国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

斷裂在純凈砂巖中的變形機(jī)制及斷裂帶內(nèi)部結(jié)構(gòu)

2014-09-25 14:27付曉飛肖建華孟令東
關(guān)鍵詞:母巖成巖斷裂帶

付曉飛,肖建華,孟令東

1.東北石油大學(xué)CNPC斷裂控藏實(shí)驗(yàn)室,黑龍江 大慶 163318

2.非常規(guī)油氣成藏與開發(fā)省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,黑龍江 大慶 163318

0 引言

斷層封閉性研究的基礎(chǔ)是斷裂帶內(nèi)部結(jié)構(gòu)研究[1]。斷裂在不同巖性地層中的變形機(jī)制不同,導(dǎo)致不同類型斷裂帶結(jié)構(gòu)的形成[2]。影響斷裂變形機(jī)制的因素既有內(nèi)因(巖性、礦物成分、成巖階段、孔隙度和滲透率),也有外因(溫度、圍壓和變形深度)[2-3]。一般是按著泥質(zhì)含量(體積分?jǐn)?shù)Vsh)高低區(qū)分巖性:當(dāng)Vsh<15%時(shí),稱為純凈砂巖;當(dāng)15%≤Vsh<50%時(shí),稱為不純凈的砂巖,相當(dāng)于沉積巖石學(xué)中的雜砂巖[4];當(dāng)Vsh≥50%時(shí),為泥巖。礦物成分主要考慮石英、長(zhǎng)石和巖屑3種,目前對(duì)石英砂巖中斷裂變形機(jī)制研究較多[5-6],而對(duì)長(zhǎng)石砂巖和巖屑砂巖缺乏系統(tǒng)研究,因此本次將重點(diǎn)討論純凈砂巖的斷裂變形機(jī)制。成巖階段一般粗略分為3個(gè)階段:未固結(jié)-半固結(jié)(相當(dāng)于我國(guó)石油行業(yè)標(biāo)準(zhǔn)[7]中的同生成巖階段-早成巖階段B亞期的早期)、固結(jié)成巖階段(相當(dāng)于早成巖階段B亞期的晚期-中成巖階段A亞期)和超固結(jié)成巖階段(中成巖階段A亞期-晚成巖階段)。Fisher等[8]依據(jù)孔隙度和標(biāo)準(zhǔn)化圍壓厘定了砂巖脆-塑性轉(zhuǎn)化的地質(zhì)條件:標(biāo)準(zhǔn)化圍壓小于0.25MPa、孔隙度大于15%時(shí),砂巖發(fā)生明顯的脆性變形,斷裂滲透率不改變或略有減??;標(biāo)準(zhǔn)化圍壓大于0.25MPa時(shí),砂巖處于脆-塑性轉(zhuǎn)化階段,斷裂滲透率明顯降低;標(biāo)準(zhǔn)化圍壓小于0.25MPa、孔隙度小于15%時(shí),砂巖發(fā)生明顯的脆性變形,斷裂滲透率增加。從這個(gè)結(jié)果看,孔隙度為15%可能是高孔隙度砂巖和低孔隙度砂巖之間的分界線,二者斷裂變形機(jī)制可能明顯不同。溫度影響石英壓溶膠結(jié),一般來說地溫超過90℃時(shí),石英壓溶膠結(jié)速率快速增加[9-10]。在不同成巖階段發(fā)生斷裂變形,由于母巖性質(zhì)及溫壓條件不同,變形機(jī)制也明顯不同。埋藏成巖后抬升階段發(fā)生的斷裂變形又有其特殊性[6],由于應(yīng)力松弛和壓力釋放,節(jié)理大量發(fā)育,展示了明顯的脆性變形特征。盡管斷裂帶內(nèi)部結(jié)構(gòu)普遍具有斷層核和破碎帶二分結(jié)構(gòu)[1,11],但由于上述因素的影響,斷層核中斷層巖性質(zhì)和破碎帶中破裂方式存在明顯的差異,也就形成滲透性不同的多種類型的斷裂帶。筆者以純凈砂巖為對(duì)象,考慮影響斷裂變形的多種因素,系統(tǒng)研究斷裂在砂巖中的變形機(jī)制和斷裂帶內(nèi)部結(jié)構(gòu),建立純凈砂巖垂向斷裂變形序列,為剖析斷裂通道和遮擋作用奠定理論基礎(chǔ)。

1 未固結(jié)-半固結(jié)成巖階段砂巖微構(gòu)造特征、變形機(jī)制及斷裂帶結(jié)構(gòu)

1.1 微構(gòu)造特征及變形機(jī)制

對(duì)于純凈砂巖(泥質(zhì)體積分?jǐn)?shù)小于15%)而言,在未固結(jié)-半固結(jié)成巖階段,發(fā)生顆粒邊界摩擦滑動(dòng)(frictional grain boundary sliding),導(dǎo)致顆粒旋轉(zhuǎn)和滾動(dòng),即為顆粒流(granular/particulate flow),形成解聚帶(disaggregation zone)(圖1),具有6個(gè)典型特征:a.外觀上比母巖顏色更淺,整體顯示白色[3](圖2a)。b.顆粒尺寸沒有明顯減小,由于顆粒旋轉(zhuǎn)和滾動(dòng),一些顆粒具有明顯定向排列[3,12](圖2b,c)。c.斷距幾厘米,長(zhǎng)度小于幾十米[2,13],隨著最大斷距(Dmax)增加,長(zhǎng)度(L)逐漸增大,Dmax/L 為0.01~0.10,冪指數(shù)為0.83[2],與發(fā)育成熟的斷層基本一致[13-17](圖3)。d.厚度隨著母巖顆粒尺寸而變化,一般是母巖顆粒尺寸的10倍[12]。e.孔隙度和滲透率同母巖相比無(wú)明顯的變化,有時(shí)泥質(zhì)體積分?jǐn)?shù)高于5%時(shí),滲透率可降低1~2個(gè)數(shù)量級(jí)[3];解聚帶按其力學(xué)特征可分為膨脹帶(dilational band)和壓縮帶(compressive band),膨脹帶形成與異常高孔隙流體壓力有關(guān),表現(xiàn)為體積增大的特征,孔隙度和滲透率明顯增大,壓縮帶的孔隙度和滲透率同母巖相比明顯降低;早期形成的解聚帶深埋后,當(dāng)?shù)販爻^90℃時(shí),可能發(fā)生壓溶膠結(jié)作用,滲透率降低3~4個(gè)數(shù)量級(jí)。f.解聚帶對(duì)砂巖儲(chǔ)層的滲透率影響較小[6],有些解聚帶成為流體垂向運(yùn)移的通道[18]。

1.2 斷裂帶內(nèi)部結(jié)構(gòu)及滲透性

在未固結(jié)-半固結(jié)成巖階段砂巖中形成斷裂帶仍具有斷層核和破碎帶二分結(jié)構(gòu)(圖4)。Bense等[19]對(duì)Geleen斷層斷裂帶內(nèi)部結(jié)構(gòu)進(jìn)行了系統(tǒng)描述:斷層核通常包括顆粒重排的解聚帶、“砂和泥”混合帶和滑動(dòng)面;破碎帶發(fā)育多方位的解聚帶,解聚帶密度隨著與斷層核距離增大逐漸減小。由于解聚帶發(fā)育,使破碎帶滲透率明顯高于斷層核,而斷層核滲透率又高于母巖。這種斷裂帶側(cè)向不封閉,垂向又是流體流動(dòng)的通道[18]。

2 固結(jié)成巖階段高孔隙性砂巖微構(gòu)造特征、變形機(jī)制及斷裂帶結(jié)構(gòu)

2.1 微構(gòu)造特征及變形機(jī)制

在固結(jié)成巖階段,發(fā)生破裂作用[20],破碎的巖石碎屑在剪切作用下發(fā)生摩擦滑動(dòng)和旋轉(zhuǎn)[21],即為碎裂流(cataclastic flow)(圖1),形成碎裂變形帶(cataclastic bands)[3,5,22-29],具有11個(gè)典型的特征:a.碎裂帶發(fā)育在以下所列的各種巖性中:高孔隙(孔隙度 大 于 15%)砂 巖[3,23,25-33]、未 固 結(jié) 或 半 固 結(jié) 砂巖[34-39]、黏土巖[37]和未熔結(jié)的凝灰?guī)r[40]。b.形成于多種構(gòu)造環(huán)境中并以不同方式出現(xiàn),如垂直抬升形成的裂谷盆地[3]、強(qiáng)制褶皺[32]、泥巖刺穿生長(zhǎng)背景[38]、重力坍塌構(gòu)造[39]、鹽構(gòu)造生長(zhǎng)和坍塌背景[41]以及冰川構(gòu)造[42]。發(fā)育的模式主要有兩類:一是以多種組合模式發(fā)育在背斜中;二是廣泛發(fā)育在斷裂破碎帶中。c.外觀上為“正”風(fēng)化地形,呈肋狀凸出,顏色比母巖淺,含泥較高時(shí)顏色較深[5-6]。d.礦物成分與母巖相似,但微觀上表現(xiàn)為顆粒尺寸減小,分選變差(圖5);母巖如果為砂巖,碎裂帶顆粒尺寸涵蓋砂-粉砂-泥3個(gè)級(jí)別[5,30,41]。e.斷距一般幾厘米,長(zhǎng)度不超過幾百米,最大位移與長(zhǎng)度之間在雙對(duì)數(shù)坐標(biāo)下正相關(guān)(圖3),但偏離正常斷層的趨勢(shì)線(Dmax=cLα,c為常數(shù)),α 接近于 0.54[13],Dmax/L 為 0.001[12];造成這種偏離的主要原因?yàn)樗榱褞?yīng)變硬化阻止位移增大,但有利于端部的擴(kuò)展。f.Fossen和 Bale[43]研 究 表 明,單 個(gè) 變 形 帶 (deformation band)(碎裂帶)厚度為幾毫米,沿著走向和傾向厚度表現(xiàn)為不均一性,簇狀變形帶(deformation band clusters)厚度為幾厘米至幾分米。當(dāng)孔隙度大于15%時(shí),隨著孔隙度增加,變形帶厚度逐漸增大。但無(wú)論孔隙度多大,隨著位移增加,變形帶厚度明顯增大。g.碎裂帶平面和剖面組合模式多樣,如截?cái)?、平行、交叉、共扼、疊覆、硬連接和網(wǎng)狀等。h.碎裂帶在多個(gè)構(gòu)造部位呈“簇狀”發(fā)育:一是斷裂破碎帶,碎裂帶密度隨著與斷層核距離增大逐漸減小[6,24,44];二是斷裂端部的過程帶(process zone)[6,41];三是調(diào)節(jié)帶[45-46];四是背斜頂部[46];五是交叉斷層組成的三角地帶[45];六是2條平行斷層之間的區(qū)域[45]。i.孔隙度和滲透率同母巖相比,明顯降低,母巖孔隙度越大,形成的碎裂帶孔隙度越低[41],滲透率一般降低2~3個(gè)數(shù)量級(jí),最大可達(dá)6個(gè)數(shù)量級(jí)[2,6]。j.對(duì)單相流動(dòng)而言,變形帶數(shù)量(變形條帶寬度)和滲透率減小對(duì)流體流動(dòng)有著重要的影響[47],復(fù)雜的變形條帶減少油井的產(chǎn)能。但Fossen和Bale[43]數(shù)值模擬表明:當(dāng)碎裂帶滲透率比母巖低3個(gè)數(shù)量級(jí)時(shí),即使密度高達(dá)100條/m時(shí),對(duì)流體流動(dòng)效率也沒有明顯的影響;但滲透率比母巖低4~6個(gè)數(shù)量級(jí)時(shí),流體流動(dòng)效率明顯降低。對(duì)于兩相流動(dòng)而言,變形帶門限壓力決定斷層封閉油柱高度的大小,計(jì)算表明,變形帶封閉油柱高度不超過20m[48],Gibson[49]認(rèn)為碎裂帶封閉的烴柱高度最大為75m。k.當(dāng)埋深超過3km,即地溫超過90℃時(shí),碎裂帶發(fā)生明顯的石英壓溶膠結(jié)[9],形成壓溶變形帶(solution band)[13,49],滲透率比碎裂帶低1~2 個(gè) 數(shù) 量級(jí)[10,50]。

圖1 石英砂巖斷裂變形機(jī)制及微構(gòu)造特征(據(jù)文獻(xiàn)[3,8]修編)Fig.1 Fracture deformation mechanisms and micro-structural characteristics of quartz sandston(based on references[3,8])

圖2 解聚帶的宏觀和微觀特征(據(jù)文獻(xiàn)[3,12]修編)Fig.2 Macro and microscopic features of disaggregation band(based on references[3,12])

圖3 不同類型斷層最大位移與長(zhǎng)度的關(guān)系[15]Fig.3 Relations between different types of fault displacement and length[15]

圖4 發(fā)育在Roer裂谷系未固結(jié)沉積物中的Geleen斷層斷裂帶內(nèi)部結(jié)構(gòu)(據(jù)文獻(xiàn)[1,19]修編)Fig.4 Internal structure of Geleen Fault fault zone of the unconsolidated sediments in Roer rift system(based on references[1,19])

2.2 斷裂帶內(nèi)部結(jié)構(gòu)及滲透性

固結(jié)成巖的純凈砂巖中的斷裂源于碎裂帶的形成和發(fā)展[5-6,51],開始形成單個(gè)碎裂帶,其強(qiáng)度高于圍壓。應(yīng)變硬化[30]作用會(huì)引起局部的應(yīng)變,在原來變形帶旁邊產(chǎn)生新的變形帶,形成簇狀變形帶,由于流體參與或斷層泥作用發(fā)生應(yīng)變軟化,進(jìn)一步變形會(huì)形成滑動(dòng)面并發(fā)育成斷層(圖6)。部分簇狀變形帶成為斷裂破碎帶的一部分,伴隨著斷裂活動(dòng),在破碎帶中會(huì)新生一部分碎裂帶。因此,斷層核主要由碎裂帶和滑動(dòng)面組成,破碎帶發(fā)育大量的碎裂帶(圖6),隨著距離斷層核距離增加,碎裂帶密度逐漸減小[6,24,44,52]。Antonellini和 Aydin[46]系統(tǒng)測(cè)試了斷裂帶滲透率后認(rèn)為:斷層核中垂直碎裂帶方向滲透率比圍巖降低2~3個(gè)數(shù)量級(jí),碎裂帶的密度越大,滲透率降低的幅度越大,滑動(dòng)面滲透率比圍巖降低3~5個(gè)數(shù)量級(jí)(圖7);平行碎裂帶方向,斷層核中碎裂帶滲透率變化不大,但滑動(dòng)面滲透率比母巖高1~2個(gè)數(shù)量級(jí)(圖7)。破碎帶中垂直碎裂帶方向滲透率降低不到一個(gè)數(shù)量級(jí),隨著碎裂帶密度增大,滲透率降低的幅度越大(圖7)。這種結(jié)構(gòu)的斷裂帶側(cè)向有一定的封閉能力,封閉油柱高度不超過20 m[48],垂向?yàn)榱黧w選擇性運(yùn)移的通道。

圖5 碎裂帶發(fā)育特征及組合關(guān)系(據(jù)文獻(xiàn)[2,5]修編)Fig.5 Development characteristics and the relations of composition of cataclastic band(based on references[2,5])

3 固結(jié)成巖階段低孔隙性砂巖微構(gòu)造特征、變形機(jī)制及斷裂帶結(jié)構(gòu)

在固結(jié)成巖階段,砂巖孔隙度較低(一般小于15%[8]),同碳酸鹽巖、火山巖和變質(zhì)巖非孔隙性巖石變形類似,主要發(fā)生破裂作用(圖1),而不是孔隙空間坍塌作用,形成滑動(dòng)面、節(jié)理和礦物充填裂縫[2,6]。隨著大量裂縫的形成,沿著裂縫發(fā)生摩擦滑動(dòng)并伴隨顆粒的旋轉(zhuǎn),產(chǎn)生碎裂流。斷裂帶內(nèi)破裂符合里德爾剪切,早期階段形成斷層角礫巖(fault breccia)[2,8,53],大量裂縫形成后發(fā)生碎裂流作用,形成碎裂巖和斷層泥。按變形深度,形成3種類型斷裂帶:一是埋藏小于3km,斷層核主要發(fā)育無(wú)內(nèi)聚力的斷層角礫巖和斷層泥(圖8),破碎帶發(fā)育大量的裂縫,這種結(jié)構(gòu)的斷層核側(cè)向封閉性取決于斷層泥的發(fā)育程度(圖8);二是埋藏大于3km,斷層核普遍發(fā)育有內(nèi)聚力的斷層角礫巖、碎裂巖和斷層泥(圖1),破碎帶發(fā)育多種成因的裂縫,斷層核側(cè)向封閉,破碎帶為流體垂向運(yùn)移的通道;三是埋藏大于3km,斷裂變形過程中有高壓流體參與,形成無(wú)內(nèi)聚力斷層角礫巖,破碎帶以發(fā)育張縫為主,斷層核和破碎帶均為流體垂向運(yùn)移的通道(圖9)。

圖6 純凈砂巖斷裂帶結(jié)構(gòu)及形成演化過程(據(jù)文獻(xiàn)[2,51]修編)Fig.6 Fault zone structure and formation process of pure sandstone(based on references[2,51])

圖7 純凈砂巖斷裂帶物性結(jié)構(gòu)特征[46]Fig.7 Characteristics of structure of fault zone in pure sandstone[46]

① 毫達(dá)西(mD)為非法定計(jì)量單位,1mD=0.987×10-3μm2,下同。

4 固結(jié)成巖的砂巖抬升過程斷裂變形機(jī)制及斷裂帶結(jié)構(gòu)

固結(jié)成巖的砂巖在抬升過程中,由于卸載作用和冷卻作用,主要發(fā)生脆性變形,形成區(qū)域裂縫。如果發(fā)生斷裂變形,形成無(wú)內(nèi)聚力的斷層角礫巖[2],破碎帶發(fā)育大量裂縫,一部分為區(qū)域裂縫,另一部分為斷裂活動(dòng)派生應(yīng)力場(chǎng)產(chǎn)生的誘導(dǎo)裂縫,這種斷層為油氣垂向運(yùn)移的通道。秦皇島柳江盆地在雞冠子山出露的長(zhǎng)龍山組石英砂巖中發(fā)育的斷層大多數(shù)為抬升期形成的正斷層(圖10),斷裂帶以破裂為主,形成裂縫發(fā)育的破碎帶,局部可見初角礫巖,具有很高的滲透能力。

圖8 巴西東南部低孔隙砂巖中伸展斷層斷裂帶結(jié)構(gòu)[54]Fig.8 Fault zone structure of extensional fault in low porosity sandstone of Southeast Brazil[54]

圖9 埋深超過5km的石英碎屑巖由于高壓流體參與形成的無(wú)內(nèi)聚力斷層角礫巖型斷裂帶[17]Fig.9 Quartz clastic rocks in the depth of more than 5km forms non-cohesive fault breccia fault zone due to the existence of high-pressure fluid[17]

圖10 秦皇島柳江盆地長(zhǎng)龍山組石英砂巖中斷裂帶結(jié)構(gòu)Fig.10 Fault zone structure of Changlongshan Group of quartz sandstone in Liujiang basin

5 變形疊加、斷裂帶結(jié)構(gòu)的復(fù)雜性及油氣選擇性充注

純凈砂巖在不同成巖階段發(fā)生變形,形成變形帶或裂縫疊加組合,目前發(fā)現(xiàn)多種類型:一是在未固結(jié)-半固結(jié)階段變形形成的解聚帶與在固結(jié)成巖階段形成的碎裂帶組合[6];二是在固結(jié)成巖階段形成的碎裂帶與壓溶膠結(jié)型碎裂帶組合[3](圖1);三是在固結(jié)成巖階段高孔隙階段形成的碎裂帶與低孔隙階段形成的裂縫或抬升階段形成的裂縫組合[55]。

從變形過程及形成的微構(gòu)造類型看(圖11):在未固結(jié)-半固結(jié)成巖階段發(fā)生解聚作用,形成解聚帶;在固結(jié)成巖且孔隙度大于15%階段發(fā)生壓實(shí)和碎裂作用,形成碎裂帶,當(dāng)溫度超過90℃ 時(shí),石英壓溶膠結(jié)形成膠結(jié)型碎裂帶;當(dāng)孔隙度低于15%后,斷裂變形以破裂為主,形成以剪切縫和壓溶縫為主的變形構(gòu)造;孔隙度低于15%的砂巖在抬升過程發(fā)生變形,形成以張裂縫為主的變形構(gòu)造。同一砂巖層在不同成巖階段發(fā)生變形,變形疊加形成復(fù)雜的斷裂帶。對(duì)于一條晚期形成的斷層而言(圖11),不同深度變形機(jī)制及微構(gòu)造類型不同導(dǎo)致油氣選擇性充注。碎裂帶和壓溶膠結(jié)碎裂帶滲透率比母巖低1~6個(gè)數(shù)量級(jí)[6],阻止油氣向高孔隙度砂巖中充注。而解聚帶和母巖滲透率相當(dāng),不會(huì)對(duì)油氣充注產(chǎn)生影響,反而解聚帶會(huì)成為油氣運(yùn)移的通道,因此在地表可以見到含油氣的解聚帶[18]。砂巖孔隙度越大,越容易發(fā)生孔隙坍塌并導(dǎo)致碎裂作用產(chǎn)生碎裂帶,因此高孔隙性砂巖中孔隙度較低的儲(chǔ)集層由于碎裂帶不發(fā)育常常含油氣性很好,而低孔隙性砂巖由于裂縫產(chǎn)生,有利于油氣優(yōu)先充注。

6 結(jié)論

1)泥質(zhì)含量和成巖階段是控制斷裂變形機(jī)制和微構(gòu)造類型的主因。純凈的石英砂巖在未固結(jié)-半固結(jié)成巖階段發(fā)生斷裂,變形機(jī)制為顆粒流,形成的微構(gòu)造為解聚帶;固結(jié)成巖階段高孔隙砂巖(大于15%)發(fā)生斷裂,變形機(jī)制為碎裂流,形成的微構(gòu)造為碎裂帶;固結(jié)成巖階段低孔隙砂巖(小于15%)發(fā)生斷裂,開始由于破裂作用,形成斷層角礫巖,伴隨著碎裂流發(fā)生,形成碎裂巖。固結(jié)成巖的砂巖在抬升過程發(fā)生斷裂,變形機(jī)制為破裂作用,形成無(wú)內(nèi)聚力的角礫巖,為高滲透斷裂帶。

2)石英砂巖斷裂變形后,溫度對(duì)其封閉性影響很大,一般來說溫度超過90℃時(shí),埋深大于3km,石英壓溶膠結(jié)的速度明顯增大,早期形成的解聚帶和碎裂帶均會(huì)因石英壓溶膠結(jié)而增強(qiáng)封閉能力。

3)在不同成巖階段發(fā)生變形,形成多類型變形構(gòu)造的疊加,包括:在未固結(jié)-半固結(jié)階段變形形成的解聚帶與在固結(jié)成巖階段形成的碎裂帶組合;在固結(jié)成巖階段形成的碎裂帶與壓溶膠結(jié)型碎裂帶組合;在固結(jié)成巖階段高孔隙階段形成的碎裂帶與低孔隙階段形成的裂縫或抬升階段形成的裂縫組合。

4)對(duì)于一條晚期形成的斷層而言,由于不同深度變形機(jī)制及微構(gòu)造類型不同,導(dǎo)致油氣選擇性充注,碎裂帶和壓溶膠結(jié)碎裂帶阻止油氣向高孔隙度砂巖中充注,解聚帶會(huì)成為油氣運(yùn)移的通道,裂縫有利于油氣優(yōu)先充注。因此,高孔隙性砂巖中孔隙度較低的儲(chǔ)集層由于碎裂帶不發(fā)育,常常含油氣性最好,而低孔隙性砂巖由于裂縫產(chǎn)生含油氣性較好。

圖11 在純凈砂巖中斷裂變形形成的微構(gòu)造類型及對(duì)油氣充注影響模式圖Fig.11 Micro-structure type formed with fault deformation and its effect on oil and gas filled model in pure sandstone

(References):

[1]Caine J.Fault Zone Architecture and Permeability Structure[J].Geology,1996,24(11):1025-1028.

[2]Fossen H.Structural Geology[M].New York:Cambridge University Press,2010:119-185.

[3]Fisher Q J,Knipe R J.The Permeability of Faults Within Siliciclastic Petroleum Reservoir of the North Sea and Norwegian Continental Shelf[J].Marine and Petroleum Geology,2001,18(10):1063-1081.

[4]朱筱敏,趙澄林.沉積巖石學(xué)[M].北京:石油工業(yè)出版社,2001.Zhu Xiaomin,Zhao Chenglin.Sedimentary Petrology[M].Beijing:Petroleum Industry Press,2001.

[5]Aydin A,Johnson A M.Development of Faults as Zones of Deformation Bands and as Slip Surfaces in Sandstones[J].Pure and Applied Geophysics,1978,116(4):931-942.

[6]Fossen H,Schultz Z K,Shipton,et al.Deformation Bands in Sandstone:A Review[J].Journal of the Geological Society,2007,164(4):755-769.

[7]應(yīng)鳳祥.碎屑巖成巖階段劃分規(guī)范[M].北京:石油工業(yè)出版社,1993.Ying Fengxiang.Standard for Dividing the Diagenesis Phases of Clastic Rocks[M].Beijing:Petroleum Industry Press,1993.

[8]Fisher Q J,Casey M,Harris S D,et al.Fluild flow Properties of Faults in Sandstone:The Importance of Temperature History[J].Geology,2003,31:965-968.

[9]Walderhaug O.Kinetic Modeling of Quartz Cementation and Porosity Loss in Deeply Buried Sandstone Reservoirs[J].AAPG,1996,80(5):731-745.

[10]Fisher Q J,Knipe R J.Fault Sealing Processes in Siliciclastic Sediments[C]//Knipe R J,Jones G,F(xiàn)isher Q J.et al.Faulting,F(xiàn)ault Sealing,and Fluid Flow in Hydrocarbon Reservoirs.London:Geological Society Special Publication,1998:117-134.

[11]Wibberley C A J,Yielding G,Toro G D.Recent Advances in the Understanding of Fault Zone Internal Structure:A Review[C]//Wibberley C A J,Kurz W,Imber J,et al.The Internal Structure of Fault Zones,Implications for Mechanical and Fluid-Flow Properties.London:The Geological Society,2008:5-33.

[12]Exner U,Grasemann B.Deformation Bands in Gravels:Displacement Gradients and Heterogeneous Strain[J].Journal of Structural Geology,2010,167(5):905-913.

[13]Fossen H,Hesthammer J.Geometric Analysis and Scaling Relations of Deformation Bands in Porous Sandstone[J].Journal of Structural Geology,1997,19(12):1479-1493.

[14]Wibberley C A J.Mechanics of High Displacement Gradient Faulting Prior to Lithification[J].Journal of Structural Geology,1999,21(3):251-257.

[15]Fossen H,Rykkelid E.Layer Rotation Around Vertical Fault Overlap Zones:Observations from Seismic Data,F(xiàn)ield Example,and Physical Experiments[J].Marine and Petroleum Geology,2002,19(2):181-192.

[16]Krantz.Multiple Fault Sets and Three-Dimensional Strain:Theory and Application[J].Journal of Structural Geology,1988,10(3):225-237.

[17]Lindsay N G,Murphy F C,Walsh J,et al.Outcrop Studies of Shale Smear on Fault Surface[J].International Association of Sedimentologists Special Publication,1993,15:113-123.

[18]Sample J C,Woods S,Bender E,et al.Relationship Between Deformation Bands and Petroleum Migration in an Exhumed Reservoir Rock,Los Angeles Basin,California,USA[J].Geofluids,2006,6(2):105-112.

[19]Bense V F,Van den Berg E H,Van Balen R T.Deformation Mechanisms and Hydraulic Properties of Fault Zones in Unconsolidated Sediments,the Roer Valley Rift System,the Netherlands[J].Hydrogeology Journal,2003,11(3):319-332.

[20]Blenkinsop T G.Deformation Microstructures and Mechanisms in Minerals and Rocks[M].Kluwer:Kluwer Academic Publisher,2000:1-80.

[21]Fulljames J R,Zijerveld L J J,F(xiàn)ranssen R C M W.Fault Seal Processes:Systematic Analysis of Fault Seals over Geological and Production Time Scales[C]//Moeller-Pedersen,Koester A G.Hydrocarbon Seals.Netherlands:NPF Special Publication,1997:51-59.

[22]Du Bernard X,Eichhubl P,Aydin A.Dilation Bands:A New Form of Localized Failure in Granular Media[J].Geophysical Research Letters,2002,29(24):2176-2179.

[23]Du Bernard X,Labaume P,Darcel C,et al.Cataclastic Slip Band Distribution in Normal Fault Damage Zones,Nubian Sandstones,Suez Rift[J].Journal of Geophysical Research,2002,107(B7):2141.

[24]Aydin A,Johnson A M.Analysis of Faulting in Porous Sandstones[J].Journal of Structural Geology,1983,5(1):19-31.

[25]Beach A,Welborn A I,Brockbank P,et al.Reservoir Damage Around Faults:Outcrop Examples from the Suez rift[J].Petroleum Geoscience,1999,5(2):109-116.

[26]Wibberley C A J,Petit J P,Rives T.Mechanics of Cataclastic‘Deformation Band’Faulting in High-Porosity Sandstone,Provence[J].Comptes Rendus de I’Acade'mie des Sciences:Se’rie IIA,2000,331(6):419-425.

[27]Underhill J R,Woodcock N H.Faulting Mechanisms in High-Porosity Sandstones:New Red Sandstone,Arran,Scotland[C]//Jones M E,Preston R M F.Deformation of Sediments and Sedimentary.London:Geological Society Special Publications,1987:91-105.

[28]Beach A,Brown J L,Welbon A I,et al.Characteristics of Fault Zones in Sandstones from NW England:Application to Fault Transmissibility[C]//Meadows N S,Trueblood S P,Hardman M,et al.Petroleum Geology of the Irish Sea and Adjacent Areas.London:Geological Society Special Publications,1997:315-324.

[29]Knott S D.Fault Seal Analysis in the North Sea[J].AAPG,1993,77(5):778-792.

[30]Pittman E D.Effect of Fault-Related Granulation on Porosity and Permeability of Quartz Sandstones,Simpson Group(Ordovician)Oklahoma[J].AAPG,1981,65(11):2381-2387.

[31]Lothe A E,Gabrielsen R H,Bj?rnevoll-Hagen N,et al.An Experimental Study of the Texture of Deformation Bands:Effects on the Porosity and Permeability of Sandstones[J].Petroleum Geoscience,2002,8(3):195-207.

[32]Jamison W R,Stearns D W.Tectonic Deformation of Wingate Sandstone,Colorado National Monument[J].AAPG,1982,66(12):2584-2608.

[33]Davis G H.Structural Geology of the Colorado Plateau Region of Southern Utah[M].New York:Geological Society of America,1999.

[34]Rawling G C,Goodwin L B.Cataclasis and Particulate Flow in Faulted,Poorly Lithified Sediments[J].Journal of Structural Geology,2003,25(3):317-331.

[35]Lucas S E,Moore J C.Cataclastic Deformation in Accretionary Wedges:Deep Sea Drilling Project Leg 66,Southern Mexico,and On-Land Examples from Barbados and Kodiak Islands[C]//Moore C D.Structural Fabrics in Deep Sea Drilling Project Cores from Forearc Region.New York:Geological Society of America,1986:89-103.

[36]Karig D E,Lundberg N.Deformation Bands from the Toe of the Nankai Accretionary Prism[J].Journal of Geophysical Research,1990,95(B6):9099-9109.

[37]Ujiie K,Maltman A J,Sa'nchez-Go'mez M.Origin of Deformation Bands in Argillaceous Sediments at the Toe of the Nankai Accretionary Prism,Southwest Japan[J].Journal of Structural Geology,2004,26(2):221-231.

[38]Cashman S,Cashman K.Cataclasis and Deformation-Band Formation in Unconsolidated Marine Terrace Sand,Humboldt County,California[J].Geology,2000,28(2):111-114.

[39]Hesthammer J,F(xiàn)ossen H.Evolution and Geometries of Gravitational Collapse Structures with Examples from the Statfjord Field,Northern North Sea[J].Marine and Petroleum Geology,1999,16(3):259-281.

[40]Jennifer E W,Laurel B G,Claudia J Lewis.Deformation Bands in Nonwelded Ignimbrites:Petrophysical Controls on Fault-Zone Deformation and Evidence of Preferential Fluid Flow[J].Geological Society of America,2003,31(10):39-45.

[41]Antonellini M,Aydin A.Effect of Faulting on Fluid Flow in Porous Sandstones:Petrophysicial Properties[J].AAPG,1994,78:355-377.

[42]Hooke R,Iverson N.Grain-Size Distribution in Deforming Sub-Glacial Tills:Role of Grain Fracture[J].Geology,1995,23:57-60.

[43]Fossen H,Bale A.Deformation Bands and Their Influence on Fluid Flow[J].AAPG,2007,91(12):1685-1700.

[44]Mair K,Main I,Elphick S.Sequential Growth of Deformation Bands in the Laboratory[J].Journal of Structural Geology,2000,22(1):25-42.

[45]Fossen H,Johansen S E,Hesthammer J,et al.Fault Interaction in Porous Sandstone and Implications for Reservoir Management:Examples from Southern Utah[J].AAPG,2005,89(12):1593-1606.

[46]Antonellini M,Aydin A.Effect of Faulting on Fluid Flow in Porous Sandstones:Geometry and Spatial Distribution[J].AAPG,1995,79(5):642-671.

[47]Matthai S K,Aydin A,Pollard D,et al.Numerical Simulation of Departures from Radial Drawdown in Faulted Sandstone Reservoir with Joints and Deformation Bands[C]//Jones G,F(xiàn)isher Q J,Knipe R J.Faulting,F(xiàn)ault Sealing,and Fluid flow in Hydrocarbon Reservoirs.London:Geological Society Special Publications,1998:157-192.

[48]Harper T R,Lundin E R.Fault Seal Analysis:Reducing Our Dependence on Empiricism[J].Hydrocarbon Seals:Importance for Exploration and Production,1997,7:149-164.

[49]Gibson R G.Physical Character and Fluid-Flow Properties of Sandstone-Derived Fault Zones[J].Geological Society,London,Special Publication,1998,127(1):83-97.

[50]Hesthammer J,Bj?rkum P A,Watts L.The Effect of Temperature on Sealing Capacity of Faults in Sandstone Reservoirs:Examples from the Gullfaks and Gullfaks S?r Fields,North Sea[J].AAPG,2002,86(10):1733-1751.

[51]Fossen H,Hesthammer J.Possible Absence of Small Faults in the Gullfaks Field,Northern North Sea:Implication for Downscaling of Fault in Some Porous Sandstone[J].Journal of Structural Geology,2000,22(7):851-863.

[52]Hesthammer J,F(xiàn)ossen H.Structural Core Analysis from the Gullfaks Area,Northern North Sea[J].Marine and Petroleum Geology,2001,18(3):411-439.

[53]Sibson R H.Fault Rocks and Fault Mechanisms[J].Journal of Geology Society London,1977,133(3):191-214.

[54]Knipe R J.Juxtaposition and Seal Diagrams to Help Analyse Fault Seals in Hydrocarbon Reservoirs[J].AAPG,1997,81(2):187-195.

[55]Davatzes N C,Aydin A.Overprinting Faulting Mechanisms in High Porosity Sandstones of SE Utah[J].Journal of Structural Geology,2003,25(11):1795-1813.

猜你喜歡
母巖成巖斷裂帶
水耕條件下兩類富鈣母巖發(fā)育土壤的系統(tǒng)分類歸屬及成因探討*
冷凍斷裂帶儲(chǔ)層預(yù)測(cè)研究
依蘭—伊通斷裂帶黑龍江段構(gòu)造運(yùn)動(dòng)特征
紫色母巖作基質(zhì)或覆蓋材料對(duì)景觀水體氮磷去除效果研究*
能源領(lǐng)域中成巖作用的研究進(jìn)展及發(fā)展趨勢(shì)
貴州母巖(母質(zhì))對(duì)土壤類型及分布的影響
準(zhǔn)噶爾盆地西北緣克-夏斷裂帶構(gòu)造特征新認(rèn)識(shí)
郯廬斷裂帶及兩側(cè)地區(qū)強(qiáng)震異常特征分析
沂蒙山區(qū)不同母巖發(fā)育土壤物理性質(zhì)
準(zhǔn)中1區(qū)三工河組低滲儲(chǔ)層特征及成巖作用演化