stimulated rat primary microglial cultures[J]. Neurotoxicology, 2010, 31(1): 134–146.
[23]Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action[J]. J Clin Invest, 2001, 108(8): 1167–1174.
[24]Owen M R, Doran E, Halestrap A P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain[J]. Biochem J, 2000, 348 Pt 3: 607–614.
[25]Ouyang J, Parakhia R A, Ochs R S. Metformin activates AMP kinase through inhibition of AMP deaminase[J]. J Biol Chem, 2011, 286(1): 1–11.
[26]Saeedi R, Parsons H L, Wambolt R B, et al. Metabolic actions of metformin in the heart can occur by AMPK-independent mechanisms[J]. Am J Physiol Heart Circ Physiol, 2008, 294(6): H2497–H2506.
[27]Miller R A, Chu Q, Xie J, et al. Biguanides suppress hepatic glucagon signaling by decreasing production of cyclic AMP[J]. Nature, 2013, 494(7436): 256–260.
[28]LeBrasseur N K, Kelly M, Tsao T S, et al. Thiazolidinediones can rapidly activate AMP- activated protein kinase in mammalian tissues[J]. Am J Physiol Endocrinol Metab, 2006, 291(1): E175–E181.
[29]Brunmair B, Staniek K, Gras F, et al. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions?[J]. Diabetes, 2004, 53(4): 1052–1059.
[30]Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein[J]. Diabetes, 2001, 50(9): 2094–2099.
[31]Chen H, Zhang L, Li X, et al. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes[J]. J Steroid Biochem Mol Biol, 2013, 138: 445–454.
[32]Guh J H, Chang W L, Yang J, et al. Development of novel adenosine monophosphate-activated protein kinase activators[J]. J Med Chem, 2010, 53(6): 2552–2561.
[33]Lee K H, Hsu E C, Guh J H, et al. Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator[J]. J Biol Chem, 2011, 286(45): 39247–39258.
[34]Minokoshi Y, Kim Y B, Peroni O D, et al. Leptin stimulates fatty-acidoxidation by activating AMP-activated protein kinase[J]. Nature, 2002, 415(6869): 339–343.
[35]Greco S J, Hamzelou A, Johnston J M, et al. Leptin boosts cellular metabolism by activating AMPK and the sirtuins to reduce tau phosphorylation and β-amyloid in neurons[J]. Biochem Biophys Res Commun, 2011, 414 (1): 170–174.
[36]Tanaka T, Masuzaki H, Yasue S, et al. Central melanocortin signaling restores skeletal muscle AMP-activated protein kinase phosphorylation in mice fed a high-fat diet[J]. Cell Metab, 2007, 5(5): 395–402.
[37]Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus[J]. Nature, 2004, 428(6982): 569–574.
[38]Watt M J, Dzamko N, Thomas W G, et al. CNTF reverses obesityinduced insulin resistance by activating skeletal muscle AMPK[J]. Nat Med, 2006, 12(5): 541–548.
[39]Steinberg G R, Watt M J, Fam B C, et al. Ciliary neurotrophic factor suppresses hypothalamic AMP-kinase signaling in leptin-resistant obese mice[J]. Endocrinology, 2006, 147(8): 3906–3914.
[40]Escartin C, Pierre K, Colin A, et al. Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults[J]. J Neurosci, 2007, 27(27): 7094–7104.
[41]Febbraio M A, Pedersen B K. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles[J]. FASEB J, 2002, 16(11): 1335–1347.
[42]Carey A L, Steinberg G R, Macaulay S L, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase[J]. Diabetes, 2006, 55(10): 2688–2697.
[43]Kelly M, Keller C, Avilucea P R, et al. AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise[J]. Biochem Biophys Res Commun, 2004, 320(2): 449–454.
[44]Kelly M, Gauthier M S, Saha A K, et al. Activation of AMP-activated protein kinase by interleukin-6 in rat skeletal muscle:association with changes in cAMP, energy state, and endogenous fuel mobilization[J]. Diabetes, 2009, 58(9): 1953–1960.
[45]da Silva Krause M, Bittencourt A, Homem de Bittencourt PI Jr, et al. Physiological concentrations of interleukin-6 directly promote insulin secretion, signal transduction, nitric oxide release, and redox status in a clonal pancreatic β-cell line and mouse islets[J]. J Endocrinol, 2012, 214(3): 301–311.
[46]Park S J, Ahmad F, Philp A, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases[J]. Cell, 2012, 148(3): 421–433.
[47]Price N L, Gomes A P, Ling A J, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function[J]. Cell Metab, 2012, 15(5): 675–690.
[48]Vingtdeux V, Chandakkar P, Zhao H, et al. Novel synthetic smallmolecule activators of AMPK as enhancers of autophagy and amyloid-β peptide degradation[J]. FASEB J, 2011, 25(1): 219–231.
[49]Vingtdeux V, Chandakkar P, Zhao H, et al. Small-molecule activators of AMP-activated protein kinase (AMPK), RSVA314 and RSVA405, inhibit adipogenesis[J]. Mol Med, 2011, 17(9/10): 1022–1030.
[50]Ma X, Egawa T, Kimura H, et al. Berberine-induced activation of 5'-adenosine monophosphate-activated protein kinase and glucose transport in rat skeletal muscles[J]. Metabolism, 2010, 59(11): 1619–1627.
[51]Turner N, Li J Y, Gosby A, et al. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action[J]. Diabetes, 2008, 57(5): 1414–1418.
[52]Lu D Y, Tang C H, Chen Y H, et al. Berberine Suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia[J]. J Cell Biochem, 2010, 110(3): 697–705.
[53]Lin H Y, Huang B R, Yeh W L, et al. Antineuroinflammatory effects of lycopene via activation of adenosine monophosphate-activated protein kinase-a1/heme oxygenase-1 pathways[J]. Neurobiol Aging, 2014, 35(1): 191–202.
[54]Lu J, Wu D M, Zheng Y L, et al. Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity[J]. J Pathol, 2010, 222(2): 199–212.
[55]Cool B, Zinker B, Chiou W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome[J]. Cell Metab, 2006, 3(6): 403–416.
[56]Sanders M J, Ali Z S, Hegarty B D, et al. Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family[J]. J Biol Chem, 2007, 282(45): 32539–32548.
[57]Treebak J T, Birk J B, Hansen B F, et al. A-769662 activates AMPK beta1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle[J]. Am J Physiol Cell Physiol, 2009, 297(4): C1041–C1052.
[58]Hawley S A, Fullerton M D, Ross F A, et al. The ancient drug salicylate directly activates AMP-activated protein kinase[J]. Science, 2012, 336(6083): 918–922.
[59]Pang T, Zhang Z S, Gu M, et al. Small molecule antagonizes autoinhibition and activates AMP-activated protein kinase in cells[J]. J Biol Chem, 2008, 283(23): 16051–16060.
[60]Yu L F, Li Y Y, Su M B, et al. Development of novel alkene oxindole derivatives as orally efficacious AMP-activated protein kinase activators[J]. ACS Med Chem Lett, 2013, 4(5): 475–480.
[61]Li Y Y, Yu L F, Zhang L N, et al. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice[J]. Toxicol Appl Pharmacol, 2013, 273(2): 325–334.
[62]Zhang L N, Xu L, Zhou H Y, et al. Novel small-molecule AMP-activated protein kinase allosteric activator with beneficial effects in db/ db mice[J]. PLoS One, 2013, 8(8): e72092.
[63]O’Neill L A, Hardie D G. Metabolism of inflammation limited by AMPK and pseudo- starvation[J]. Nature, 2013, 493(7432): 346–355.
Advances in Research on AMPK Activators
XU Yazhou1, LIAO Hong1, ZHANG Luyong1, LI Jia2, PANG Tao1*
(1. New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; 2. National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China)
Adenosine 5′-monophosphate-activated protein kinase (AMPK) is a key player in regulating energy metabolism. It is placed at the center stage in studies of many pathological conditions including metabolic disorders, cardiovascular disease and cancer. The structure and physiological regulation of AMPK have been introduced in this paper. Moreover,the research progresses in indirect and direct activators of AMPK have been especially reviewed, so as to provide insights for the further development of this kind of drugs.
AMPK; indirect activator; direct activator
R962
A
1001-5094(2014)02-0125-07
接受日期:2013-12-16
*通訊作者:龐濤,副研究員;
研究方向:藥物篩選及新藥開(kāi)發(fā);
Tel: 025-83271340;E-mail: tpang2012@gmail.com