国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

弱聯(lián)接玻色愛因斯坦凝聚體中勢(shì)壘寬度對(duì)非線性耦合及其動(dòng)力學(xué)的影響

2014-10-24 16:06:02劉新建李衛(wèi)東

劉新建++李衛(wèi)東

摘 要 利用解析與數(shù)值方法,對(duì)處于對(duì)稱雙勢(shì)阱中的玻色愛因斯坦凝聚體中,勢(shì)壘寬度對(duì)系統(tǒng)非線性耦合及其動(dòng)力學(xué)的影響進(jìn)行了研究.研究發(fā)現(xiàn)當(dāng)勢(shì)壘寬度較大時(shí),系統(tǒng)的線性耦合強(qiáng)度可迅速減小;在勢(shì)壘寬度大于03且非線性強(qiáng)度較大時(shí),線性耦合強(qiáng)度遠(yuǎn)小于非線性耦合項(xiàng),此時(shí)玻色約瑟夫森結(jié)模型的動(dòng)力學(xué)特性由非線性耦合強(qiáng)度來決定.同時(shí)對(duì)勢(shì)壘寬度對(duì)BEC約瑟夫森振蕩的周期和發(fā)生宏觀量子自俘獲時(shí)的非線性臨界值進(jìn)行了詳細(xì)的研究.

關(guān)鍵詞 對(duì)稱雙方勢(shì)阱;雙模近似; 玻色約瑟夫森結(jié); 宏觀量子自俘獲

中圖分類號(hào) O469文獻(xiàn)標(biāo)識(shí)碼 A文章編號(hào) 10002537(2014)03005305

自玻色愛因斯坦凝聚體(BECs)實(shí)現(xiàn)以來,理論[19]和實(shí)驗(yàn)[1011]都對(duì)其進(jìn)行了廣泛的研究.雙勢(shì)阱模型作為一個(gè)簡(jiǎn)單的物理模型,主要研究量子干涉效應(yīng)和約瑟夫森效應(yīng)的典型結(jié)構(gòu).早在1997年Smerzi等人就利用玻色約瑟夫森模型對(duì)雙勢(shì)阱中排斥相互作用原子的隧穿動(dòng)力學(xué)進(jìn)行了研究[1],并在理論上得出了一種非線性現(xiàn)象:宏觀量子自俘獲(MQST)[24].十年后在光晶格中人們觀察到了約瑟夫森振蕩[10],在雙勢(shì)阱中觀察到了約瑟夫森振蕩和宏觀量子自俘獲[11].這些工作都是基于用一束失諧的激光把一個(gè)磁諧振子勢(shì)從中一分為二,實(shí)現(xiàn)雙勢(shì)阱,這樣囚禁在其中的BECs就一分為二,適當(dāng)調(diào)節(jié)雙勢(shì)阱之間的勢(shì)壘高度就形成了兩團(tuán)弱耦合BECs.李衛(wèi)東等人指出在修正的玻色約瑟夫森結(jié)模型中不僅存在線性耦合項(xiàng)而且存在非線性耦合項(xiàng),并且發(fā)現(xiàn)在弱耦合,即滿足雙模近似的條件下,勢(shì)壘高度和寬度不發(fā)生變化的情況下隨著非線性增加非線性耦合項(xiàng)將達(dá)到甚至超過線性耦合項(xiàng),從而影響雙勢(shì)阱中BECs的動(dòng)力學(xué)性質(zhì)[78].我們知道在實(shí)驗(yàn)中可以通過調(diào)節(jié)Feshbach共振改變非線性強(qiáng)度[1011].同樣可以改變激光脈沖的強(qiáng)度來調(diào)節(jié)勢(shì)壘的高度和寬度,從而影響兩勢(shì)阱的耦合強(qiáng)度.本文在對(duì)稱雙方勢(shì)阱這一模型中,利用文獻(xiàn)[8]的方法,研究了勢(shì)壘寬度對(duì)對(duì)稱雙方勢(shì)阱中BECs非線性耦合強(qiáng)度及其動(dòng)力學(xué)影響.

1 非線性雙模近似模型

零溫下對(duì)稱雙方勢(shì)阱中弱相互作用的BECs的波函數(shù)滿足一維GP方程:

此式比方程(6)更簡(jiǎn)潔.但此式必須在弱耦合和強(qiáng)非線性同時(shí)滿足的條件下才能滿足.對(duì)于雙勢(shì)阱模型所采用的雙模近似在耦合強(qiáng)度越弱的情況下,近似程度越高;同時(shí)非線性強(qiáng)度可以通過調(diào)節(jié)Feshbach共振改變.所以上式能很好地描述雙模近似模型下強(qiáng)相互作用的量子氣體.

2 勢(shì)壘寬度對(duì)動(dòng)力學(xué)的影響

2.1 約瑟夫森振蕩

利用(6)式取勢(shì)壘高度V0=200,勢(shì)壘寬度分別取b=0.15,0.30,0.45.粒子布局?jǐn)?shù)差初始值z(mì)(0)=001,初始相位差為φ(0)=0計(jì)算出其粒子布局?jǐn)?shù)差隨時(shí)間變化圖像,及其對(duì)應(yīng)的相位差圖像.如圖1可知,粒子數(shù)布局?jǐn)?shù)差平均值為零,所以BECs進(jìn)行約瑟夫森振蕩.勢(shì)壘寬度增加,勢(shì)阱間耦合強(qiáng)度減弱,其他條件相同的情況下,勢(shì)壘寬度越大,雙勢(shì)阱系統(tǒng)中BECs做約瑟夫森振蕩的周期越長(zhǎng);相位差的變化周期與粒子數(shù)布局差周期規(guī)律一致.

2.2 宏觀量子自俘獲

同樣利用公式(6)取勢(shì)壘高度V0=200,初始相位差為φ(0)=0,且勢(shì)壘寬度分別取b=0.15,0.30,045.與小幅振蕩不同的是這里選取粒子布局?jǐn)?shù)差的初始值z(mì)(0)=0.1.計(jì)算出其粒子布局?jǐn)?shù)差隨時(shí)間變化圖像及其對(duì)應(yīng)的相位差圖像.由圖2可以看出不同的勢(shì)壘寬度在其他條件一致的情況下出現(xiàn)的振蕩形式不同;勢(shì)壘寬度越大的越容易出現(xiàn)粒子數(shù)布局?jǐn)?shù)差平均值為非零,即宏觀量子自俘獲,關(guān)于這一點(diǎn)文章后續(xù)還有說明.從圖2還可以看出當(dāng)粒子布局?jǐn)?shù)差進(jìn)入宏觀量子自俘獲相時(shí),左右勢(shì)阱中波函數(shù)相位差變成了相位的持續(xù)增加.

圖2 不同勢(shì)壘寬度和η=5,40時(shí),粒子布局?jǐn)?shù)差和相位差隨時(shí)間演化

Fig.2 The time evolution of particle population imbalance and phase difference for various barrier width and η=5,40

2.3 弱耦合強(qiáng)相互作用下的動(dòng)力學(xué)

當(dāng)勢(shì)壘的寬度較寬且非線性較強(qiáng)時(shí),對(duì)稱雙勢(shì)阱中BECs的隧穿動(dòng)力學(xué)可以用(8)式描述,選取勢(shì)壘寬度b=0.30,非線性強(qiáng)度為η=80,來比較保留線性耦合項(xiàng)和忽略線性耦合項(xiàng)對(duì)其動(dòng)力學(xué)的影響,驗(yàn)證簡(jiǎn)化式(8)的合理性.從圖3可以看出在上述條件下忽略線性耦合項(xiàng)對(duì)BECs的動(dòng)力學(xué)影響較小.因此可知(8)式能較好地刻畫強(qiáng)相互作用下BECs的動(dòng)力學(xué)行為.

圖3 φ(0)=0,z(0)分別為0.05,0.10時(shí)保留線性耦合項(xiàng)和忽略線性耦合項(xiàng)時(shí),粒子布局?jǐn)?shù)差和相位差隨時(shí)間演化對(duì)比

Fig.3 The contrast time evolution images of particle population imbalance and phase difference between keeping the linear coupling term and ignoring it when φ(0)=0, z(0)=0.05 and 0.10

2.4 勢(shì)壘寬度對(duì)宏觀量子自俘獲的非線性臨界值的影響

宏觀量子自俘獲現(xiàn)象是玻色約瑟夫森結(jié)模型中的一種新奇的量子現(xiàn)象.對(duì)于給定的模型中當(dāng)初始相位差φ(0)=0,對(duì)應(yīng)的初始粒子布局?jǐn)?shù)差臨界值為:

z(0)=2Λ2Λ(κ+χ)-4(κ+χ)2.(10)

圖4 不同勢(shì)壘寬度下初始粒子數(shù)差臨界值隨非線性強(qiáng)度變化圖像

Fig.4 The threshold of initial population imbalance varies with the change of nonlinear intensity under different barrier widths

因此改變勢(shì)壘寬度和非線性強(qiáng)度都會(huì)改變臨界值z(mì)(0).由圖4可知,隨著勢(shì)壘寬度越大,在相同的粒子數(shù)差初始情況下,動(dòng)力學(xué)從約瑟夫森振動(dòng)向宏觀量子自俘獲轉(zhuǎn)變的非線性值越小.同時(shí)發(fā)現(xiàn)勢(shì)壘較寬的模型出現(xiàn)自俘獲的區(qū)間較大.

3 結(jié)論

在對(duì)稱雙方勢(shì)阱中,利用修正的約瑟夫森模型,系統(tǒng)地研究了勢(shì)壘寬度對(duì)線性耦合項(xiàng)及其動(dòng)力學(xué)的影響.發(fā)現(xiàn)在b≥0.30弱耦合模型,強(qiáng)相互作用下,非線性耦合項(xiàng)將變成主要耦合項(xiàng),修正的約瑟夫森雙模動(dòng)力學(xué)模型(6)式可以簡(jiǎn)化為(8)式.同時(shí)發(fā)現(xiàn)在相同非線性強(qiáng)度下,勢(shì)壘越寬,約瑟夫森振蕩的周期越大,宏觀量子自俘獲的初始臨界值越小.通過計(jì)算發(fā)現(xiàn)在弱耦合強(qiáng)相互作用下簡(jiǎn)化的約瑟夫森模型能夠很好地描述雙方勢(shì)阱中BECs的動(dòng)力學(xué).

參考文獻(xiàn):

[1] SMERZI A, FANTONI S, GIOVANAZZI S, et al. Quantum coherent atomic tunnneling between two trapped BoseEinstein condensates[J]. Phys Rev Lett, 1998,79(25):49504953.

[2] RAGHAVAN S, SMERZI A, FANTONI S, et al. Transitions in coherent oscillations between two trapped BoseEinstein condensates[J]. Phys Rev A, 1999,60(3):620624.

[3] THIAGO F VOSCONDI, FURUYA K. Dynamics of a BoseEinstein condensate in a symmetric triplewell trap[J]. J Phys A: Math Theor, 2011,44(17):175301175303.

[4] MAHMUD K W, KUTZ J N, REINHARDT W P. BoseEinstein condensates in a onedimensional double square well: Analytical solutions of the nonlinear Schrdinger equation[J]. Phys Rev A, 2002,66(6):063607.

[5] LIN B, FU L B, YANG S P, et al. Josephson oscillation and transition to selftrapping for Bose Einstein condensates in a triplewell trap[J]. Phys Rev A, 2007,75(3):033601.

[6] CHENG J, JING H, YAN Y J. Spinmixing dynamics in a spin1 atomic condensate coupled with a molecular[J]. Phys Rev A, 2008,77(R)(6):061604.

[7] LI W D. Stationary solutions of GrossPitaevskii equations in a double square well[J]. Phys Rev A, 2006,74(6):063612.

[8] JIA X Y, LI W D, LIANG J Q. Nonliner correction to the boson Josephsonjunction model[J]. Phys Rev A, 2008,78(2):023613.

[9] XIE Q T, HAI W H. Coherent control of selftrapping of two weakly coupled BoseEinstein condensates[J]. Phys Rev A, 2007,75(1):015603.

[10] MAHMUD K W, PENG H, REINHARDT W P. Quantum phasespace picture of BoseEinstein condensates in a double well[J]. Phys Rev A, 2005,71(2):023615.

[11] ALBIEZ M, GATI R, FOLLING J, et al. Direct observation of tunneling and nonlinear selftrapping in a single bosonic josephson junction[J]. Phys Rev Lett, 2005,95(1):010402.

(編輯 陳笑梅)

因此改變勢(shì)壘寬度和非線性強(qiáng)度都會(huì)改變臨界值z(mì)(0).由圖4可知,隨著勢(shì)壘寬度越大,在相同的粒子數(shù)差初始情況下,動(dòng)力學(xué)從約瑟夫森振動(dòng)向宏觀量子自俘獲轉(zhuǎn)變的非線性值越小.同時(shí)發(fā)現(xiàn)勢(shì)壘較寬的模型出現(xiàn)自俘獲的區(qū)間較大.

3 結(jié)論

在對(duì)稱雙方勢(shì)阱中,利用修正的約瑟夫森模型,系統(tǒng)地研究了勢(shì)壘寬度對(duì)線性耦合項(xiàng)及其動(dòng)力學(xué)的影響.發(fā)現(xiàn)在b≥0.30弱耦合模型,強(qiáng)相互作用下,非線性耦合項(xiàng)將變成主要耦合項(xiàng),修正的約瑟夫森雙模動(dòng)力學(xué)模型(6)式可以簡(jiǎn)化為(8)式.同時(shí)發(fā)現(xiàn)在相同非線性強(qiáng)度下,勢(shì)壘越寬,約瑟夫森振蕩的周期越大,宏觀量子自俘獲的初始臨界值越小.通過計(jì)算發(fā)現(xiàn)在弱耦合強(qiáng)相互作用下簡(jiǎn)化的約瑟夫森模型能夠很好地描述雙方勢(shì)阱中BECs的動(dòng)力學(xué).

參考文獻(xiàn):

[1] SMERZI A, FANTONI S, GIOVANAZZI S, et al. Quantum coherent atomic tunnneling between two trapped BoseEinstein condensates[J]. Phys Rev Lett, 1998,79(25):49504953.

[2] RAGHAVAN S, SMERZI A, FANTONI S, et al. Transitions in coherent oscillations between two trapped BoseEinstein condensates[J]. Phys Rev A, 1999,60(3):620624.

[3] THIAGO F VOSCONDI, FURUYA K. Dynamics of a BoseEinstein condensate in a symmetric triplewell trap[J]. J Phys A: Math Theor, 2011,44(17):175301175303.

[4] MAHMUD K W, KUTZ J N, REINHARDT W P. BoseEinstein condensates in a onedimensional double square well: Analytical solutions of the nonlinear Schrdinger equation[J]. Phys Rev A, 2002,66(6):063607.

[5] LIN B, FU L B, YANG S P, et al. Josephson oscillation and transition to selftrapping for Bose Einstein condensates in a triplewell trap[J]. Phys Rev A, 2007,75(3):033601.

[6] CHENG J, JING H, YAN Y J. Spinmixing dynamics in a spin1 atomic condensate coupled with a molecular[J]. Phys Rev A, 2008,77(R)(6):061604.

[7] LI W D. Stationary solutions of GrossPitaevskii equations in a double square well[J]. Phys Rev A, 2006,74(6):063612.

[8] JIA X Y, LI W D, LIANG J Q. Nonliner correction to the boson Josephsonjunction model[J]. Phys Rev A, 2008,78(2):023613.

[9] XIE Q T, HAI W H. Coherent control of selftrapping of two weakly coupled BoseEinstein condensates[J]. Phys Rev A, 2007,75(1):015603.

[10] MAHMUD K W, PENG H, REINHARDT W P. Quantum phasespace picture of BoseEinstein condensates in a double well[J]. Phys Rev A, 2005,71(2):023615.

[11] ALBIEZ M, GATI R, FOLLING J, et al. Direct observation of tunneling and nonlinear selftrapping in a single bosonic josephson junction[J]. Phys Rev Lett, 2005,95(1):010402.

(編輯 陳笑梅)

因此改變勢(shì)壘寬度和非線性強(qiáng)度都會(huì)改變臨界值z(mì)(0).由圖4可知,隨著勢(shì)壘寬度越大,在相同的粒子數(shù)差初始情況下,動(dòng)力學(xué)從約瑟夫森振動(dòng)向宏觀量子自俘獲轉(zhuǎn)變的非線性值越小.同時(shí)發(fā)現(xiàn)勢(shì)壘較寬的模型出現(xiàn)自俘獲的區(qū)間較大.

3 結(jié)論

在對(duì)稱雙方勢(shì)阱中,利用修正的約瑟夫森模型,系統(tǒng)地研究了勢(shì)壘寬度對(duì)線性耦合項(xiàng)及其動(dòng)力學(xué)的影響.發(fā)現(xiàn)在b≥0.30弱耦合模型,強(qiáng)相互作用下,非線性耦合項(xiàng)將變成主要耦合項(xiàng),修正的約瑟夫森雙模動(dòng)力學(xué)模型(6)式可以簡(jiǎn)化為(8)式.同時(shí)發(fā)現(xiàn)在相同非線性強(qiáng)度下,勢(shì)壘越寬,約瑟夫森振蕩的周期越大,宏觀量子自俘獲的初始臨界值越小.通過計(jì)算發(fā)現(xiàn)在弱耦合強(qiáng)相互作用下簡(jiǎn)化的約瑟夫森模型能夠很好地描述雙方勢(shì)阱中BECs的動(dòng)力學(xué).

參考文獻(xiàn):

[1] SMERZI A, FANTONI S, GIOVANAZZI S, et al. Quantum coherent atomic tunnneling between two trapped BoseEinstein condensates[J]. Phys Rev Lett, 1998,79(25):49504953.

[2] RAGHAVAN S, SMERZI A, FANTONI S, et al. Transitions in coherent oscillations between two trapped BoseEinstein condensates[J]. Phys Rev A, 1999,60(3):620624.

[3] THIAGO F VOSCONDI, FURUYA K. Dynamics of a BoseEinstein condensate in a symmetric triplewell trap[J]. J Phys A: Math Theor, 2011,44(17):175301175303.

[4] MAHMUD K W, KUTZ J N, REINHARDT W P. BoseEinstein condensates in a onedimensional double square well: Analytical solutions of the nonlinear Schrdinger equation[J]. Phys Rev A, 2002,66(6):063607.

[5] LIN B, FU L B, YANG S P, et al. Josephson oscillation and transition to selftrapping for Bose Einstein condensates in a triplewell trap[J]. Phys Rev A, 2007,75(3):033601.

[6] CHENG J, JING H, YAN Y J. Spinmixing dynamics in a spin1 atomic condensate coupled with a molecular[J]. Phys Rev A, 2008,77(R)(6):061604.

[7] LI W D. Stationary solutions of GrossPitaevskii equations in a double square well[J]. Phys Rev A, 2006,74(6):063612.

[8] JIA X Y, LI W D, LIANG J Q. Nonliner correction to the boson Josephsonjunction model[J]. Phys Rev A, 2008,78(2):023613.

[9] XIE Q T, HAI W H. Coherent control of selftrapping of two weakly coupled BoseEinstein condensates[J]. Phys Rev A, 2007,75(1):015603.

[10] MAHMUD K W, PENG H, REINHARDT W P. Quantum phasespace picture of BoseEinstein condensates in a double well[J]. Phys Rev A, 2005,71(2):023615.

[11] ALBIEZ M, GATI R, FOLLING J, et al. Direct observation of tunneling and nonlinear selftrapping in a single bosonic josephson junction[J]. Phys Rev Lett, 2005,95(1):010402.

(編輯 陳笑梅)

琼结县| 天气| 南江县| 富锦市| 勐海县| 苍梧县| 桂平市| 兴国县| 通辽市| 弥渡县| 辽中县| 林周县| 新昌县| 西充县| 乌兰浩特市| 扎赉特旗| 郯城县| 叶城县| 湘潭市| 喀什市| 徐汇区| 吉水县| 巨野县| 庆安县| 永新县| 佳木斯市| 凌海市| 屏东市| 巴里| 庆安县| 盖州市| 清水县| 德阳市| 常宁市| 固原市| 枝江市| 新宾| 莱州市| 蓝田县| 大兴区| 霍林郭勒市|