張慧妍 張珍吉 邢虎 何治柯
摘要利用紙基微芯片便捷、直觀的優(yōu)勢,采用吩嗪二甲酯硫酸鹽(PMS)/氯化硝基四氮唑藍(NBT)顯色體系,借助凝膠成像儀和普通照相機兩種成像方式,建立了紙基微孔陣列芯片比色法檢測乳酸脫氫酶(LDH)的方法。在最佳實驗條件下,顯色強度與LDH濃度呈線性相關(guān)。采用凝膠成像儀檢測時,線性范圍為10~150 U/L,檢出限(3σ)為9.44 U/L(n=18)。采用照相法獲得的線性范圍為15~150 U/L,檢出限(3σ)為12.36 U/L(n=18)。實驗表明,人血清白蛋白(HSA)對顯色結(jié)果具有增強作用,探討了HSA的增色作用,并以HSA為增強試劑得到工作曲線?;诩埢⒖钻嚵行酒腖DH活性測定方法具有操作簡單、結(jié)果直觀可見、靈敏度高等優(yōu)點,對于脫氫酶類的便捷檢測有一定參考價值,可望在生物醫(yī)療檢測領(lǐng)域獲得應(yīng)用。
關(guān)鍵詞乳酸脫氫酶; 人血清白蛋白; 紙基微孔陣列芯片; 比色法
1引言
紙基微流控芯片是一種以紙張為基質(zhì)的新型微流控分析器件,利用特定材料在紙上構(gòu)建疏水柵欄\[1~4\],將液體流限制在親水區(qū)域,實現(xiàn)流體的復雜調(diào)控及分析檢測等功能。紙基微芯片試樣和試劑消耗少、分析速度快,操作簡單,某些情況下可替代玻璃以及高聚物芯片進行現(xiàn)場分析檢測\[5~9\]。紙基微芯片以紙為基質(zhì),不僅生物相容性好\[10,11\],可與多種檢測方法兼容\[12,13\],而且價格低廉, 用完即可丟棄,因此,紙基微芯片已成為一種備受關(guān)注的廉價檢測技術(shù)平臺\[14\]。
乳酸脫氫酶(LDH)是臨床酶學中經(jīng)常測定的指標,作為一種工具酶,LDH水平可作為有關(guān)器官正常與否的特異性生化指標,因此,血清中LDH活性的測定在疾病診斷中具有重要的臨床意義。常用的LDH活性測定方法有化學發(fā)光法\[15\]、生物發(fā)光法\[16\]、微熱量測量法\[17\]、熒光分析法\[18\]、毛細管電泳法\[19\]等,但通常由于部分檢測儀器價格較高,或是缺乏熟練的操作人員,使得一些檢測技術(shù)在偏遠或貧困地區(qū)難以使用。紙基微芯片致力于為民眾提供廉價、便捷的檢測平臺,減少復雜儀器、裝置的使用\[20\]。顯色法可以提供直觀可見的結(jié)果,不需專業(yè)分析人員就可以依照標準品對檢測結(jié)果做出判斷,使偏遠、貧困或者資源匱乏地區(qū)的個人診斷成為可能\[21~23\]。本研究基于紙基微孔陣列芯片顯色法檢測LDH,采用凝膠成像儀和普通照相機兩種方法記錄結(jié)果,為LDH的靈敏檢測提供了一種快速、直觀、便捷的分析手段。
2實驗部分
2.1儀器與試劑
G17光刻機(成都鑫南光機械設(shè)備有限公司),KW4H350烤膠機(上海凱美特功能陶瓷技術(shù)有限公司),PB10酸度計(北京賽多利斯儀器系統(tǒng)有限公司),HZQF160立式全溫振蕩培養(yǎng)箱(上海一恒科學儀器有限公司),MilliQ Advantage A10超純水系統(tǒng)(美國Millipore公司),凝膠成像系統(tǒng)(CHEMIDOC XRS,美國BIORAD公司),佳能Power Shot G1 X相機,1號定性濾紙(Whatman公司)。
乳酸脫氫酶(LDH,Sigma公司);吩嗪二甲酯硫酸鹽(PMS)、氯化硝基四氮唑藍(NBT)、氧化型輔酶Ⅰ(NAD+)、乳酸鋰(上??笊锛夹g(shù)有限公司);人血清白蛋白(HSA,Biosharp公司);木瓜蛋白酶(昆明杰輝生物技術(shù)有限公司);牛血清白蛋白(BSA,Roche文瀚科技公司);胰島素(Sigma公司);胰蛋白酶和溶菌酶(Amresco公司);葡萄糖(國藥集團化學試劑有限公司);SU8 2010(MicroChem Corp)。實驗用水為超純水(18.2 MΩ·cm,25 ℃)。[TS(][HT5”SS]圖1LDH 的檢測原理
Fig.1Principle of lactate dehydrogenase (LDH) detection[HT5][TS)]
2.2LDH檢測原理及紙芯片檢測方法
2.2.1檢測原理如圖1所示,實驗利用H+轉(zhuǎn)移進行顯色,乳酸鋰在LDH的催化脫氫作用下轉(zhuǎn)化為丙酮酸,NAD+作為轉(zhuǎn)遞電子的輔酶,接受脫下的氫生NADH。生成的 NADH使氧化型PMS變成還原型,還原型PMS與NBT反應(yīng)生成藍紫色甲臜,顏色的深淺與LDH的活性成正比,從而可根據(jù)顏色實現(xiàn)LDH的分析檢測。
2.2.2紙基微孔陣列芯片檢測方法采用光刻膠法\[24\]在濾紙上制作微孔陣列紙芯片,方法流程如圖2所示,微孔直徑2.5 mm,此時每孔最佳加入量2.5 μL。首先分別配制實驗用顯色儲備液,置于4 ℃保存。實驗時將2.5 μL顯色液預(yù)先滴加于微孔中,然后放于培養(yǎng)箱中37 ℃烘干(約10 min),最后加入LDH標準溶液,置于暗箱中避光條件下進行顯色反應(yīng),[TS(][HT5”SS]圖2紙基微孔陣列芯片制作示意圖
Fig.2Schematic diagram of the fabrication of paperbased microwell arrays microfluidic device[HT5][TS)]采用凝膠成像儀和普通照相機成像,并讀取顯色強度(灰度值),進行比色檢測。
在條件優(yōu)化過程中,采用3 × 10的微孔陣列,前5列加對應(yīng)的顯色液做空白對照,以減少芯片間差異(紙芯片制作過程引起)對實驗結(jié)果的影響,使實驗結(jié)果更加可靠。
3結(jié)果與討論
3.1緩沖溶液pH值對LDH活性測定的影響
酶的活性容易受其環(huán)境pH值的影響,因此選擇合適的pH值尤為重要。選用不同pH值的TrisHCl緩沖液配制顯色液和標準溶液,考察pH值對LDH活性的影響。結(jié)果表明,當緩沖溶液的pH值從7.5增加到9.0時,顯色強度逐漸增強;當pH>9.0時, 由于高pH值改變了酶的構(gòu)象,降低了酶的活性,顯色強度逐漸降低(圖3)。因此,該體系最佳反應(yīng)pH值為9.0。
3.2NAD+及乳酸鋰濃度對LDH活性測定的影響
在各類乳酸鹽中,乳酸鋰純度高、穩(wěn)定性好,因而選用乳酸鋰作為反應(yīng)底物。乳酸根離子在LDH的催化脫氫作用下轉(zhuǎn)化為丙酮酸,NAD+作為轉(zhuǎn)遞電子的輔酶,接受脫下的氫生成NADH。因此乳酸鹽和NAD+的濃度會影響LDH活性測定。結(jié)果表明,當NAD+濃度為12 mmol/L時顯色強度達到最大值, 隨著NAD+濃度繼續(xù)增加,顯色強度逐漸降低。當乳酸鹽濃度逐漸增大到35 mmol/L時,顯色強度達到最大值;隨著乳酸鹽濃度繼續(xù)增大,顯色減弱。實驗結(jié)果符合酶促反應(yīng)理論,反應(yīng)存在最佳濃度,當?shù)孜餄舛冗^高時會對反應(yīng)產(chǎn)生抑制\[25\]。在后續(xù)實驗中,選用條件為35 mmol/L乳酸鹽、12 mmol/L NAD+。
3.3顯色底物濃度對LDH活性測定的影響
本方法中LDH發(fā)生脫氫作用后,受氫體PMS接受乳酸鹽脫下的氫原子而被還原,選用NBT為還原指示劑,反應(yīng)生成藍紫色的甲臜。實驗濃度范圍的PMS溶液本身呈紫紅色,NBT溶液呈淡黃色,從而會使顯色液呈現(xiàn)一定底色。通過控制單一變量,考察了PMS、NBT濃度對顯色強度的影響,采用含不同濃度PMS、NBT的顯色液,同時在同一張芯片上進行了空白對照。實驗結(jié)果如圖4所示,當PMS濃度為60 μmol/L, NBT濃度180 μmol/L, 可使顯色強度的相對值最大。
3.4反應(yīng)時間對LDH活性測定的影響
在一定溫度下,酶促反應(yīng)通常需要一定的時間才可以反應(yīng)完全;同時紙芯片上反應(yīng)過程中,溶液不斷蒸發(fā)也對顯色強度有一定影響。在同一張紙芯片上考察了顯色時間(5~70 min)對顯色強度的影響。結(jié)果表明,在50 min時顯色強度達到最大值。[TS(][HT5”SS]圖5LDH檢測的選擇性3.5方法的選擇性及線性范圍考察
采用7種物質(zhì)(胰島素、溶菌酶、HSA、木瓜蛋白酶、葡萄糖、胰蛋白酶、BSA)進行選擇性驗證,顯色結(jié)果如圖5所示。LDH的顯色強度遠高于其它物質(zhì),可見此體系對LDH具有很好的選擇性。
3.6HSA對乳酸脫氫酶檢測的影響
血清是由多種物質(zhì)組成的復雜混合物,其中含有大量蛋白質(zhì)(含量為80~120 g/L),因此,在對實際樣品進行檢測之前,需考察HSA(人血清白蛋白)對檢測體系的影響。實驗考察了不同濃度HSA對LDH檢測的影響。當HSA濃度為86 mg/L時,對LDH檢測具有微弱的增強作用?;诖?,在含有86 mg/L HSA的條件下進行測定,凝膠成像法所得線性范圍為10~180 U/L,回歸方程為Y=1.53X+41.97, R2=0.992,檢出限(3σ)為7.29 U/L(n=18)。照相法所得線性范圍為10~200 U/L,回歸方程為Y=0.18X+3.25,R2=0.993,檢出限(3σ)為3.61 U/L(n=18)??梢奌SA不僅不會對LDH測定產(chǎn)生影響,還可改善檢測靈敏度、降低檢出限。
3.7HSA增強作用的探討
借助于紫外可見光譜法對HSA的顯色增強作用進行了探討。在一定濃度的反應(yīng)液中加入不同量的HSA后,紫外可見光譜峰位置不變,但吸收值明顯增強(圖6A),結(jié)果與紙芯片上的顯色結(jié)果相吻合。借助紫外可見光譜法分別考察HSA與顯色反應(yīng)的反應(yīng)物PMS和NBT的相互作用,結(jié)果表明,HSA對PMS和NBT的吸收光譜幾乎無影響。隨后,考察了HSA對顯色反應(yīng)產(chǎn)物的相互作用,利用GSH(谷胱甘肽)還原NBT,再加入不同量的HSA,結(jié)果如圖6B所示,HSA對NBT顯色反應(yīng)產(chǎn)物的紫外可見吸收光譜具有增強作用。因此,初步推斷HSA的增敏作用主要是由于HSA對顯色反應(yīng)還原產(chǎn)物的作用。
4結(jié)論
紙基微芯片作為一種廉價的檢測平臺,在疾病臨床指標檢測中具有重要的應(yīng)用價值。利用PMS/NBT顯色法在紙基微孔陣列芯片上對乳酸脫氫酶進行了定量檢測,優(yōu)化了反應(yīng)條件,采用凝膠成像法和照相法同時記錄了檢測結(jié)果,方法簡便、結(jié)果直觀、靈敏度高,充分發(fā)揮了紙基微芯片顯色檢測的優(yōu)勢。本方法與通用脫氫酶測定思路一致,可為部分脫氫酶類物質(zhì)的簡便直觀檢測提供借鑒。在乳酸脫氫酶的檢測中還發(fā)現(xiàn)HSA對顯色結(jié)果具有增強作用,探討了HSA增敏作用的原因,對于實際樣品檢測具有參考價值。
References
1Abe K, Suzuki K, Citterio D. Anal. Chem., 2008, 80(18): 6928-6934
2Bruzewicz D A, Reches M, Whitesides G M. Anal. Chem., 2008, 80(9): 3387-3392
3Li X, Tian J F, Nguyen T, Shen W. Anal. Chem., 2008, 80(23): 9131-9134
4Carrilho E, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(16): 7091-7095
5Martinez A W, Phillips S T, Whitesides G M, Carrilho E. Anal. Chem., 2010, 82(1): 3-10
6Li X, Tian J, Shen W. Cellulose, 2010, 17(3): 649-659
7Wang S M, Ge L, Song X R, Yan M, Ge S G, Yu J H, Zeng F. Analyst, 2012, 137(16): 3821-3827
8Schilling K M, Lepore A L, Kurian J A, Martinez A W. Anal. Chem., 2012, 84(3): 1579-1585
9Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12(17): 3150-3158
10Zhao W A, van den Berg A. Lab Chip, 2008, 8(12): 1988-1991
11Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Edit., 2007, 46(8): 1318-1320
12Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J D, Zeng F. Biosens. Bioelectron., 2012, 31(1): 212-218
13Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83(4): 1300-1306
14 Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35(1): 363-368
15Williams D C, Seitz W R. Anal. Chem., 1976, 48(11): 1478-1481
16Gautier S M, Blum L J, Coulet P R. Anal. Chim. Acta, 1992, 266(2): 331-338
17Rehak N N, Everse J, Kaplan N O, Berger R L. Anal. Biochem., 1976, 70(2): 381-386
18Brooks L, Olken H G. Clin. Chem., 1965, 11(8): 748-762
19YANG WenChu, YU AiMin, CHEN HongYuan. Chem. J. Chinese Universities, 2009, 22(4): 547-551
楊文初, 俞愛民, 陳洪淵. 高等學校化學學報, 2001, 22(4): 547-551
20Ellerbee A K, Phillips S T, Siegel A C, Mirica K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20): 8447-8452
21Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80(10): 3699-3707
22Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84(2): 487-515
23Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(15): 5990-5998
24WANG FangFang, CHEN Jin, HE ZhiKe. J. Anal. Sci., 2011, 27(2): 137-141
王方方, 陳 錦, 何治柯. 分析科學學報, 2011, 27(2): 137-141
25Lienhard G E. Science, 1973, 180(4082): 149-154
AbstractA lowcost, simple, sensitive detection method of lactate dehydrogense (LDH) was developed on paperbased microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride (PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9.44 U/L (3σ) by Gel Documentation System; and the linear range was 15-150 U/L by camera with a LOD of 12.36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This lowcost, portable paperbased analytical platform could be suitable for the application in the pointofcare with high sensitivity and reproducibility.
KeywordsLactate dehydrogenase; Human serum albumin; Paperbased microwell arrays microfluidic device; Colorimetric method
(Received 11 April 2014; accepted 13 June 2014)
This work was supported by the National Natural Science Foundation of China (No. 21205089) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120141120036)
9Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12(17): 3150-3158
10Zhao W A, van den Berg A. Lab Chip, 2008, 8(12): 1988-1991
11Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Edit., 2007, 46(8): 1318-1320
12Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J D, Zeng F. Biosens. Bioelectron., 2012, 31(1): 212-218
13Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83(4): 1300-1306
14 Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35(1): 363-368
15Williams D C, Seitz W R. Anal. Chem., 1976, 48(11): 1478-1481
16Gautier S M, Blum L J, Coulet P R. Anal. Chim. Acta, 1992, 266(2): 331-338
17Rehak N N, Everse J, Kaplan N O, Berger R L. Anal. Biochem., 1976, 70(2): 381-386
18Brooks L, Olken H G. Clin. Chem., 1965, 11(8): 748-762
19YANG WenChu, YU AiMin, CHEN HongYuan. Chem. J. Chinese Universities, 2009, 22(4): 547-551
楊文初, 俞愛民, 陳洪淵. 高等學?;瘜W學報, 2001, 22(4): 547-551
20Ellerbee A K, Phillips S T, Siegel A C, Mirica K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20): 8447-8452
21Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80(10): 3699-3707
22Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84(2): 487-515
23Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(15): 5990-5998
24WANG FangFang, CHEN Jin, HE ZhiKe. J. Anal. Sci., 2011, 27(2): 137-141
王方方, 陳 錦, 何治柯. 分析科學學報, 2011, 27(2): 137-141
25Lienhard G E. Science, 1973, 180(4082): 149-154
AbstractA lowcost, simple, sensitive detection method of lactate dehydrogense (LDH) was developed on paperbased microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride (PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9.44 U/L (3σ) by Gel Documentation System; and the linear range was 15-150 U/L by camera with a LOD of 12.36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This lowcost, portable paperbased analytical platform could be suitable for the application in the pointofcare with high sensitivity and reproducibility.
KeywordsLactate dehydrogenase; Human serum albumin; Paperbased microwell arrays microfluidic device; Colorimetric method
(Received 11 April 2014; accepted 13 June 2014)
This work was supported by the National Natural Science Foundation of China (No. 21205089) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120141120036)
9Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12(17): 3150-3158
10Zhao W A, van den Berg A. Lab Chip, 2008, 8(12): 1988-1991
11Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Edit., 2007, 46(8): 1318-1320
12Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J D, Zeng F. Biosens. Bioelectron., 2012, 31(1): 212-218
13Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83(4): 1300-1306
14 Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35(1): 363-368
15Williams D C, Seitz W R. Anal. Chem., 1976, 48(11): 1478-1481
16Gautier S M, Blum L J, Coulet P R. Anal. Chim. Acta, 1992, 266(2): 331-338
17Rehak N N, Everse J, Kaplan N O, Berger R L. Anal. Biochem., 1976, 70(2): 381-386
18Brooks L, Olken H G. Clin. Chem., 1965, 11(8): 748-762
19YANG WenChu, YU AiMin, CHEN HongYuan. Chem. J. Chinese Universities, 2009, 22(4): 547-551
楊文初, 俞愛民, 陳洪淵. 高等學校化學學報, 2001, 22(4): 547-551
20Ellerbee A K, Phillips S T, Siegel A C, Mirica K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20): 8447-8452
21Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80(10): 3699-3707
22Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84(2): 487-515
23Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(15): 5990-5998
24WANG FangFang, CHEN Jin, HE ZhiKe. J. Anal. Sci., 2011, 27(2): 137-141
王方方, 陳 錦, 何治柯. 分析科學學報, 2011, 27(2): 137-141
25Lienhard G E. Science, 1973, 180(4082): 149-154
AbstractA lowcost, simple, sensitive detection method of lactate dehydrogense (LDH) was developed on paperbased microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride (PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9.44 U/L (3σ) by Gel Documentation System; and the linear range was 15-150 U/L by camera with a LOD of 12.36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This lowcost, portable paperbased analytical platform could be suitable for the application in the pointofcare with high sensitivity and reproducibility.
KeywordsLactate dehydrogenase; Human serum albumin; Paperbased microwell arrays microfluidic device; Colorimetric method
(Received 11 April 2014; accepted 13 June 2014)
This work was supported by the National Natural Science Foundation of China (No. 21205089) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120141120036)