趙立強(qiáng),劉 飛,王佩珊,劉平禮,羅志鋒,李年銀
(1.西南石油大學(xué) 油氣藏地質(zhì)及開發(fā)工程國家重點(diǎn)實(shí)驗(yàn)室,四川 成都 610500;2.中國石油 西南油氣田分公司勘探事業(yè)部,四川 成都 610000)
復(fù)雜水力裂縫網(wǎng)絡(luò)延伸規(guī)律研究進(jìn)展
趙立強(qiáng)1,劉 飛1,王佩珊2,劉平禮1,羅志鋒1,李年銀1
(1.西南石油大學(xué) 油氣藏地質(zhì)及開發(fā)工程國家重點(diǎn)實(shí)驗(yàn)室,四川 成都 610500;2.中國石油 西南油氣田分公司勘探事業(yè)部,四川 成都 610000)
隨著天然裂縫性儲層、煤層氣、頁巖氣、致密砂巖氣、致密油和復(fù)雜巖性低滲透油氣藏勘探開發(fā)進(jìn)程的加快,大規(guī)模體積壓裂實(shí)踐及微地震裂縫實(shí)時(shí)監(jiān)測技術(shù)對水力裂縫延伸模擬提出了巨大挑戰(zhàn)。復(fù)雜網(wǎng)絡(luò)裂縫延伸受儲層巖性、巖石力學(xué)性質(zhì)、地質(zhì)力學(xué)和天然裂縫特征等影響,文中綜述了天然裂縫對水力誘導(dǎo)裂縫延伸影響的國內(nèi)外研究進(jìn)展。水力誘導(dǎo)裂縫與天然裂縫相交前、相交時(shí)和相交后的復(fù)雜力學(xué)行為決定了水力誘導(dǎo)裂縫的復(fù)雜延伸規(guī)律:水力裂縫尖端逼近時(shí),誘導(dǎo)應(yīng)力場會導(dǎo)致膠結(jié)天然裂縫張性或剪性脫粘;相交時(shí),天然裂縫可能出現(xiàn)剪切破裂導(dǎo)致壓裂液大量濾失、或水力裂縫穿過天然裂縫沿原方向延伸、或轉(zhuǎn)向沿天然裂縫延伸并在其端部或弱結(jié)構(gòu)點(diǎn)起裂;相交后,可能出現(xiàn)多個裂縫尖端同時(shí)延伸的情況,形成復(fù)雜網(wǎng)絡(luò)裂縫。真三軸壓裂測試系統(tǒng)結(jié)合工業(yè)CT掃描、聲發(fā)射裝置、X-衍射等是研究復(fù)雜網(wǎng)絡(luò)裂縫形成機(jī)理的主要試驗(yàn)手段;而非常規(guī)裂縫模型和擴(kuò)展有限元方法(XFEM)是模擬復(fù)雜網(wǎng)絡(luò)裂縫延伸的主要數(shù)值手段。XFEM是處理含裂紋等不連續(xù)問題的最有效方法,并具有有限元方法的所有優(yōu)點(diǎn),考慮到裂縫內(nèi)流體壓力是水力裂縫延伸的驅(qū)動力,故基于XFEM的滲流-應(yīng)力-裂縫延伸全耦合研究是未來體積壓裂復(fù)雜網(wǎng)絡(luò)裂縫延伸模擬的重要發(fā)展方向。
延伸規(guī)律;相交作用準(zhǔn)則;滲流-應(yīng)力-裂縫延伸耦合;擴(kuò)展有限單元法;網(wǎng)絡(luò)裂縫;天然裂縫
20世紀(jì)60年代以來,人們開始關(guān)注裂縫性油氣藏壓裂過程中天然裂縫對水力裂縫延伸的影響。在諸多水力壓裂實(shí)踐中均觀測到多重水力裂縫延伸現(xiàn)象,特別是在天然裂縫性儲層中,當(dāng)延伸的水力裂縫與天然裂縫相交時(shí),水力裂縫可能會分叉,這個過程是自我強(qiáng)化的過程[1],F(xiàn)racProPT等商業(yè)壓裂軟件常采用等效多裂縫對其進(jìn)行處理,形成類似于“千層餅”或“仙人掌”狀的多重水力裂縫。Mahrer[2]認(rèn)為多裂縫延伸最先發(fā)生于近井地帶,受天然裂縫和地層弱面影響,易形成裂縫帶,并首次提出了網(wǎng)絡(luò)裂縫的概念;McDaniel[3]歸納了近井區(qū)域延伸的幾種多裂縫形態(tài),提出了徑向縫網(wǎng)延伸概念圖;Warpinski和Teufel[4-5]進(jìn)行地質(zhì)非連續(xù)體對水力裂縫延伸影響的礦場實(shí)驗(yàn),觀察到了6~9 m裂縫帶,提出了遠(yuǎn)井縫網(wǎng)構(gòu)想圖;微地震監(jiān)測表明Barnett頁巖水力壓裂形成了復(fù)雜的網(wǎng)絡(luò)裂縫[6];Fisher[7-8]認(rèn)為水力裂縫可分為:平面雙翼裂縫、復(fù)雜多裂縫和極為復(fù)雜的網(wǎng)絡(luò)裂縫。
隨著對水力壓裂復(fù)雜形態(tài)裂縫延伸的深入認(rèn)識,將縫網(wǎng)壓裂的思想引入頁巖氣、煤層氣、致密砂巖氣、裂縫性儲層的增產(chǎn)改造,形成了體積壓裂改造理論,吳奇[9]等給出了廣義和狹義上的體積改造定義。體積改造形成的是復(fù)雜網(wǎng)狀裂縫系統(tǒng),裂縫的起裂與延伸包含張性、剪切、滑移、錯斷等復(fù)雜的力學(xué)行為,主要受就地應(yīng)力場、孔隙流體壓力、巖石礦物組成、巖石力學(xué)性質(zhì)、天然裂縫發(fā)育程度及特征等影響。經(jīng)典壓裂理論認(rèn)為水力裂縫為對稱雙翼平面裂縫,不能滿足體積改造多裂縫延伸和復(fù)雜網(wǎng)絡(luò)裂縫延伸模擬的要求,迫切需要一套能夠解決復(fù)雜網(wǎng)絡(luò)裂縫延伸的理論和方法來指導(dǎo)體積壓裂設(shè)計(jì),為我國頁巖油氣等非常規(guī)油氣藏大規(guī)模開發(fā)奠定理論基礎(chǔ)和技術(shù)儲備。本文就天然裂縫對水力裂縫延伸影響的室內(nèi)試驗(yàn)、判斷準(zhǔn)則、模擬模型等的研究進(jìn)展進(jìn)行綜述,并對今后縫網(wǎng)壓裂理論模擬和現(xiàn)場實(shí)施方面提出了展望。
Gu[10]將天然裂縫對水力裂縫延伸的影響分為兩個階段(圖1):第一階段,水力裂縫尖端與天然裂縫相交,但由于流體滯后效應(yīng)導(dǎo)致壓裂液尚未到達(dá)該交點(diǎn),交點(diǎn)處流體凈壓力為零(圖1a)。存在兩種可能:①天然裂縫發(fā)生剪切滑移或捕獲水力裂縫阻止其繼續(xù)延伸(圖1b);②水力裂縫直接穿過天然裂縫(圖1c)。第二個階段,壓裂液抵達(dá)天然裂縫,交點(diǎn)處流體凈壓力升高。若第一階段為b,則壓裂液進(jìn)入并張開天然裂縫,使其成為水力裂縫的一部分(圖1d)。若第一階段為c,根據(jù)流體壓力與作用在天然裂縫上的正應(yīng)力的相對大小關(guān)系,可分成兩種表現(xiàn)形式:①若小于,則天然裂縫仍處于閉合狀態(tài)(圖1e);②若大于,則天然裂縫張開,在合適的條件下可使多個裂縫尖端同時(shí)延伸(圖1f)。
實(shí)際上,水力裂縫延伸時(shí),會在裂縫尖端附近產(chǎn)生較大的誘導(dǎo)應(yīng)力(包括張應(yīng)力和剪切應(yīng)力),該誘導(dǎo)應(yīng)力可能導(dǎo)致天然裂縫張性或剪性脫粘,從而影響后續(xù)水力裂縫的延伸(圖2)[11]。
圖1 水力裂縫和天然裂縫之間的相互作用過程分解[10]Fig.1 Interaction process between hydraulic fractures(HF) and natural fractures(NF)[10]
圖2 水力裂縫逼近時(shí)天然裂縫行為示意圖[11]Fig.2 Schematic diagram showing natural fracture behaviors when hydraulic fracture approaching[11]a.拉伸斷裂張開;b.剪切破壞張開
1.1 水力裂縫延伸實(shí)驗(yàn)
Lamont和Jessen[12]對6種含天然裂縫的巖石(包括水泥、石灰石、露頭巖石和地下砂巖等)進(jìn)行了107次水力裂縫延伸實(shí)驗(yàn)。結(jié)果表明:水力裂縫會發(fā)生一定的轉(zhuǎn)向并以適當(dāng)角度與天然裂縫相交,之后轉(zhuǎn)向并且垂直穿過預(yù)置裂縫,離開的位置受巖石基質(zhì)薄弱點(diǎn)影響,最后逐漸轉(zhuǎn)向至平行于初始路徑方向。
Daneshy[13]研究了天然裂縫尺度和性質(zhì)(張開或閉合)對水力裂縫延伸的影響。Anderson[14]研究了天然裂縫面摩擦系數(shù)和作用在天然裂縫面上的正應(yīng)力對水力裂縫延伸的影響。
Blanton[15]的研究表明只有在高應(yīng)力差和大逼近角下水力裂縫才會穿過天然裂縫延伸,而低應(yīng)力差和小逼近角下,水力裂縫被張開天然裂縫捕獲延伸。
Warpinski[16]開展的礦場試驗(yàn)研究表明:水力裂縫存在三種延伸模式:①穿過天然裂縫;②被張開破裂的天然裂縫阻止延伸;③被剪切破裂的天然裂縫阻止延伸。
Olson[17]在石膏巖樣中嵌入不同尺寸的玻片作為非滲透預(yù)置裂縫,試驗(yàn)中觀察到旁通、穿過和轉(zhuǎn)向三種延伸模式。
Chitrala[18]等采用聲發(fā)射裝置測量了在不同水平應(yīng)力下的致密砂巖裂縫延伸機(jī)理,發(fā)現(xiàn)局部區(qū)域剪切破裂比張性破裂更常見。
Renard[19]等采用X-射線顯微層析法觀察了水力裂縫的三維延伸形態(tài),研究表明巖樣中的硬結(jié)構(gòu)(如顆粒)和弱結(jié)構(gòu)(如孔隙、微裂縫等)都會影響水力裂縫的最終延伸路徑。
國內(nèi),趙益忠[20]等對玄武巖、巨礫巖和泥灰?guī)r3種不同巖性地層水力壓裂裂縫擴(kuò)展規(guī)律進(jìn)行了試驗(yàn)研究。
陳勉[21-29]研究團(tuán)隊(duì)采用水泥和石英砂澆筑試件或天然巖樣,澆筑時(shí)用白紙模擬不同產(chǎn)狀天然裂縫(人造試件),利用真三軸壓裂裝置系統(tǒng)研究了天然裂縫存在對水力裂縫的延伸的影響,并創(chuàng)新的考慮了天然裂縫傾角對相交作用模式的影響。
Tiankui Guo[30]等首次利用真三軸測試系統(tǒng)對頁巖露頭進(jìn)行水力壓裂模擬實(shí)驗(yàn),利用大尺度非破壞性測試系統(tǒng)對壓后巖心裂縫形態(tài)進(jìn)行高能CT掃描。研究表明:當(dāng)水平主應(yīng)力差小于9 MPa時(shí),水力裂縫容易沿著天然裂縫延伸,形成復(fù)雜網(wǎng)絡(luò)裂縫,且隨應(yīng)力差的增大(<9 MPa),水力主裂縫能連通更多的天然裂縫,形成相對更復(fù)雜的裂縫系統(tǒng);當(dāng)壓裂液排量和粘度的乘積達(dá)到10-9N·m時(shí),更有利于形成復(fù)雜網(wǎng)絡(luò)裂縫,但過大或過小都不利;且重復(fù)壓裂有助于形成不同于之前裂縫的新裂縫體系,能達(dá)到更好的壓裂效果。
1.2 裂縫延伸判別準(zhǔn)則
為了評估在水力裂縫與天然裂縫交點(diǎn)附近多條裂縫的延伸情況,需要引入判斷裂縫是否延伸及延伸方向的準(zhǔn)則。
Warpinski[4]等指出了水平應(yīng)力差、相交角度和施工壓力對水力裂縫和天然裂縫之間的相互作用有所影響,在沒有考慮后續(xù)泵注過程的情況下,給出了相應(yīng)破裂準(zhǔn)則(W-T準(zhǔn)則)。
Blanton[31]以水力裂縫與天然裂縫作用區(qū)域的應(yīng)力分布為基礎(chǔ),得到了水力裂縫與天然裂縫相互作用判斷準(zhǔn)則的彈性解。
任嵐[32]組合了Blanton準(zhǔn)則和W-T準(zhǔn)則,將天然裂縫對水力的延伸的影響分為4個模式。
翁定為[33]等基于W-T準(zhǔn)則給出了天然裂縫發(fā)生張性和剪切破裂所需的流體凈壓力公式。
p>σn,|τ|>τ0+μf(σn-p)
(1)
當(dāng)天然裂縫發(fā)生張性破裂時(shí),所需縫內(nèi)流體凈壓力為:
(2)
當(dāng)天然裂縫為剪切破裂時(shí),所需縫內(nèi)流體凈壓力為:
式中:p和pnet分別為裂縫內(nèi)的流體壓力和流體凈壓力,MPa;σn和τ為遠(yuǎn)場應(yīng)力作用在天然裂縫上的正應(yīng)力和剪應(yīng)力,MPa;τ0為天然裂縫的內(nèi)聚力,MPa;μf為天然裂縫面摩擦系數(shù);σH和σh為最大和最小水平主應(yīng)力,MPa;θ為天然裂縫與水力裂縫(平行于最大水平主應(yīng)力)夾角,°。
Hossain[34]等基于摩爾庫侖線彈性剪切破裂理論給出了裂縫發(fā)生剪切破裂的準(zhǔn)則。
Olson[35]等采用邊界元法研究了水力裂縫與天然裂縫之間的相互作用,認(rèn)為天然裂縫與人工裂縫的夾角、擬凈壓力系數(shù)是影響網(wǎng)狀裂縫形成的主要因素。擬凈壓力系數(shù)Rn的定義為:
(4)
Rehshaw和Pollard[36]基于裂縫尖端誘導(dǎo)應(yīng)力的線彈性斷裂力學(xué)解給出了水力裂縫穿過正交天然裂縫的判斷準(zhǔn)則(R-P準(zhǔn)則)。
(5)
圖3 應(yīng)力比大于1時(shí)不同交叉角情況下的交叉準(zhǔn)則圖[10]Fig.3 Plot of crossing criterion for stress ration >1 at several intersection angles[10]
式中:T0為巖石基質(zhì)的抗張強(qiáng)度,MPa。
由于天然裂縫走向通常與最大水平主應(yīng)力方向不一致,即水力裂縫與天然裂縫的逼近角在0到90°之間。Gu和Weng[10,37]將R-P準(zhǔn)則擴(kuò)展到了非正交情形(G-W準(zhǔn)則)。圖3為不同逼近角下G-W準(zhǔn)則的計(jì)算結(jié)果,曲線右側(cè)區(qū)域表示水力裂縫穿過天然裂縫[10]。
程萬等[29]根據(jù)斷裂力學(xué)理論,建立了三維空間中水力裂縫穿過天然裂縫的判別準(zhǔn)則,該準(zhǔn)則與G-W準(zhǔn)則的區(qū)別在于考慮了天然裂縫的傾角,并與其試驗(yàn)研究結(jié)果和前人研究結(jié)果吻合良好。
而在有限元或擴(kuò)展有限元分析中,通常采用線彈性斷裂力學(xué)中常用的最大周向應(yīng)力準(zhǔn)則、最小應(yīng)變能密度準(zhǔn)則、最大能量釋放率準(zhǔn)則和最大張應(yīng)力準(zhǔn)則等[38-40]。
經(jīng)典壓裂理論認(rèn)為水力裂縫為對稱雙翼平面形態(tài),該假設(shè)不符合復(fù)雜網(wǎng)絡(luò)裂縫延伸的實(shí)際情況,不適合繼續(xù)用來模擬復(fù)雜縫網(wǎng)。
2.1 線網(wǎng)模型(Wire-mesh Model)
為了克服常規(guī)裂縫模型的限制,Xu[41-43]、Meyer和Bazan[44]等在模擬縫網(wǎng)的延伸過程中考慮了兩組平行、隔開的正交裂縫,建立了線網(wǎng)(Wire-mesh)模型。該模型為半解析模型,認(rèn)為頁巖氣藏水平井壓裂產(chǎn)生的裂縫網(wǎng)絡(luò)是沿井筒對稱的橢球體,通過將該橢球體劃分為數(shù)條正交的水平、垂直均勻截面來描述高滲裂縫(圖4)。其優(yōu)點(diǎn)在于提供了一種縫網(wǎng)尺寸和縫網(wǎng)中支撐劑空間分布的估計(jì)方法,且它所需要的運(yùn)算量不大,適合實(shí)時(shí)應(yīng)用。不足在于:①它必須將油藏改造區(qū)域近似為沿井筒對稱的橢球體,不能模擬不規(guī)則的裂縫形態(tài);②沒有建立判斷準(zhǔn)則,直接地認(rèn)為天然裂縫與人工裂縫相連接;③沒有考慮人工裂縫之間的相互干擾;④裂縫間距和改造體積由微地震監(jiān)測結(jié)果確定,僅限于本段壓裂施工模擬,計(jì)算結(jié)果不具有普遍適用性。
圖4 線網(wǎng)模型示意圖[43]Fig.4 Schematic diagram of wire-mesh model[43]
2.2 等效裂縫模型
Potluri[45]和趙金洲[46]考慮水力裂縫與天然裂縫相交作用后可能發(fā)生轉(zhuǎn)向延伸的情況,結(jié)合相交作用準(zhǔn)則,在常規(guī)二維PKN模型的基礎(chǔ)上建立了裂縫非平面延伸的等效模型。其核心思想在于將沿天然裂縫轉(zhuǎn)向延伸段旋轉(zhuǎn)至水力裂縫主方向,從而將非平面延伸裂縫轉(zhuǎn)化為平面延伸裂縫,采用PKN模型進(jìn)行求解,轉(zhuǎn)化原理如圖5所示。等效裂縫模型將水力裂縫在天然裂縫處的轉(zhuǎn)向延伸段等效為平面裂縫延伸的一部分,該等效方法不能模擬多個裂縫尖端同時(shí)延伸的情況。
2.3 非常規(guī)裂縫模型(UFM模型)
Kresse和Weng[47-52]等在擬三維裂縫延伸模型的基礎(chǔ)上,考慮天然裂縫與水力誘導(dǎo)裂縫的相互作用及相鄰水力裂縫之間的應(yīng)力干擾,建立了非常規(guī)裂縫模型(Unconventional Fracture Model,UFM),用以模擬體積改造中復(fù)雜裂縫網(wǎng)絡(luò)的延伸。UFM模型與擬三維裂縫模型具有相似的假設(shè)條件和控制方程,控制方程主要包括三個部分:①裂縫網(wǎng)絡(luò)中流體流動的方程,②裂縫變形方程,③裂縫延伸準(zhǔn)則(采用G-W準(zhǔn)則判斷水力裂縫與天然裂縫的相交作用)。UFM模型的優(yōu)點(diǎn)在于其能模擬天然裂縫和水力裂縫之間的相互作用,即確定水力裂縫是被天然裂縫捕獲還是直接穿過天然裂縫;另外,還能同時(shí)模擬多個裂縫尖端同時(shí)延伸。
圖5 水力裂縫轉(zhuǎn)向等效裂縫延伸路徑[46]Fig.5 Equivalent fracture propagation for dilation hydraulic fractures[46]
考慮到計(jì)算量和工程精度要求,UFM模型假設(shè)天然裂縫和水力裂縫均是垂直的,即該模型對天然裂縫垂直或近似垂直的油氣藏的水力裂縫延伸規(guī)律模擬結(jié)果較為準(zhǔn)確。當(dāng)裂縫變形方程從擬三維簡化為PKN時(shí),UFM計(jì)算結(jié)果如圖6所示。
2.4 多維虛擬內(nèi)鍵模型(VMIB)
Zhang[53]等采用多維虛擬內(nèi)鍵理論(Virtual Multi-dimensional Internal Bond,VMIB),將材料認(rèn)為是微觀上由材料顆粒組成,材料顆粒由虛擬內(nèi)鍵聯(lián)接,材料顆粒通過隨機(jī)分布的網(wǎng)狀結(jié)構(gòu)相互作用,宏觀上的本構(gòu)關(guān)系直接由顆粒內(nèi)聚力準(zhǔn)則得到(將材料破裂準(zhǔn)則隱含在本構(gòu)關(guān)系中)。而天然裂縫區(qū)采用等效粘合區(qū)替代,該區(qū)內(nèi)材料顆粒微觀尺度間距遠(yuǎn)大于均質(zhì)巖石基質(zhì)區(qū)顆粒間距,從而可以忽略顆粒相互作用,形成宏觀尺度的天然裂縫。裂縫壁面的接觸作用和摩擦作用采用兩節(jié)點(diǎn)接觸單元法,并引入影響函數(shù)來描述接觸顆粒附近的位移。
圖6 垂直的天然裂縫性儲層中形成的水力裂縫網(wǎng)絡(luò)[52]Fig.6 Hydraulic fracture net-work forming in fractured reservoirs with vertical natural fractures[52]
對于水力裂縫內(nèi)流體流動,基于有限元法,將作用在水力裂縫壁面的流體壓力轉(zhuǎn)化為作用在單元節(jié)點(diǎn)處的等效節(jié)點(diǎn)力。裂縫網(wǎng)絡(luò)的延伸采用局部應(yīng)變來識別失效單元,從而將天然裂縫與水力裂縫相互作用引起的裂縫延伸準(zhǔn)則隱去。
該方法的優(yōu)點(diǎn)在于可準(zhǔn)確考慮天然裂縫的實(shí)際分布情況,不需要建立額外的水力裂縫延伸準(zhǔn)則和對延伸后的裂縫網(wǎng)絡(luò)進(jìn)行網(wǎng)格重劃分,也可以考慮裂縫內(nèi)流體壓力的影響。
2.5 擴(kuò)展有限元模型(XFEM)
Moes等[54-55]通過改進(jìn)有限元方法的插值形函數(shù),提出擴(kuò)展有限單元法(eXtended Finite Element Mothod,XFEM)來解決裂紋等不連續(xù)問題。XFEM成為迄今為止求解不連續(xù)力學(xué)問題最有效的數(shù)值方法[56-60],逐漸引起水力壓裂工作者的關(guān)注。
XFEM通過在傳統(tǒng)有限元表達(dá)中增加廣義節(jié)點(diǎn)自由度和相應(yīng)的插值基函數(shù)提高數(shù)值描述精度,并解決了有限元網(wǎng)格劃分困難的問題。
(6)
式中:u為單元內(nèi)任意點(diǎn)的位移自由度向量;uα(α=a,b,c,d)分別為常規(guī)節(jié)點(diǎn)自由度、階躍函數(shù)加強(qiáng)節(jié)點(diǎn)自由度、裂尖函數(shù)加強(qiáng)節(jié)點(diǎn)自由度和裂紋匯交函數(shù)加強(qiáng)節(jié)點(diǎn)自由度;N(x),H(x),ψ(x),J(x)分別為常規(guī)節(jié)點(diǎn)插值函數(shù)、裂紋貫穿單元節(jié)點(diǎn)附加階躍插值函數(shù)、裂尖單元節(jié)點(diǎn)附加漸進(jìn)插值函數(shù)和裂紋匯交單元附加匯交插值函數(shù);S為所有節(jié)點(diǎn)的集合;SH j,SC j,SJ j分別為第j條裂紋的階躍函數(shù)加強(qiáng)節(jié)點(diǎn)集,第j個裂尖的漸進(jìn)函數(shù)加強(qiáng)節(jié)點(diǎn)集和第j個裂紋交點(diǎn)的匯交函數(shù)加強(qiáng)節(jié)點(diǎn)集。
水力裂縫延伸與常規(guī)裂紋延伸問題的主要區(qū)別在于裂縫內(nèi)流體壓力是裂紋延伸的主要驅(qū)動力,故XFEM模擬水力裂縫延伸的關(guān)鍵在于如何施加裂紋內(nèi)流體壓力。Dahi-Taleghani[11,61]將XFEM與裂縫內(nèi)流體流動間接耦合計(jì)算了裂縫性儲層的水力裂縫的延伸。Keshavarzi[39,62]也采用XFEM來模擬了天然裂縫對水力裂縫延伸的影響。Gordeliy[63]提出了一種基于XFEM的流固耦合方案來模擬復(fù)雜網(wǎng)絡(luò)裂縫的延伸問題。Mohammadnejad[64]提出了一種基于XFEM的粘聚裂紋模型(Cohesive Crack Model)來模擬水力裂縫的延伸。Zuorong Chen[65-66]通過ABAQUS用戶子程序接口UEL定義二維四邊形平面應(yīng)變單元,在單元的合適節(jié)點(diǎn)加入額外的流體壓力自由度來描述粘稠流體在裂紋中的流動及對裂紋延伸的驅(qū)動作用,結(jié)合XFEM的優(yōu)點(diǎn)解決二維水力裂縫延伸問題。Lamb[67-69]將擴(kuò)展有限單元法與雙孔雙滲模型結(jié)合,將含裂縫巖體劃分為具有相同尺寸和坐標(biāo)的基巖單元和裂縫單元,基巖單元的滲透率為常數(shù),裂縫單元的滲透率采用張量形式表示,裂縫和基巖的流體交換項(xiàng)(濾失項(xiàng))采用竄流函數(shù)表征,并與XFEM耦合模擬了裂縫性多孔介質(zhì)的滲流、變形和裂縫延伸過程。
2.6 電磁場監(jiān)測模型(EM模型)
Cuevas[70]提出了通過監(jiān)測水力壓裂過程中記錄的電磁場(Electro-Magnetic)數(shù)據(jù)來模擬張開裂縫在地層中的延伸特征。其原理是裂縫壁面流體攜帶電荷流動產(chǎn)生電流,從而在地層中產(chǎn)生誘導(dǎo)電磁場,壓裂過程中監(jiān)測到的電磁場取決于裂縫性質(zhì)(如裂縫幾何尺寸和裂縫位置)、壓裂液和地層流體性質(zhì)(如導(dǎo)電性)等,故可以通過電磁場診斷裂縫的延伸過程。
實(shí)際上,天然裂縫在地層中呈三維分布,與水力裂縫相交后力學(xué)行為將更加復(fù)雜,可能存在張開、剪切、撕裂及其復(fù)合三維破裂行為。目前主要從室內(nèi)試驗(yàn)研究了二維垂直天然裂縫對水力裂縫延伸的影響,三維天然裂縫的影響尚處于探索階段,將真三軸壓裂測試系統(tǒng)與工業(yè)CT掃描、聲發(fā)射裝置、X衍射等結(jié)合是室內(nèi)試驗(yàn)研究復(fù)雜網(wǎng)絡(luò)裂縫形成機(jī)理的主要發(fā)展方向。
考慮計(jì)算效率和工程精度的需求,忽略微尺度天然裂縫的影響,對一定尺度以上的天然裂縫在地層中的三維分布進(jìn)行精細(xì)描述[71-73]是復(fù)雜水力裂縫網(wǎng)絡(luò)延伸模擬和體積壓裂優(yōu)化設(shè)計(jì)的基礎(chǔ)。
雖然UFM模型具有較強(qiáng)的實(shí)用價(jià)值,但難以準(zhǔn)確模擬復(fù)雜天然裂縫分布時(shí)的應(yīng)力干擾,以及未考慮天然裂縫的傾角等。而擴(kuò)展有限單元法是處理含有弱膠結(jié)面、材料界面、天然裂縫等瑕疵的裂紋延伸問題的最有效數(shù)值手段,XFEM將在復(fù)雜水力裂縫網(wǎng)絡(luò)延伸模擬中大放異彩,但需要基于XFEM的滲流-應(yīng)力耦合理論的支持。
基于天然裂縫三維分布的精細(xì)地質(zhì)力學(xué)描述[74-76],結(jié)合滲流-應(yīng)力耦合的XFEM模型來模擬壓裂液在水力裂縫中和復(fù)雜介質(zhì)中的流動規(guī)律,充分考慮壓裂液濾失后孔隙流體壓力的影響,再現(xiàn)支撐劑在裂縫網(wǎng)絡(luò)中的鋪置規(guī)律,充分考慮天然裂縫與水力誘導(dǎo)裂縫相交前、相交時(shí)和相交后的應(yīng)力行為,并能夠兼顧運(yùn)算時(shí)間的三維模型是模擬網(wǎng)絡(luò)裂縫延伸的重要發(fā)展方向。另外,借鑒其他學(xué)科的最新研究成果,通過實(shí)時(shí)監(jiān)測水力壓裂過程中的某些狀態(tài)參數(shù),再現(xiàn)天然裂縫性儲層網(wǎng)絡(luò)裂縫延伸規(guī)律也是一個重要發(fā)展方向。同時(shí),大量非常規(guī)油氣藏縫網(wǎng)壓裂的現(xiàn)場應(yīng)用,基于壓裂施工曲線擬合、停泵后壓力降落曲線擬合、微地震監(jiān)測建立的網(wǎng)絡(luò)裂縫延伸模型是今后的又一重要發(fā)展方向。
大規(guī)模體積壓裂是非常規(guī)油氣藏重要的增產(chǎn)開發(fā)手段,隨著大量高鈣質(zhì)非常規(guī)復(fù)雜巖性油氣藏、碳酸鹽巖膠結(jié)天然裂縫性儲層和致密碳酸鹽巖油氣藏的勘探開發(fā),應(yīng)重視體積酸壓在增產(chǎn)改造中的重要地位。酸液在剪切破裂的天然裂縫中大量濾失能夠有效刻蝕裂縫壁面,形成酸蝕裂縫,增加網(wǎng)絡(luò)裂縫的復(fù)雜性,同時(shí)可避免由于砂堵引起的工程事故;另外,酸巖反應(yīng)將降低巖石強(qiáng)度,也有利于復(fù)雜網(wǎng)絡(luò)裂縫的形成。
[1] Gas Research Institute.Advanced stimulation technical description,GRI-95/0258:multiple hydraulic fractures[M].1995.
[2] Mahrer K D.A review and perspective on far-field hydraulic fracture geometry studies[J].Journal of Petroleum Science and Engineering,1999,24(1):13-28.
[3] McDaniel B W,McMechan D E,Stegent N A.Proper use of proppant slugs and viscous gel slugs can improve proppant placement during hydraulic fracturing applications[J].2001,SPE 71661:1-16.
[4] Warpinski N R,Teufel L W.Influence of geologic discontinuities on hydraulic fracture propagation(includes associated papers 17011 and 17074)[J].Journal of Petroleum Technology,1987,39(2):209-220.
[5] Teufel L W,Clark J A.Hydraulic fracture propagation in layered rock:experimental studies of fracture containment[J].SPE Journal,1984,24(1):19-32.
[6] Urbancic T I,Maxwell S C.Microseismic imaging of fracture behavior in naturally fractured reservoirs[J].2002,SPE 78229:1-7.
[7] Fisher M K,Wright C A,Davidson B M,et al.Integrating fracture mapping technologies to improve stimulations in the Barnett Shale[J].SPE Production & Facilities,2005,20(2):85-93.
[8] Fisher M K,Heinze J R,Harris C D,et al.Optimizing horizontal completions in the Barnett shale with microseismic fracture mapping[J].Journal of Petroleum Technology,2005,57(3):41-42.
[9] 吳奇,胥云,王曉泉,等.非常規(guī)油氣藏體積改造技術(shù)——內(nèi)涵、優(yōu)化設(shè)計(jì)與實(shí)現(xiàn)[J].石油勘探與開發(fā),2012,39(3):352-357. Wu Qi,Xu Yun,Wang Xiaoquan,et al.Volume fracturing technology of unconventional reservoirs:connotation,optimization design and implementation[J].Petroleum Exploration and Development,2012,39(3):352-357.
[10] Gu H,Weng X,Lund J B,et al.Hydraulic fracture crossing natural fracture at nonorthogonal angles:a criterion and its validation[J].SPE Production & Operations,2012,27(1):20-26.
[11] Dahi-Taleghani A.Analysis of hydraulic fracture propagation in fractured reservoirs:An improved model for the interaction between induced and natural fractures[D].Austin:University of Texas at Austin,2009.
[12] Lamont N,Jessen F W.The effects of existing fractures in rocks on the extension of hydraulic fractures[J].Journal of Petroleum Technology,1963,15(2):203-209.
[13] Daneshy A A.Hydraulic fracture propagation in the presence of planes of weakness[J].1974,SPE 4852:1-8.
[14] Anderson G D.Effects of friction on hydraulic fracture growth near unbonded interfaces in rocks[J].SPE Journal,1981,21(1):21-29.
[15] Blanton T L.An experimental study of interaction between hydraulically induced and pre-existing fractures[J].1982,SPE/DOE10847:559-561.
[16] Warpinski N R.Hydraulic fracturing in tight,fissured media[J].Journal of Petroleum Technology,1991,43(2):146-151.
[17] Olson J E,Bahorich B,Holder J.Examining hydraulic fracture:natural fracture interaction in hydrostone block experiments[J].2012,SPE 152618:1-10.
[18] Chitrala Y,Moreno C,Sondergeld C,et al.An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions[J].Journal of Petroleum Science and Engineering,2013,108:151-161.
[19] Renard F,Bernard D,Desrues J,et al.3D imaging of fracture propagation using synchrotron X-ray microtomography[J].Earth and Planetary Science Letters,2009,286(1):285-291.
[20] 趙益忠,曲連忠,王幸尊,等.不同巖性地層水力壓裂裂縫擴(kuò)展規(guī)律的模擬實(shí)驗(yàn)[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,31(3):63-66. Zhao Yizhong,Qu Lianzhong,Wang Xingzun,et al.Simulation experiment on prolongation law of hydraulic fracture for different lithologic formations[J].Journal of China University of Petroleum,2007,31(3):63-66.
[21] 陳勉,龐飛,金衍.大尺寸真三軸水力壓裂模擬與分析[J].巖石力學(xué)與工程學(xué)報(bào),2000,19(增):868-872. Chen Mian,Pang Fei,Jin Yan.Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(S):868-872.
[22] 周健,陳勉,金衍,等.多裂縫儲層水力裂縫擴(kuò)展機(jī)理試驗(yàn)[J].中國石油大學(xué)學(xué)報(bào):自然科學(xué)版,2008,32(4):51-54. Zhou Jian,Chen Mian,Jin Yan,et al.Experiment of propagation mechanism of hydraulic fracture in multi-fracture reservoir[J].Journal ofChina University of Petroleum(Edition of Natural Science),2008,32(4):51-54.
[23] 周健,陳勉,金衍,等.裂縫性儲層水力裂縫擴(kuò)展機(jī)理試驗(yàn)研究[J].石油學(xué)報(bào),2007,28(5):109-113. Zhou Jian,Chen Mian,Jin Yan,et al.Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir[J].Acta Petrolei Sinica,2007,28(5):109-113.
[24] 陳勉,周健,金衍,等.隨機(jī)裂縫性儲層壓裂特征實(shí)驗(yàn)研究[J].石油學(xué)報(bào),2008,29(3):431-434. Chen Mian,Zhou Jian,Jin Yan,et al.Experimental study on fracturing features in naturally fractured reservoir[J].Acta Petrolei Sinica,2008,29(3):431-434.
[25] 姚飛,陳勉,吳曉東,等.天然裂縫性地層水力裂縫延伸物理模擬研究[J].石油鉆采工藝,2008,30(3):83-86. Yao Fei,Chen Mian,Wu Xiaodong,et al.Physical simulation of hydraulic fracture propagation in naturally formations[J].Oil Drilling & Production Technology,2008,30(3):83-86.
[26] 周健,陳勉,金衍,等.壓裂中天然裂縫剪切破壞機(jī)制研究[J].巖石力學(xué)與工程學(xué)報(bào),2008,27(增1):2637-2641. Zhou Jian,Chen Mian,Jin Yan,et al.Mechanism study of shearing slippage damage of natural fractue in hydraulic fracturing[J].2008,27(S1):2637-2641.
[27] Zhou Jian,Xue Chengjin.Experimental investigation of fracture interaction between natural fractures and hydraulic fracture in naturally fractured reservoirs[J].2011,SPE 142890:1-12.
[28] Zhou Jian,Chen Mian,Jin Yan,et al.Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(7):1143-1152.
[29] 程萬,金衍,陳勉,等.三維空間中水力裂縫穿透天然裂縫的判別準(zhǔn)則[J].石油勘探與開發(fā),2014,41(2):1-6. Cheng Wan,Jin Yan,Chen Mian,et al.A criterion for identifying hydraulic fractures crossing natural fractures in 3D space[J].Petroleum Exploration and Development,2014,41(2):1-6.
[30] Guo Tiankui,Zhang Shicheng,Qu Zhanqing,et al.Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J].Fuel,2014,128:373-380.
[31] Blanton T L.Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[J].1986,SPE 15261:613-627.
[32] 任嵐.裂縫性油氣藏縫網(wǎng)壓裂機(jī)理研究[D].成都:西南石油大學(xué),2011. Ren Lan.Mechanism of fracture-network fracturing for naturally fractured reservoirs[D].Chengdu:Petroleum Engineering,Southwest Petroleum University,2011.
[33] 翁定為,雷群,胥云,等.縫網(wǎng)壓裂技術(shù)及其現(xiàn)場應(yīng)用[J].石油學(xué)報(bào),2011,32(2):280-284. Weng Dingwei,Lei Qun,Xu Yun,et al.Network fracturing techniques and its application in the field[J].Acta Petrolei Sinica,2011,32(2):280-284.
[34] Hossain M M,Rahman M K,Rahman S S.A shear dilation stimulation model for production enhancement from naturally fractured reservoirs[J].SPE Journal,2002,7(2):183-195.
[35] Olson J E,Taleghani A D.Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures[J].2009,SPE 119739:1-7.
[36] Renshaw C E,Pollard D D.An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle,linear elastic materials[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(3):237-249.
[37] Gu H,Weng X.Criterion for fractures crossing frictional interfaces at non-orthogonal angles[J].2010,ARMA 10-198:1-6.
[38] 李世愚,和泰名,尹祥礎(chǔ),等.巖石斷裂力學(xué)導(dǎo)論[M].合肥:中國科學(xué)技術(shù)大學(xué)出版社,2010. Li Shiyu,He Taiming,Yin Xiangchu,et al.,Introduction of rock fracture mechanics[M].Hefei:Press of University of Science and Technology of China,2010.
[39] Keshavarzi R,Mohammadi S.A new approach for numerical modeling of hydraulic fracture propagation in naturally fractured reservoirs[J].2012,SPE 152509:1-12.
[40] Mohammadi,S.Extended finite element method for fracture analysis of structure[M].UK:Blackwell Publishing,2008.
[41] Xu W,Thiercelin M J,Walton I C.Characterization of hydraulically-induced shale fracture network using an analytical/semi-analytical model[J].2009,SPE 124697:1-7.
[42] Xu W,Le Calvez J H,Thiercelin M J.Characterization of hydraulically-induced fracture network using treatment and microseismic data in a tight-gas sand formation:a geomechanical approach[J].2009,SPE 125237:1-5.
[43] Xu W,Thiercelin M J,Ganguly U,et al.Wiremesh:a novel shale fracturing simulator[J].2010,SPE 132218:1-6.
[44] Meyer B R,Bazan L W.A discrete fracture network model for hydraulically induced fractures-theory parametric and case studies[J].2011,SPE 140514:1-36.
[45] Potluri N K.Effect of a natural fracture on hydraulic fracture propagation[D].Austin:University of Texas at Austin,2004.
[46] 趙金洲,任嵐,胡永全,等.裂縫性地層水力裂縫非平面延伸模擬[J].西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,34(4):174-180. Zhao Jinzhou,Ren Lan,Hu Yongquan,et al.Numerical simulation on non-planar propagation of hydraulic fracture in naturally fractured formations[J].Journal of Southwest Petroleum University:Science & Technology Edition,2012,34(4):174-180.
[47] Kresse O,Weng X,Wu R,et al.Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[J].2012,ARMA2012-292:1-11.
[48] Kresse O,Weng X,Gu H,et al.Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[J].Rock Mechanics and Rock Engineering,2013,46(3):555-568.
[49] Kresse O,Wu R,Weng X,et al.Modeling of interaction of hydraulic fractures in complex fracture networks[C]//AGU Fall Meeting Abstracts.2011,1:8.
[50] Wu R,Kresse O,Weng X,et al.Modeling of interaction of hydraulic fractures in complex fracture networks[J].2012,SPE 152052:1-14.
[51] Kresse O,Cohen C,Weng X,et al.Numerical modeling of hydraulic fracturing in naturally fractured formations[J].2011,ARMA11-363:1-11.
[52] Weng X,Kresse O,Cohen C E,et al.Modeling of hydraulic-fracture-network propagation in a naturally fractured formation[J].SPE Production & Operations,2011,26(4):368-380.
[53] Zhang Z,Ghassemi A.Simulation of hydraulic fracture propagation near a natural fracture using virtual multidimensional internal bonds[J].International Journal for Numerical and Analytical Methods in Geomechanics,2011,35(4):480-495.
[54] Moes N,Dolbow J,Belytschko T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46:131-150.
[55] Duax C,Moes N,Dolbow J,et al.Arbitrary branched and intersecting cracks with the extended finite element method[J].International Journal for Numerical Methods in Engineering,2000,48(12):1741-1760.
[56] 李錄賢,王鐵軍.擴(kuò)展有限元法(XFEM)及其應(yīng)用[J].力學(xué)進(jìn)展,2005,35(1):5-20. Li Luxian,Wang Tiejun.The extended finite element method and its applications:a Review[J].Advances in Mechanics,2005,35(1):5-20.
[57] 莊茁,柳占立,成斌斌,等.擴(kuò)展有限單元法[M].北京:清華大學(xué)出版社,2012. Zhuang Zhuo,Liu Zhanli,Cheng Binbin,et al.Extended finite element method[M].Beijing:Tsinghua University Press,2012.
[58] Pommier S,Gravouil A,Moes N,et al.Extended finite element me-thod for crack propagation[M].Hoboken:John Wiley & Sons,2013.
[59] Sukumar N,Prévost J H.Modeling quasi-static crack growth with the extended finite element method Part Ⅰ:computer implementation[J].International Journal of Solids and Structures,2003,40(26):7513-7537.
[60] Huang R,Sukumar N,Prévost J H.Modeling quasi-static crack growth with the extended finite element method Part Ⅱ:numerical applications[J].International Journal of Solids and Structures,2003,40(26):7539-7552.
[61] Dahi-Taleghani A,Olson J E.Numerical modeling of multistranded-hydraulic-fracture propagation:accounting for the interaction between induced and natural fractures[J].SPE Journal,2011,16(3):575-581.
[62] Keshavarzi R,Jahanbakhshi R.Investigation of Hydraulic and Natural Fracture Interaction:Numerical Modeling or Artificial Intelligence[C]//Bunger A P,McLennan J,Jeffrey R,eds.Effective and sustainable hydraulic fracturing.Croatia:Intech,2013:1039-1057.
[63] Gordeliy E,Peirce A.Coupling schemes for modeling hydraulic fracture propagation using the XFEM[J].Computer Methods in Applied Mechanics and Engineering,2013,253:305-322.
[64] Mohammadnejad T,Khoei A R.An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[J].Finite Elements in Analysis and Design,2013,73:77-95.
[65] Chen Z.An ABAQUS implementation of the XFEM for hydraulic fracture problems[C]//Bunger A P,McLennan J,Jeffrey R,eds.Effective and sustainable hydraulic fracturing.Croatia:Intech,2013:725-739.
[66] Chen Z.Finite element modelling of viscosity-dominated hydraulic fractures[J].Journal of Petroleum Science and Engineering,2012,88-89:136-144.
[67] Lamb A R.Coupled deformation,fluid flow and fracture propagation in porous media[D].London:Imperial College,2011.
[68] Lamb A R,Gorman G J,Gosselin O R,et al.Coupled deformation and fluid flow in fractured porous media using dual permeability and explicitly defined fracture geometry[J].2010,SPE 131725:1-15.
[69] Lamb A R,Gorman G J,Elsworth D.A fracture mapping and extended finite element scheme for coupled deformation and fluid flow in fractured porous media[J].International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(17):2916-2936.
[70] Cuevas N H.Electrokinetic coupling in hydraulic fracture propagation[D].Berkeley:University of California,2009.
[71] 倪春中,劉春學(xué),張世濤.從巖石露頭裂隙跡線估算裂隙三維空間方向[J].石油與天然氣地質(zhì),2013,34(1):102-105. Ni Chunzhong,Liu Chunxue,Zhang Shitao.Estimation of three-dimensional distribution of fissures according to fissure traces on outcrops[J].Oil & Gas Geology,2013,34(1):102-105.
[72] 倪春中,劉春學(xué),張世濤,等.基于體視學(xué)技術(shù)的二維數(shù)據(jù)模擬三維裂隙網(wǎng)絡(luò)[J].石油與天然氣地質(zhì),2014,35(1):148-152. Ni Chunzhong,Liu Chunxue,Zhang Shitao,et al.Stereology-based simulation of 3D fracture network with 2D data[J].Oil & Gas Geology,2014,35(1):148-152.
[73] 楊勉,徐梓洋,楊柏松,等.貝爾凹陷基巖潛山致密儲層裂縫分布預(yù)測[J].石油與天然氣地質(zhì),2014,35(2):253-257. Yang Mian,Xu Ziyang,Yang Baisong,et al.Fracture prediction of bedrock buried hill tight reservoirs in Beier Depression[J].Oil & Gas Geology,2014,35(2):253-257.
[74] 羅小龍,湯良杰.塔里木盆地雅克拉斷凸古構(gòu)造應(yīng)力場數(shù)值模擬[J].石油與天然氣地質(zhì),2013,34(6):841-846. Luo Xiaolong,Tang Liangjie.Numerical simulation of palaeotectonic stress field in Yakela faulted salient,the Tarim Basin[J].Oil & Gas Geology,2013,34(6):841-846.
[75] 茍波,郭建春.基于精細(xì)地質(zhì)模型的大型壓裂裂縫參數(shù)優(yōu)化[J].石油與天然氣地質(zhì),2013,34(6):809-815. Gou Bo,Guo Jianchun.Fracture parameter optimization of large hydraulic fracturing based on the fine geological model[J].Oil & Gas Geology,2013,34(6):809-815.
[76] 蘇建政,黃志文,龍秋蓮,等.基于ANSYS軟件的降低破裂壓力機(jī)理模擬[J].石油與天然氣地質(zhì),2012,33(4):640-645. Su Jianzheng,Huang Zhiwen,Long Qiulian,et al.ANSYS-based simulation of fracturing pressure reducing mechanism[J].Oil & Gas Geology,2012,33(4):640-645.
(編輯 張亞雄)
A review of creation and propagation of complex hydraulic fracture network
Zhao Liqiang1,Liu Fei1,Wang Peishan2,Liu Pingli1,Luo Zhifeng1,Li Nianyin1
(1.StateKeyLaboratoryofOil&GasReservoirGeologyandExploitation,SouthwestPetroleumUniversity,Chengdu,Sichuan610500,China;
2.ExplorationUtilityDepartment,SouthwestOilandGasFieldCompany,PetroChina,Chengdu,Sichuan610000,China)
With the accelerated process of the exploration and exploitation of natural fractured reservoir,coal bed me-thane,shale gas,tight gas,tight oil and complex lithology reservoir with low and/or ultra-low permeability,simulation of hydraulic fracture propagation is faced with big challenges from volume fracturing and real-time microseismic monitoring of hydraulic fracture.The propagation behaviors of complex fracture network are affected by reservoir lithology,geomechanics and natural fracture characteristics,etc.Research on the influences of natural fractures on the propagation of hydraulic fractures both at home and abroad was reviewed in this paper.The mechanical behaviors before,during and after the intersection of hydraulic fracture with pre-existing natural fracture determine the propagation of hydraulic fractures and the creation of fracture network.Before their intersection,tensile or shear debonding of cemented pre-existing natural fractures may start when induced fractures tip approaching.During their intersection,the natural fractures might be sheared to cause abundant fracturing fluid filtration,while the hydraulic fractures might penetrate natural fractures and propagate along the original path,or be arrested to propagate along the direction of natural fractures and re-initiate at its terminal or weak structure point.After their intersection,a complex fracture network may be formed with the simultaneous propagation of multiple fracture tips.True triaxial fracturing test system,combined with industrial computed tomography(CT)scan,acoustic emission device and X-ray diffraction,is the principal laboratorial means of studying the generation mechanism of complicated fracture network,while unconventional fracture model and extended finite element method(XFEM)are the main numerical methods for simulation of complex fracture network.XFEM is the most effective approach to deal with discontinuous analysis especially crack propagation problem,and has all the advantages of the finite element methods.As fracture fluid pressure is the driving force for hydraulic fracture propagation,XFEM-based seepage flow-stress-fracture propagation coupling is the future trend of complex fracture network propagation simulation.
propagation pattern,intersection criterion,coupled seepage-stress-fracture propagation,extended finite element method,network fracture,natural fracture
2014-01-15;
2014-05-29。
趙立強(qiáng)(1957—),男,教授、博士生導(dǎo)師,油氣藏增產(chǎn)改造理論與技術(shù)、采油氣工程。E-mail:zhaolq@vip.163.com。
國家科技重大專項(xiàng)(2011ZX05030-005-08)。
0253-9985(2014)04-0562-08
10.11743/ogg201417
TE357
A