張曉晴,韋東普,李 波,李菊梅,陳世寶,馬義兵, *
1. 湖北民族學(xué)院林學(xué)園藝學(xué)院,湖北 4450002. 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所 國(guó)家土壤肥力與肥料效益監(jiān)測(cè)站網(wǎng),北京 100081
土壤水溶態(tài)銅對(duì)小白菜的毒害效應(yīng)及其預(yù)測(cè)模型
張曉晴1, 2,韋東普2,李 波2,李菊梅2,陳世寶2,馬義兵2, *
1. 湖北民族學(xué)院林學(xué)園藝學(xué)院,湖北 4450002. 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所 國(guó)家土壤肥力與肥料效益監(jiān)測(cè)站網(wǎng),北京 100081
土壤中銅(Cu)重金屬的生物毒性/有效性主要取決于它們?cè)谕寥酪合嘀泻亢屯寥廊芤旱男再|(zhì)。探尋土壤有效態(tài)Cu的生物毒害效應(yīng),表征量化其與土壤溶液性質(zhì)關(guān)系,可為土壤Cu的環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)提供參考。選取17種典型農(nóng)田土壤,探討了有效態(tài)Cu(土壤孔隙水以及CaCl2浸提態(tài))對(duì)小白菜生長(zhǎng)的毒性效應(yīng)及其預(yù)測(cè)模型。結(jié)果表明:土壤孔隙水中Cu對(duì)小白菜生長(zhǎng)10%抑制的毒性閾值(EC10)和50%抑制的毒性閾值(EC50),最大值與最小值相差為14.7和14.6倍;同樣,對(duì)于CaCl2提取態(tài)Cu的EC10和EC50,最大值與最小值相差12.7和7.7倍,表明土壤溶液性質(zhì)對(duì)水溶性Cu對(duì)小白菜的毒性閾值影響很大。建立了土壤溶液的重要因子(溶解性有機(jī)碳、土壤溶液pH值、電導(dǎo)率、全硫含量、Ca2+、Mg2+、K+、Na+)和水溶性Cu閾值之間的多元回歸關(guān)系,結(jié)果顯示,土壤溶液性質(zhì)可以較好地預(yù)測(cè)水溶性Cu對(duì)小白菜的毒性閾值。同時(shí),土壤溶液中Mg2+、K+和S的含量是控制孔隙水中Cu對(duì)小白菜生長(zhǎng)毒性的最重要因子,單一的S能分別解釋34%的EC10變異,K+解釋26%的EC50變化。本研究結(jié)果可為陸地環(huán)境中水溶性Cu的風(fēng)險(xiǎn)評(píng)價(jià)提供基礎(chǔ)。
土壤;銅;毒害效應(yīng);小白菜
小白菜是一種含豐富的礦物質(zhì)和維生素的葉菜類蔬菜,在我國(guó)栽培十分廣泛。隨著農(nóng)田土壤重金屬的污染加劇,葉菜類蔬菜最易受重金屬污染的影響[1],其中小白菜對(duì)重金屬銅(Cu)的毒害作用表現(xiàn)比較敏感[2]。李波[2]研究發(fā)現(xiàn),在8種常見的農(nóng)田作物(大麥、水稻、西紅柿、青椒、小白菜、芥菜、菠菜和芹菜)中,小白菜是對(duì)Cu毒性比較敏感的蔬菜品種。Cu作為植物的營(yíng)養(yǎng)元素,當(dāng)土壤中含量較低時(shí),能促進(jìn)小白菜的生長(zhǎng),而當(dāng)土壤中Cu的濃度進(jìn)一步增加,則抑制小白菜的生長(zhǎng)。研究表明,當(dāng)溶液中的Cu含量較高時(shí),小白菜生長(zhǎng)受到脅迫,葉綠素a和b的含量下降,光合和呼吸作用受阻;植物細(xì)胞中的超氧化物歧化酶等活性降低或遭到破壞,自我調(diào)節(jié)能力下降;小白菜根系活力大幅降低,根系吸收能力也隨之下降等[3]。為建立土壤環(huán)境中Cu的生態(tài)閾值,查明不同類型土壤和植物相應(yīng)的Cu毒性臨界值是非常必要的。Li等[4]研究不同類型土壤中外源銅對(duì)小白菜生長(zhǎng)的毒害效應(yīng)時(shí),發(fā)現(xiàn)Cu的毒性閾值變化范圍較大。而關(guān)于土壤溶液性質(zhì)對(duì)于土壤有效態(tài)Cu對(duì)小白菜毒害效應(yīng)影響的研究較少。因此,本文以小白菜為試驗(yàn)材料,比較和確定17個(gè)中國(guó)農(nóng)田土壤中水溶性Cu(土壤孔隙水和0.01 mol·L-1CaCl2提取液態(tài))對(duì)小白菜的毒害效應(yīng),并找出控制水溶性Cu毒性的土壤溶液主控因子和建立其預(yù)測(cè)模型,為土壤中Cu的生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)提供參考依據(jù)。
1.1 試驗(yàn)方法
本試驗(yàn)選取的全國(guó)17個(gè)位點(diǎn)農(nóng)田土壤,其土壤處理方法及土壤性質(zhì)測(cè)定見Li等[4, 5]。土壤理化性質(zhì)變化范圍為:有機(jī)碳0.60%~4.28%,pH 4.93~8.90,有效陽(yáng)離子交換量6.36~33.59 cmol·kg-1,粘粒含量10%~66%。
將CuCl2溶液均勻噴布到土壤上,pH值<5的每千克干土中Cu的添加量分別為0、12.5、25、50、100、200、400、800 mg;在pH值5 ~ 7的土壤中,Cu的添加量分別為0、25、50、100、200、400、800、1 600 mg;在pH>7的每千克土壤中,Cu的添加量分別為0、37.5、75、150、300、600、1 200、2 400 mg。保證土壤水分維持最大田間持水量,培養(yǎng)2 d,風(fēng)干,過2 mm尼龍篩備用。
盆栽試驗(yàn)在中國(guó)農(nóng)業(yè)科學(xué)院溫室中進(jìn)行。供試作物小白菜(BrassicachinensisL.),參照ISO 11269-2(1995),在植物生長(zhǎng)缽中添加650 g處理過的土壤樣品,保持60%的最大田間持水量,培養(yǎng)7 d后,種植預(yù)發(fā)芽(胚根<5 mm)的小白菜種子,置于溫室內(nèi)生長(zhǎng)21 d。小白菜生長(zhǎng)期間,土壤水分維持田間持水量的60%~ 65%,白天溫度為26~32 ℃(14~16 h),夜間18~24 ℃(8~10 h)。小白菜收獲后,取其地上部分放入烘箱(70 ℃),烘48 h后,稱量莖葉生物質(zhì)量。所有處理均設(shè)置3次重復(fù)。
1.2 土壤溶液參數(shù)測(cè)定方法
土壤溶液測(cè)定方法具體參考李波[2]。在小白菜毒理實(shí)驗(yàn)開始前,土壤添加外源Cu平衡2 d后,便開始提取土壤溶液。土壤溶液采用國(guó)際標(biāo)準(zhǔn)雙室離心方法提取[6],將25 g風(fēng)干土壤放入墊有石英棉的注射器內(nèi)部,添加去離子水保持土壤持水量為pF 1.7,培養(yǎng)過夜(24 h),低速離心(3 500 r·min-1) 45 min,收集土壤孔隙水,繼續(xù)高速離心(15 000 r·min-1) 45 min,保留上清液,過0.45 μm的濾膜,電感藕合等離子體-原子發(fā)射光譜(ICP-AES)或電感藕合等離子體-質(zhì)譜(ICP-MS)測(cè)定濾液中Cu以及其它主要的元素(Na、K、Ca、Mg、S)的含量。土壤溶液中pH值、電導(dǎo)率(EC)和溶解性有機(jī)碳(DOC)分別采用pH計(jì)、電導(dǎo)率測(cè)定儀、Formacs全碳檢測(cè)儀測(cè)定。
采用CaCl2提取(0.01 mol·L-1),土液比為1:5,3 500 r·min-1離心振蕩,浸提的時(shí)間為30 min,0.45 μm的濾膜過濾,取上清液,ICP-AES法測(cè)定Cu含量。
實(shí)驗(yàn)測(cè)得土壤溶液的基本理化性質(zhì)為:DOC 53~623 mg·L-1,pH 4.9~8.4,EC 0.53~11.36 mS·cm-1,Ca2+50.4~1 359 mg·L-1,Mg2+11.4~483 mg·L-1,Na+6.15~2 128 mg·L-1,K+1.6~51.5 mg·L-1,S 3.45~721 mg·L-1,具體描述見張曉晴[7]。
1.3 數(shù)據(jù)處理
水溶性Cu的毒性閾值(ECx,x=10,50)和土壤溶液性質(zhì)之間的多元回歸數(shù)據(jù)用SPSS 19.0進(jìn)行統(tǒng)計(jì)分析,回歸方程中參數(shù)因子的顯著性水平為p≤ 0.05。
水溶性Cu對(duì)小白菜的毒害效應(yīng)采用log-logistic曲線擬合[8],方程如下:
(1)
式中,Y為相對(duì)小白菜地上部分的干重(%),X為lg(水溶性Cu的濃度)。Y0、M、b為擬合的參數(shù),M為lg(ECx(10,50))。EC10和EC50分別為小白菜生物量減產(chǎn)10%和50%時(shí)水溶性Cu的濃度。通過此方程也可以求得ECx95%的置信區(qū)間。
2.1 銅對(duì)小白菜的毒性效應(yīng)
本試驗(yàn)中,在少數(shù)土壤中發(fā)現(xiàn)低濃度水溶性銅略微增加了小白菜產(chǎn)量,其中最大增加量為對(duì)照的114%。但當(dāng)土壤中水溶性銅濃度的進(jìn)一步增加時(shí),小白菜的生長(zhǎng)逐漸受到抑制,有些土壤中當(dāng)銅的添加量最高時(shí),小白菜無(wú)法生長(zhǎng),其土壤中水溶性銅的濃度和小白菜地上部分的相對(duì)干重可以用log-logistic劑量效應(yīng)曲線很好地進(jìn)行擬合(圖1和2)。孫權(quán)等[3]也發(fā)現(xiàn)當(dāng)土壤中銅的濃度較低時(shí),小白菜地上部分產(chǎn)量有增加的趨勢(shì),此時(shí)根系體積有增大的趨勢(shì),從而增加對(duì)營(yíng)養(yǎng)物質(zhì)的吸收。
圖1 孔隙水中銅對(duì)小白菜生長(zhǎng)的劑量-效應(yīng)曲線(土壤位點(diǎn)編號(hào)S1-S17見表1)Fig. 1 Dose-response curves for Cu concentrations in soil pore water samples for bok choy
圖2 CaCl2提取液中銅對(duì)小白菜生長(zhǎng)的劑量-效應(yīng)曲線(土壤位點(diǎn)編號(hào)S1-S17見表1)Fig. 2 Dose - response curves for Cu concentrations in CaCl2 extraction for bok choy
依據(jù)劑量效應(yīng)曲線計(jì)算的小白菜減產(chǎn)10%和50%的土壤水溶性銅的毒性閾值(EC10,EC50),見表1所示。結(jié)果表明,土壤孔隙水中Cu對(duì)小白菜的毒性閾值EC10和EC50,變化范圍分別為0.03~0.44 mg·L-1和0.07~1.02 mg·L-1,最大值與最小值的差異分別為14.7和14.6倍。CaCl2提取液中Cu的毒性閾值EC10和EC50的變化分別是0.06~0.76 mg·kg-1和0.23~1.78 mg·kg-1,最大值與最小值的差異分別為12.7和7.7倍。在同一套土壤中,Li等[4]發(fā)現(xiàn)土壤中外源Cu對(duì)小白菜的毒性閾值EC10和EC50的變化范圍較大,最大值與最小值的比值分別為37.4和9.5[2]。與土壤外源Cu的毒性閾值變化范圍相比,17個(gè)土壤的水溶性Cu毒性閾值EC10變化范圍明顯縮小,說(shuō)明用水溶性銅作為銅毒性閾值指標(biāo)可以降低部分土壤性質(zhì)對(duì)Cu毒害的影響;而對(duì)于EC50,水溶性Cu閾值變化范圍并沒有顯著縮小,說(shuō)明毒性閾值受土壤性質(zhì)影響較大。這些結(jié)果說(shuō)明即使水溶性銅也不能完全作為土壤銅毒性閾值指標(biāo),仍然受土壤性質(zhì)或者土壤溶液性質(zhì)的影響。
2.2 銅對(duì)小白菜的毒性閾值的預(yù)測(cè)模型
評(píng)價(jià)土壤溶液性質(zhì)對(duì)水溶性銅的毒性閾值的影響,探索能適用于不同的土壤性質(zhì)的預(yù)測(cè)模型,可為制定符合中國(guó)土壤質(zhì)量標(biāo)準(zhǔn)和風(fēng)險(xiǎn)評(píng)價(jià)提供的參考依據(jù)。應(yīng)用SPSS 19.0軟件多元回歸分析了土壤溶液性質(zhì)(pH值、EC、K+、Na+、Ca2+、Mg2+、S、DOC)和土壤水溶性Cu對(duì)小白菜的毒性閾值EC10、EC50之間的關(guān)系,其簡(jiǎn)單和多元的回歸方程的主要顯著結(jié)果如表2所示。Mass[9]研究表明,小白菜屬于對(duì)鹽害一般敏感的蔬菜,其對(duì)電導(dǎo)率的臨界值為1.8 mS·cm-1,在本實(shí)驗(yàn)中內(nèi)蒙古土壤(S12)溶液中電導(dǎo)率為高達(dá)11.4 mS·cm-1, Na+的濃度也達(dá)到了2 128 mg·L-1,小白菜的生長(zhǎng)受到鹽脅迫的影響較大,從而影響水溶性Cu的毒性閾值。因此,在多元回歸中,只分析其余16個(gè)土壤溶液性質(zhì)和毒性閾值之間的關(guān)系。
表1 17種土壤水溶性銅對(duì)小白菜生長(zhǎng)的毒性閾值Table 1 Toxicity thresholds measured by bok choy shoot for Cu in soil pore water and CaCl2 extraction for 17 Chinese soils
注: a為毒性閾值95%的置信區(qū)間;EC10和EC50分別為與對(duì)照相比小白菜地上部分生物量減少10%與50%時(shí),土壤孔隙水或CaCl2提取液中Cu的濃度。
Note: a was the range of 95% confidence intervals;EC10andEC50represented the effective soluble Cu concentrations that caused 10% and 50% inhibition for bok choy shoot growth based on soluble Cu concentration in soil pore water and CaCl2extraction , respectively.
表2 基于土壤溶液性質(zhì)和小白菜生長(zhǎng)銅毒害閾值的簡(jiǎn)單和多元回歸方程(n=16)Table 2 Simple and multiple linear regressions from bok choy shoot bioassay between soluble Cu toxicity thresholds and soil pore water chemistry (n=16)
注:EC為電導(dǎo)率;EC10和EC50分別為與對(duì)照相比小白菜地上部分生物量減少10%與50%時(shí),土壤孔隙水或CaCl2提取液中Cu的濃度;P:回歸方程中系數(shù)的顯著性水平,*:5%水平顯著,**:1%水平顯著,***:1‰水平顯著。
Note: EC was the electrical conductivity;EC10andEC50represented the effective soluble Cu concentrations that caused 10% and 50% inhibition for bok choy shoot growth based on soluble Cu concentration in soil pore water and CaCl2extraction, respectively; p: significant level of variances in regression equations, *: 5% significant level, **: 1% significant level, ***: 1 significant level.
對(duì)于控制土壤孔隙水中Cu對(duì)小白菜毒害的最重要的土壤溶液性質(zhì)為K+、Mg2+和S。例如,單一的S能分別解釋34%的EC10變異,單一的K+能分別解釋26%的EC50變異。土壤溶液性質(zhì)對(duì)CaCl2提取態(tài)Cu的小白菜毒性影響與孔隙水中Ni的有一些差異,除了K+,土壤溶液pH值也是非常重要的土壤溶液性質(zhì),例如,單一的pH值可以控制大約35%和53%的EC10和EC50的變化。通過對(duì)比可以發(fā)現(xiàn),CaCl2提取態(tài)Cu對(duì)小白菜的毒性閾值更容易受到土壤溶液性質(zhì)的影響,尤其是土壤溶液pH值和K+濃度。
3.1 土壤溶液性質(zhì)對(duì)銅植物毒性的影響
影響孔隙水中Cu的毒性閾值的土壤溶液性質(zhì)顯著因子有Mg2+、K+和S,其中最重要的是K+和S,其次為Mg2+。從表2回歸方程(1 ~ 4)可以看出,它們與Cu的毒性閾值顯著正相關(guān),即隨著它們濃度的增加,Cu對(duì)小白菜的毒害作用有下降的趨勢(shì)。與小白菜不同的是,土壤溶液性質(zhì)對(duì)大麥和西紅柿的Cu毒害效應(yīng)影響存在一定的差異。土壤溶液中DOC含量最容易影響Cu對(duì)大麥根伸長(zhǎng)毒害作用[11],而Ca2+、Mg2+、DOC對(duì)西紅柿的毒害影響最大[7]。由此可以看出,在同一套土壤中,由于植物品種間的差異,控制水溶性Cu毒性的土壤溶液性質(zhì)也存在一定的差異,因此,對(duì)于不同的植物,土壤
溶液性質(zhì)對(duì)重金屬的毒害作用影響也是需要考慮的重要因素。
3.2 水溶性銅毒性閾值主控因子分析
對(duì)于小白菜,Mg2+、K+和S顯著地影響著Cu毒性閾值,它們土壤孔隙水中Cu的毒性閾值ECx(10,50)之間的關(guān)系,如圖3所示。由圖3中,可以看出K+與EC50之間有很強(qiáng)的線性相關(guān),隨著K+濃度的增加,EC50明顯的有上升的趨勢(shì),同樣對(duì)于S,EC50也是隨著S濃度的增加而增加。鄭穎璐等[12]在模擬土壤溶液中增加Mg2+濃度時(shí),以總Cu濃度表示的小白菜根伸長(zhǎng)的半抑制濃度線性增加2倍。然而,在大部分的水培和水體試驗(yàn)中,并沒有發(fā)現(xiàn)K+能有效的影響Cu的毒性。即便如此,K+對(duì)Cu毒害的緩解作用,用生物配體模型或者靜電毒性模型都是可以解釋,即K+作為一種競(jìng)爭(zhēng)性的陽(yáng)離子降低Cu2+在生物配體表面的絡(luò)合或者降低Cu2+在細(xì)胞質(zhì)膜表面的活性的作用[13-15]。除此之外,K+還是最常見的營(yíng)養(yǎng)元素,是植物生長(zhǎng)必需的,它參與作物對(duì)硝態(tài)氮的吸收、還原及氮素的代謝過程。本研究中的測(cè)試植物-小白菜,它是攝取土壤中鉀較多的作物,研究也表明高濃度的K素能顯著的提高小白菜的產(chǎn)量、改善小白菜品質(zhì)[16-17]。因此,土壤溶液中的K+可能通過提高小白菜的產(chǎn)量而間接的影響Cu的毒性閾值。
圖3 土壤孔隙水中銅對(duì)小白菜生長(zhǎng)的毒性閾值ECx (x=10, 50) 與溶液中Mg2+、K+和S含量之間的關(guān)系Fig. 3 Relationships between soil solution Mg2+, K+, S and ECx (x=10, 50) of soil soluble Cu in pore water obtained from the bok choy shoot assays
致謝:感謝國(guó)家自然科學(xué)基金和公益性(農(nóng)業(yè))行業(yè)科研專項(xiàng)的經(jīng)費(fèi)資助。感謝澳大利亞聯(lián)邦科工組織土地與水資源部的Cathy Fiebiger和Gillian Cozens的技術(shù)指導(dǎo)。實(shí)驗(yàn)土壤采樣工作由國(guó)家長(zhǎng)期土壤肥力試驗(yàn)站及省級(jí)土肥所協(xié)助完成,在此表示感謝。
[1] 李博文, 謝建治, 郝晉珉. 不同蔬菜對(duì)潮褐土鎘鉛鋅復(fù)合污染的吸收效應(yīng)研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2003, 22(03): 286-288
Li B W, Xie J Y, Hao J M. Effects of complex contamination of cadmium, lead and zinc on vegetable grown in meadow cinnamon soil [J]. Journal of Agro-Environment Science, 2003, 22(03): 286-288 (in Chinese)
[2] 李波. 外源重金屬銅、鎳的植物毒害及預(yù)測(cè)模型研究[D]. 北京, 中國(guó)農(nóng)業(yè)科學(xué)院, 2010.
Li B. The phytotoxicity of added copper and nickel to soils and predictive models [D]. Beijing: Chinese Academy of Agricultural Sciences, 2010 (in Chinese)
[3] 孫權(quán), 何振立, 楊肖娥,等. 銅對(duì)小白菜的毒性效應(yīng)及其生態(tài)健康指標(biāo)[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2007, 13(12): 324-330
Sun Q, He Z L, Yang X E, et al. Toxic effects of copper on Chinese cabbage and its ecological health parameter [J]. Plant Nutrition and Fertilizer Science, 2007, 13(12): 324-330 (in Chinese)
[4] Li B, Zhang H T, Ma Y B, et al. Relationships between soil properties and toxicity of copper and nickel to bok choy and tomato in Chinese soils [J]. Environmental Toxicology and Chemistry, 2013, 32(10): 2372-2378.
[5] Li B, Ma Y B, McLaughlin M J, et al. Influences of soil properties and leaching on copper toxicity to barley root elongation [J]. Environmental Toxicology and Chemistry, 2010, 29(4): 835-842.
[6] Thibault D H, Sheppard M I. A disposable system for soil pore-water extraction by centrifugation [J]. Communications in Soil Science and Plant Analysis, 1992, 23(13/14): 1629-1641.
[7] 張曉晴, 韋東普, 李波, 等. 土壤中水溶性銅對(duì)西紅柿的毒害及其影響因素和預(yù)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(5): 214-222
Zhang X Q, Wei D P, Li B, et al. Influence of soil solution properties and predicting model on soil soluble copper toxicity to tomato shoot [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(5): 214-222 (in Chinese)
[8] Haanstra L, Doelman P, Oude Voshaar J H. The use of sigmoidal dose response curves in soil ecotoxicological research [J]. Plant and Soil, 1985, 84(2): 293-297
[9] Maas E, Hoffman G. Crop salt tolerance-current assessment [J]. Journal of Irrigation and Drainage Engineering, 1977, (103): 115 134
[10] Fest E P M J, Temminghoff E J M, Comans R N J, et al. Partitioning of organic matter and heavy metals in a sandy soil: effects of extracting solution, solid to liquid ratio and pH [J]. Geoderma, 2008, 146(1-2): 66-74
[11] Zhang X Q, Wei D P, Li B, et al. The influence of soil solution properties on phytotoxicity of soil soluble copper in a wide range of soils [J]. Geoderma, 2013, (211-212): 1-7
[12] 鄭穎璐, 王學(xué)東, 李影, 等. 鈣離子和鎂離子對(duì)小白菜銅急性毒性的影響[J]. 安徽農(nóng)業(yè)科學(xué), 2013, 41(6): 2456-2458.
Zheng Y L, Wang X D, Li Y, et al. Effects of Ca and Mg ions on copper toxicity to Pakchoi [J]. Journal of Anhui Agricultural Sciences, 2013, 41(6): 2456-2458 (in Chinese)
[13] Wang X D, Li B, Ma Y B, et al. Development of a biotic ligand model for acute zinc toxicity to barley root elongation [J]. Ecotoxicology and Environmental Safety, 2010, 73(6): 1272-1278
[14] Thakali S, Allen H E, Di Toro D M, et al. A terrestrial biotic ligand model 1. Development and application to Cu and Ni toxicity to barley root elongation in soils [J]. Environmental Science and Technology, 2006, 40(22): 7085-7093
[15] Wang P, Zhou D M, Kinraide T B, et al. Cell membrane surface potential (ψ0) plays a dominant role in the phytotoxicity of copper and arsenate [J]. Plant Physiology, 2008, 148(4): 2134-2143
[16] 唐新蓮, 顧明華, 潘麗梅, 等. 氮、磷、鉀、鋅配施對(duì)小白菜產(chǎn)量和品質(zhì)的效應(yīng)[J]. 中國(guó)土壤與肥料, 2007, (3): 47-51.
Tang X L, Gu M H, Pan L M, et al. Effect of combined application of N, P, K and Zn on the yield and quality of pakchoi [J]. Soils and Fertilizers Sciences in China, 2007, (3): 47-51 (in Chinese)
[17] 陳秀虎, 楊敏, 黎曉峰. 磷、鉀和不同氮源對(duì)小白菜產(chǎn)量和品質(zhì)的影響與分析[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2008, 30(3): 443-448
[18] 李娟, 林瓊, 陳子沖, 等. 不同供硫水平對(duì)水稻生長(zhǎng)和養(yǎng)分吸收的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2006, 22(11): 214-217
Li J, Lin Q, Chen Z C, et al. Effect of different levels of sulfur on rice growth and nutrients absorption [J]. Chinese Agricultural Science Bulletin, 2006, 22(11): 214-217 (in Chinese)
[19] 謝迎新, 朱云集, 郭天財(cái), 等. 施用硫肥對(duì)冬小麥光合生理特性及產(chǎn)量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2009, 15(2): 403-409
Xie Y Y, Zhu Y J, Guo T C, et al. Effects of sulphureous fertilization on photosynthetic and physiological characteristics and yields of winter wheat [J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 403-409 (in Chinese)
[20] 劉中良, 劉世琦, 張自坤. 水培條件下硫?qū)Υ笏鉅I(yíng)養(yǎng)品質(zhì)和鮮重的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2010, 26(10): 207-211
Liu Z L, Liu S Q, Zhang Z K. Effects of sulfur content in nutrient solution on nutrition quality and fresh weight of garlic [J]. Chinese Agricultural Science Bulletin, 2010, 26(10): 207-211 (in Chinese)
[21] 雷利斌, 章力干, 馬友華, 等. 加硫尿素對(duì)小白菜產(chǎn)量和品質(zhì)的影響[J]. 安徽農(nóng)學(xué)通報(bào), 2006, 12(6): 149-150
[22] 霍捷. 無(wú)機(jī)硫降低小白菜葉片硝酸鹽累積的效應(yīng)及機(jī)理研究[D]. 河北: 河北農(nóng)業(yè)大學(xué), 2012
Huo J. Effects and mechanism of inorganic sulfur on nitrate reducing in the leaves of non-heading Chinese cabbage [D]. Hebei: Agricultural University of Hebei, 2012 (in Chinese)
◆
TheToxicityEffectofSoilSolubleCopperonBokChoyandItsPredictionModel
Zhang Xiaoqing1, 2, Wei Dongpu2, Li Bo2, Li Jumei2, Chen Shibao2, Ma Yibing2, *
1. College of Forestry and Horticulture, Hubei University for Nationalities, Hubei 445000, China2. National Soil Fertility and Fertilizer Effects Long-term Monitoring Network, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
3 June 2014accepted11 August 2014
The phytotoxicity / bioavailability of copper (Cu) in soil mainly depends on its liable portion in soil solution and the soil solution properties. Determination of the phytotoxicity of soil soluble copper as a function of soil solution properties is helpful to develop soil environmental risk assessment guidance for China. The bioassay of bok choy plant growth was performed in 17 representative Chinese agricultural soils to investigate the phytotoxicity of soluble Cu based on soil pore water and CaCl2extraction in order to develop empirical models for predicting the soluble Cu phytotoxicity. When considering the toxicity thresholds for Cu in soil pore water, it was found that the effective concentrations that caused 10% biomass growth inhibition (EC10) and 50% inhibition (EC50) represented 14.7 to 14.6 fold differences between the maximum and minimum values. Similarly, theEC10andEC50values of Cu extracted by 0.01 mol·L-1CaCl2had 12.7 to 7.7 fold differences, respectively. These results suggested that the toxicity thresholds of soluble Cu were greatly affected by soil solution properties in a wide range of soils. Meanwhile, the relationships were developed between the important soil solution properties (dissolved organic carbon (DOC), pH, electrical conductivity (EC), S, Ca2+, Mg2+, K+and Na+) and the toxicity thresholds for Cu in a wide range of soils, which indicated that the soluble Cu toxicity on bok choy was predicted well by soil solution properties. Moreover, the multiple regression results showed that Mg, K and S in soil pore water were more important factors controlling Cu toxicity. Single S or K was found to explain 34% (EC10) or 26% (EC50) of variance of the toxicity thresholds, respectively. These quantitative relationships between soluble Cu toxicity and soil solution properties can be helpful for soluble Cu toxicity risk assessment of terrestrial environment.
soil; copper; phytotoxicity; bok choy
2014-06-03錄用日期:2014-08-11
1673-5897(2014)4-729-08
: X171.5
: A
馬義兵(1957—),男,博士,研究員,主要從事土壤中重金屬的形態(tài),有效性/毒害,及其可預(yù)測(cè)性模型研究,土壤重金屬環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)和治理,發(fā)表學(xué)術(shù)論文140多篇,其中英文70多篇。
國(guó)家自然科學(xué)基金資助項(xiàng)目(40971262);公益性行業(yè)(農(nóng)業(yè)科研)科研專項(xiàng)項(xiàng)目(200903015)
張曉晴(1984-),女,博士,研究方向?yàn)橥寥乐亟饘傩螒B(tài)和毒性,E-mail: friedchickenlg@126.com
*通訊作者(Corresponding author),E-mail:ybma@caas.ac.cn
10.7524/AJE.1673-5897.20140510005
張曉晴,韋東普,李 波,等. 土壤水溶態(tài)銅對(duì)小白菜的毒害效應(yīng)及其預(yù)測(cè)模型[J]. 生態(tài)毒理學(xué)報(bào), 2014, 9(4): 729-736
Zhang X Q, Wei D P, Li B, et al. The toxicity effect of soil soluble copper on bok choy and its prediction model [J]. Asian Journal of Ecotoxicology, 2014, 9(4): 729-736 (in Chinese)