李 波,馬義兵,王學(xué)東
1. 遼寧省農(nóng)業(yè)科學(xué)院植物營養(yǎng)與環(huán)境資源研究所,沈陽 1101612. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 1000813. 首都師范大學(xué)資源環(huán)境與旅游學(xué)院,北京 100048
我國土壤中重金屬銅的生物配體模型的建立與應(yīng)用
李 波1,馬義兵2,*,王學(xué)東3
1. 遼寧省農(nóng)業(yè)科學(xué)院植物營養(yǎng)與環(huán)境資源研究所,沈陽 1101612. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 1000813. 首都師范大學(xué)資源環(huán)境與旅游學(xué)院,北京 100048
關(guān)于重金屬污染的風(fēng)險評價及其預(yù)測模型日益成為環(huán)境領(lǐng)域的研究熱點。近年來,一種用于預(yù)測和評價環(huán)境中重金屬生物毒性的機理性模型—生物配體模型(BLM)被廣泛應(yīng)用于水體及陸地生態(tài)系統(tǒng)。本研究以我國土壤的陸地生物配體模型(TBLM)建構(gòu)為目標(biāo),以土壤溶液系統(tǒng)為媒介,通過17種土壤上重金屬銅離子與大麥根長的相互作用關(guān)系,發(fā)現(xiàn)了土壤中Cu-TBLM的主要影響因素為Cu2+、CuOH+、Mg2+以及銅離子與大麥根系表面的專性結(jié)合能力。基于模型大麥根長預(yù)測值與實測值之間的相關(guān)關(guān)系,通過數(shù)學(xué)擬合功能求得TBLM中各參數(shù)值為logKCuBL= 4.87、logKCuOH+= 7.62、logKMgBL= 1.91、f50%= 0.103、β= 1.09。本研究所得到的TBLM模型能很好地預(yù)測我國土壤中銅對大麥根長的毒害程度,預(yù)測值與實測值的相關(guān)性達到了90%。本研究結(jié)果不僅可以為我們降低重金屬離子生物有效性提供有力的理論借鑒,更對我國土壤環(huán)境質(zhì)量保護和長期良性可持續(xù)發(fā)展具有重要意義。
銅;大麥根長;陸地生物配體模型;毒性預(yù)測
眾所周知,土壤中重金屬離子的全量不能很好地評價其生物有效性,真正作用于土壤生物體的重金屬離子只占全量的很小部分[1-3]。土壤溶液是金屬離子與生物體作用的媒介,水溶性金屬離子被認為是作用于植物根系最直接、最有效的形態(tài)[4-5]。以銅為例,土壤溶液中總銅含量與植物生長效應(yīng)具有很好的相關(guān)性[4,6],但這種經(jīng)驗的劑量-效應(yīng)關(guān)系很難從機理層面解釋銅離子與土壤中共存生物體的相互作用關(guān)系。
近幾年來,應(yīng)用生物配體模型(BLM)理論解釋溶液中金屬離子對植物、動物、微生物的毒性作用的報道逐漸增多[7-10]。該模型將生物受體位點作為生物配體,假設(shè)當(dāng)結(jié)合在具有生理活性的生物受體位點的重金屬達到一定量時,毒性就可能發(fā)生。模型考慮了影響生物毒性的溶液組成性質(zhì)以及具有生物有效性的金屬離子比例,在水質(zhì)、土壤毒性預(yù)測上取得了一定的成績[9-11]。與水體BLM相似,土壤中的生物配體模型(陸地生物配體模型,TBLM)把土壤溶液相作為金屬離子與生物體作用的媒介,一切作用的發(fā)生都以這個媒介為基礎(chǔ),然而,不同的是TBLM相對于水體BLM來說更加復(fù)雜,土壤作為土壤溶液成分的供給源引入了更多不可控制的因素。目前關(guān)于TBLM的研究還只處于探索階段[12-13]。TBLM模型以有效態(tài)金屬離子為研究出發(fā)點,任何影響金屬離子有效性的因子都應(yīng)該被模型所考慮。以銅離子為例,土壤溶液中銅離子有效性與自由銅離子活度、生物配體專性作用位點、以及其他可能具有生物有效性的銅離子形態(tài)有關(guān),同時,自由銅離子活度還受土壤溶液中共存競爭陽離子數(shù)量(如Ca2+、Mg2+等)、可溶性有機碳(DOC)濃度以及pH的影響。本研究以我國17種土壤中銅離子的TBLM建構(gòu)為研究目標(biāo),從土壤中有效性銅離子形態(tài)與植物毒性反應(yīng)關(guān)系入手,針對不同土壤類型中銅的有效性及影響因素,從機理角度解釋土壤中銅離子與植物根系的相互作用關(guān)系,探討TBLM在我國土壤上的預(yù)測能力及應(yīng)用性。
1.1 土壤溶液參數(shù)測量
根據(jù)ISO 11269-1[16]大麥根伸長毒性試驗的標(biāo)準(zhǔn)方法,取風(fēng)干的污染土壤樣品每個處理360 g,裝入自制根長生長筒內(nèi)(內(nèi)徑3.5 cm,高12 cm),3次重復(fù),保持最大持水量(WHC)的60%培養(yǎng)7 d后,種植預(yù)發(fā)芽的大麥種子4粒到根長生長筒內(nèi),置于人工氣候箱內(nèi)生長,生長條件為白天14 h(22 °C),夜間10 h(18 °C),光照強度為24 000 lux·m-2,水分濕度為70%,保持整個試驗過程中土壤含水量為最大持水量的60%,5 d后收集大麥根,清洗后測定每個重復(fù)內(nèi)每株大麥的最長的根長,并求均值。
1.3 TBLM的建立
1.3.1 土壤溶液中銅離子活度測量
使用Orion 94-29銅離子選擇電極(Thermo Electron Corporation, USA)測量土壤溶液中銅離子活度[17]。由于土壤樣本較大以及污染處理較多,本研究僅選取17個土壤樣品的兩個污染濃度,即約為大麥根伸長10%(EC10)及50%(EC50)抑制時的濃度水平[18]。電極標(biāo)準(zhǔn)溶液使用各5 mL 1 mol·L-1Cu(NO3)2、0.01 mol·L-1IDA、0.025 mol·L-1KHC8H4O4、0.1 mol·L-1KNO3及不同體積的0.02 mol·L-1NaOH(1~10 mL)配置[13]。根據(jù)電極標(biāo)準(zhǔn)溶液測定結(jié)果繪制電極電位mV對pCu(自由離子活度的負對數(shù))標(biāo)準(zhǔn)曲線圖,標(biāo)準(zhǔn)溶液的pCu結(jié)果使用WHAM 6[19]模型計算。測量土壤溶液中銅離子的電極電位,根據(jù)標(biāo)準(zhǔn)曲線圖查出相應(yīng)的pCu值。
1.3.2 土壤溶液中銅離子活度的預(yù)測
表1 17 種土壤的基本理化性狀Table 1 Selected physicochemical properties of soil used in this experiment
表2 17個土壤樣本的土壤溶液參數(shù)Table 2 Soil solution parameters measured for Cu added to 17 soils by extracting soil solution
1.3.3 TBLM的建立
根據(jù)Wang等[20]研究結(jié)果,即除二價銅離子(Cu2+)之外,羥基銅離子(CuOH+)在高pH條件下具有很強的毒性,考慮到我國土壤背景中大部分土壤的pH高于7,因此在TBLM建模時Cu2+與CuOH+被同時考慮為生物有效性的銅離子形態(tài)。此外,Mg2+可以與Cu2+競爭大麥根表面的結(jié)合位點,因此被作為Cu2+毒性消減作用的唯一離子[20]。最終輸入到TBLM模型的變量鎖定為{Cu2+}(離子活度形式)、{CuOH+}、{Mg2+}以及大麥根長相對長度RE,TBLM方程為[13]:
2.1 WHAM 6 模型校正結(jié)果
根據(jù)測量的與模型預(yù)測的pCu的一致程度,采用最大相關(guān)系數(shù)及最小殘差平方和法校正WHAM 6化學(xué)模型中FA默認參數(shù)。研究發(fā)現(xiàn)我國農(nóng)業(yè)土壤的DOC對銅的絡(luò)合能力與WHAM 6中默認的絡(luò)合能力相差很大,即我國農(nóng)業(yè)土壤的DOC遠小于模型默認能力。通常來說,WHAM 6中65%的FA被認為是活性的FA[21-24],而對于我國土壤來說,只有當(dāng)銅與FA的結(jié)合常數(shù)logKCuFA從默認的2.1(圖1a)下降到1.5(圖1b)時,測量與預(yù)測的pCu才最吻合,此時兩者的相關(guān)系數(shù)R2從0.51增加到0.74,方程的斜率值從0.931增加到1.005(圖1)。因此,輸入到WHAM 6中DOC參數(shù)為FA = 2 × DOC × 0.65,并logKCuFA=1.5。
2.2 TBLM模型建立
輸入表2中136個土壤溶液變量組到校正的WHAM 6模型,得到的銅離子和其他陽離子的活度見表3。從表3發(fā)現(xiàn),在pH<7.3的土壤里,銅離子活度占總?cè)芙庑糟~的40%以內(nèi),且與土壤pH呈負相關(guān);pH>7.3的土壤里,銅離子活度僅占總?cè)芙庑糟~的15%以內(nèi),大部分銅離子與DOM結(jié)合起來,失去活性。此外,總體上{Cu2+}顯著高于{CuOH+},{Ca2+}離子活度高于{Mg2+}。輸入表3中變量到DPS 9.0數(shù)據(jù)表中,根據(jù)大麥根長的預(yù)測值與測量值之間的相關(guān)關(guān)系,擬合得到各參數(shù)值為logKCuBL= 4.87、logKCuOHBL=7.62、logKMgBL=1.91、f50%= 0.103、β= 1.09。預(yù)測和測量的大麥根長的相關(guān)關(guān)系如圖2a所示,其中殘差平方和RMSE = 11.4,相關(guān)系數(shù)R2= 0.90。總體看來大麥根長的預(yù)測結(jié)果很好,基本所有的預(yù)測值都落在實際測量值2倍的范圍內(nèi)(圖2b),意味著TBLM能夠很好地預(yù)測我國土壤中銅對大麥根長生長的毒害程度。
圖1 銅離子選擇電極測量的pCu與WHAM 6模型預(yù)測的pCu的相關(guān)性Fig. 1 Comparison between measured and predicted pCu. The predictions were made with WHAM 6 using default parameter values and 65% AFA (a), optimized parameter values and 65% AFA (b).
表3 土壤溶液離子活度預(yù)測值及大麥根長值Table 3 Relative cation activity predicated using soil solution parameter for 17 Cu added soils
2.3 TBLM驗證
為了進一步確定本研究結(jié)果的準(zhǔn)確性,我們應(yīng)用王學(xué)東等[12]大麥根長水培試驗得到的參數(shù)值即logKCuBL= 6.57、logKCuOHBL= 7.03、logKMgBL= 3.00代入到以上TBLM方程中,通過DPS軟件數(shù)據(jù)擬合得到f50%= 0.047、β= 0.625,預(yù)測值與實測值的相關(guān)系數(shù)R2= 0.51,RMSE = 22.47,說明模型預(yù)測能力很差(表4)。此外,我們也使用Thakali等[9]中得到的參數(shù)f50%= 0.05、β= 0.96以及王學(xué)東等(2008)得到的結(jié)合常數(shù)logKCuBL= 6.57、logKCuOHBL= 7.03、logKMgBL= 3.00代入到TBLM方程中,結(jié)果發(fā)現(xiàn)模型的預(yù)測能力也很差,即R2= 0.56,RMSE = 23.71。盡管本研究得到的TBLM模型不盡完美,仍有一些數(shù)值偏離實測值兩倍的范圍區(qū)間,但相對于Thakali等[9]基于歐洲非碳酸鈣土壤的TBLM模型(RMSE =15.4;R2= 0.85)卻有很大的提高(表4)。此外,Thakali等[9]選取的土壤樣本pH較低,有機質(zhì)含量較高,而我國碳酸鈣土壤比例較大,有機質(zhì)含量較低,基于我國土壤背景得到的TBLM更能針對我國土壤的分布特點,從機理上解釋土壤溶液系統(tǒng)中銅與植物根系作用的方式。
2.4 TBLM建模的影響因素
由于DOC對銅有很強的絡(luò)合能力,在污染較輕的土壤上,幾乎90%以上的銅以DOC絡(luò)合形式存在,因此,DOC的濃度及結(jié)構(gòu)差異對銅的生物有效性影響很大。通常來說,酸性土壤溶液中的DOC比中性與堿性土壤絡(luò)合能力低,主要因為酸性土壤中H+含量高,H+可以占據(jù)DOC與Cu2+的結(jié)合位點,降低DOC對銅的絡(luò)合能力[9]。本研究中沒有引入不同pH土壤的DOC差異,主要是因為在模型校正時沒有發(fā)現(xiàn)極異常數(shù)據(jù)值。其次,DOC因來源不同,結(jié)構(gòu)差異很大,一般來源于農(nóng)業(yè)土壤的DOC要比來源于有機肥、秸稈腐熟物等DOC芳香度低,也就是說來源于農(nóng)業(yè)土壤的DOC含有較多的羧基、較少的芳香基[25-26],從而導(dǎo)致前者的絡(luò)合能力相對較低,因此,追溯農(nóng)業(yè)土壤的外源有機物來源及添加量對于模型準(zhǔn)確建構(gòu)具有一定的作用。再次,不同土壤溶液的提取方法產(chǎn)生的效果不同。MacDonald等[27]提出使用滲透方法提取土壤溶液,能夠較好地模擬了田間土壤的化學(xué)性質(zhì),而采用離心、壓力、抽氣等方法提取的土壤溶解性離子的濃度要大于滲透方法測得的離子濃度。因此,正確的土壤溶液提取方法對TBLM的準(zhǔn)確建立起到非常重要的作用。
圖2 大麥根長的測量值和預(yù)測值的相關(guān)性。其中a為百分數(shù)、b為對數(shù)轉(zhuǎn)換值Fig. 2 The relationship between the measured and predicted barley relative root lengths, and a (%) and b (log-transformed) represent Cu toxicity results
表4 不同研究得到的大麥根系與銅離子結(jié)合的生物配體模型參數(shù)Table 4 The BLM parameters based on barley root and Cu ion binding from different studies
此外,不同的生物配體對TBLM的建構(gòu)影響很大。Thakali等[9-10]基于pH ≤ 7.0的歐洲土壤的植物生長和微生物活性抑制試驗建立了適合歐洲非堿性土壤的TBLM,研究發(fā)現(xiàn)對于土壤硝化細菌來說降低銅害的競爭離子為H+與Mg2+,而對于大麥根長與西紅柿莖葉生長來說競爭離子僅為H+;然而,Lock等[28]基于非堿性溶液培養(yǎng)試驗的研究發(fā)現(xiàn)降低大麥根長銅害的競爭離子為H+與Mg2+。王學(xué)東等[12,20]通過大麥根長水培試驗,進一步驗證了Mg2+的競爭作用;并通過pH范圍試驗,發(fā)現(xiàn)了除Cu2+之外,CuOH+的毒害作用,進一步解釋了低pH條件下H+對Cu2+的競爭作用[9,28]只是一種假象,而實際上是由于pH的升高,生成了CuOH+這種比Cu2+毒性更強的形態(tài)。由于本研究中大部分土壤pH超過7,因此,選用王學(xué)東的研究結(jié)果構(gòu)建我國TBLM。值得注意的是,不同生物配體與銅離子的結(jié)合能力(以logK表示)有所不同,對于西紅柿莖葉生長來說,雖然競爭離子與大麥根長相同,但絡(luò)合常數(shù)logK卻有顯著差異[9-10]。Cheng等[29]研究了銅對生菜的毒性,估算生菜根系與銅的結(jié)合常數(shù)(logK)變化在11.15~12.16之間;Antunes等[30]通過小麥培養(yǎng)試驗發(fā)現(xiàn)了銅濃度不同時小麥根和銅的結(jié)合常數(shù)(logK)不同,變化范圍在4.07~9.06之間。本研究得到的結(jié)合常數(shù)遠小于生菜根與銅的結(jié)合常數(shù),而與小麥根結(jié)合常數(shù)變化區(qū)間較為一致,可能由于大麥與小麥植物科屬相近所致。
總之,BLM是一個機理性的模型,能夠從機理角度摸清土壤生物體與金屬離子的相互作用關(guān)系,是一個能夠替代生物毒性試驗來預(yù)測金屬毒性的有用工具。盡管模型現(xiàn)在存在著局限性,但隨著對痕量金屬吸收過程中的化學(xué)、生理學(xué)和生物學(xué)過程的深入理解,這些問題將會逐步得到解決,未來BLM既面臨挑戰(zhàn)又有著廣闊的應(yīng)用和發(fā)展前景。
[1] Sauvé S, McBride M B, Norvell W A, et al. Copper solubility and speciation of in situ contaminated soils: Effects of copper level, pH and organic matter [J]. Water, Air and Soil Pollution, 1997, 100(1-2): 133-149
[2] McLaughlin M J. Bioavailability of metals to terrestrial plants. In Allen HE (Ed.). Bioavailability of Metals in Terrestrial Ecosystems: Influence of Partitioning for Bioavailability to Invertebrates, Microbes and Plants [M]. Pensacola, FL: SETAC Press, 2000: 39-67
[3] Nolan A L, Lombi E, McLaughlin M J. Metal bioaccumulation and toxicity in soils: Why bother with speciation? [J]. Australian Journal of Chemistry, 2003, 56(3): 77-91
[4] Zhao F J, Rooney C P, Zhang H, et al. Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants [J]. Environmental Toxicology and Chemistry, 2006, 25(3): 733-742
[5] Song J, Zhao F J, Luo Y M, et al. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils [J]. Environmental Pollution, 2004, 128(3): 307-315
[6] Sauvé S, Hendershot W, Allen H E. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden and organic matter [J]. Environmental Science and Technology, 2000, 34(7): 1125-1131
[7] Niyogi S, Wood C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals [J]. Environmental Science and Technology, 2004, 38(23): 6177-6192
[8] Slaveykova V I, Wilkinson K J. Predicting the bioavailability of metal complexes: Critical review of the biotic ligand model [J]. Environmental Chemistry, 2005, 2(1): 9-24
[9] Thakali S, Allen H E, Di Toro D M, et al. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicity to barley root elongation in soils [J]. Environmental Science and Technology, 2006, 40(22): 7085-7093
[10] Thakali S, Allen H E, Di Toro D M, et al. A terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil [J]. Environmental Science and Technology, 2006, 40(22): 7094-7100
[11] 黃圣彪. 水環(huán)境中銅形態(tài)與其生物有效性/毒性關(guān)系及其預(yù)測模型研究[D]. 北京, 中國科學(xué)院生態(tài)環(huán)境研究中心, 2003
Huang S B. Measurement and prediction in the toxic/bioavailable concentration of copper in natural water [D]. Beijing, Research Center for Eco-Environmental Sciences, 2003 (in Chinese)
[12] 王學(xué)東, 馬義兵, 華珞, 張璇. 銅對大麥的急性毒性預(yù)測模型-生物配體模型研究[J]. 環(huán)境科學(xué)學(xué)報, 2008, 28(8): 1704-1712
Wang X D, Ma Y B, Hua L, et al. Development of Biotic Ligand Mod el (BLM) predicting copper acute toxicity to barley (Hordeum vulgare) [J]. Acta Scientiae Circumstantiae, 28(8): 1704-1712 (in Chinese)
[13] 李波. 外源重金屬銅、鎳的植物毒害及預(yù)測模型研究[D]. 北京, 中國農(nóng)業(yè)科學(xué)院, 2010
Li B. The Phytotoxicity of added copper and nickel to soils and predictive models [D]. Beijing, Chinese Academy of Agricultural Sciences, 2010 (in Chinese)
[14] Thibault D H, Sheppard M I. A disposable system for soil pore-water extraction by centrifugation [J]. Communications in Soil Science and Plant Analysis, 1992, 23(13): 1629-1641
[15] Zarcinas B A, McLaughlin M J, Smart M K. The effect of acid digestion technique on the performance of nebulisation systems used in inductively coupled plasma spectrometry [J]. Communications in Soil Science and Plant Analysis, 1996, 27(5-8): 1331-1354
[16] International Organization for Standardization. Soil quality-Determination of the effects of pollutants on soil flora-Part 1: Method for the measurement of inhibition of root growth [S]. Geneva, Switzerland. 1993
[17] Sauvé S, McBride M B. Hendershot W H. Ion-selective electrode measurements of copper (II) activity in contaminated soils [J]. Archives Environment Contamination Toxicology, 1995, 29(3): 373-379
[18] Li B, Ma Y B, McLaughlin M J, et al. Influences of soil properties and leaching on copper toxicity to barley root elongation [J]. Environmental Toxicology and Chemistry, 2010, 29(4): 835-842
[19] Tipping E. Humic Ion Binding Model VI: An improved description of the interactions of protons and metal ions with humic substances [J]. Aquatic Geochemistry,1998, 4(1): 3-48
[20] Wang X D, Ma Y B, Hua L, et al. Identification of CuOH+toxicity to barley root elongation in solution culture [J]. Environmental Toxicology and Chemistry 2009, 28(3): 662-667
[21] Weng L P, Temminghoff E J M, Lofts S, et al. Complexation with dissolved organic matter and solubility control of heavy metal in a sandy soil [J]. Environmental Science and Technology, 2002, 36(22): 4804-4810
[22] Van Laer L, Smolders E, Degryse F, et al. Speciation of nickel in surface waters measured with the Donnan membrane technique [J]. Analytica Chimica Acta, 2006, 578(2): 195-202
[23] Oorts K, Bronckaers H, Smolders E. Discrepancy of the microbial response to elevated Cu between freshly spiked and long-term contaminated soils [J]. Environmental Toxicology and Chemistry, 2006, 25(3): 845-853
[24] Oorts K, Ghesquiere U, Smolders E. Leaching and aging decrease nickel toxicity to soil microbial processes in soils freshly spiked with nickel chloride [J]. Environmental Toxicology and Chemistry, 2007, 26(6): 1130-1138.
[25] Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon [J]. Environmental Science and Technology, 2003, 37(20): 4702-4708
[26] Grybos M, Davranche M, Gruau G, et al. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? [J]. Journal of Colloid and Interface Science, 2007, 314(2): 490-501
[27] MacDonald J D, Belanger N, Hendershot W H. Column leaching using dry soil to estimate solid - solution partitioning observed in zero - tension lysimeters. 2 Trace metals [J]. Soil and Sediment Contamination, 2004, 13(4): 375-390
[28] Lock K, Criel P, De Schamphelaere K A C, et al. Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley (Hordeum vulgare) [J]. Ecotoxicology and Environmental Safety, 2007, 68: 299-304
[29] Cheng T, Allen H E. Prediction of uptake copper from solution by lettuce (Lactuca sativa romance) [J]. Environmental Toxicology and Chemistry, 2000, 20(11): 2544-2551
[30] Antunes P M C. Beyond the free-ion activity model: The biotic ligand model for estimating copper uptake by durum wheat [D]. Guelph, University of Guelph, 2004
◆
DevelopmentandApplicationofBioticLigandModelforCopperinChineseSoils
Li Bo1,Ma Yibing2,*,Wang Xuedong3
1. Institute of Plant Nutrition and Environmental Resources, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China2. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China3. The Key Lab of Resource Environment and GIS, College of Resource Environment & Tourism, Capital Normal University, Beijing 100048, China
15 May 2014accepted30 July 2014
The terrestrial biotic ligand model (TBLM) is a newly developed method for evaluating bioavailability of heavy metal ion in soils. Seventeen soil samples covering China were selected in this study by adding a series of Cu concentrations. The soil solutions were extracted according to the method of maximum water holding capacity. The cation and anion concentrations as well as dissolved organic carbon (DOC) in soil solutions were measured for the predictions of Cu (Cu2+and CuOH+especially at high-pH conditions) and Mg ion activities. The WHAM 6 model was used to predict free Cu2+, CuOH+and Mg2+activities using 65% DOM as active fluvic acid (FA) and adjusted binding constant logKCuFA= 1.5. The predicted ion activities and measured barley relative root elongation as variables were input into TBLM equation, and binding constants and parameters were fitted out as logKCuBL= 4.87, logKCuOH+= 7.62, logKβ= 1.09 by DPS statistic software according the best agreement between measured and predicted barley relative root lengths. The results showed that predicted and measured barley root elongation can match quite well with an R2= 0.90, RMSE = 11.4 and almost all predicted values lied within 2-fold of measured values. In order to ensure accuracy of TBLM in our study, some parameters from relative studies were compared with the values in this study, which showed that our TBLM was better than others and more suitable for Cu prediction of bioavailability in Chinese soils because a series of high-pH soils samples were included. The study will help a lot on formulating guidance of soil environment risk assessments not only for China but for the other areas around world.
: copper; barley; terrestrial biotic ligand model; toxicity prediction
2014-631-15錄用日期:2014-07-30
1673-5897(2014)4-632-08
: X171.5
: A
馬義兵(1957—),男,博士,研究員,主要研究方向為土壤重金屬環(huán)境化學(xué)、風(fēng)險評價與治理,發(fā)表學(xué)術(shù)論文160余篇。
國家自然科學(xué)基金項目(No.20677077; No.40620120436)和國際銅業(yè)協(xié)會,澳大利亞力拓礦業(yè)集團資助
李波(1979-), 女, 博士, 主要從事土壤重金屬污染毒理與修復(fù)研究. E-mail: libocaas@163.com
*通訊作者(Corresponding author),E-mail: ybma@caas.ac.cn
10.7524/AJE.1673-5897.20140510006
李 波,馬義兵,王學(xué)東. 我國土壤中重金屬銅的生物配體模型的建立與應(yīng)用[J]. 生態(tài)毒理學(xué)報, 2014, 9(4): 632-639
Li B, Ma Y B, Wang X D. Development and application of biotic ligand model for copper in Chinese soils [J]. Asian Journal of Ecotoxicology, 2014, 9(4): 632-639 (in Chinese)