国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

玉米ZmCIPK基因的克隆及表達(dá)特性

2014-10-28 23:25:53袁德梽周濃
湖北農(nóng)業(yè)科學(xué) 2014年15期
關(guān)鍵詞:逆境玉米

袁德梽+周濃

摘要:根據(jù)玉米(Zea mays L.)CIPK基因EST序列設(shè)計(jì)引物,采用RT-PCR技術(shù)從玉米中克隆了一個ZmCIPK基因。結(jié)果表明,ZmCIPK基因cDNA全長1 956 bp,5-非編碼區(qū)長62 bp, 3-非編碼區(qū)長337 bp, 編碼區(qū)長1 557 bp,編碼518個氨基酸,預(yù)測分子量為57.18 kDa,等電點(diǎn)為8.94。氨基酸同源性分析表明,ZmCIPK與高粱的CIPK蛋白質(zhì)同源性較高。實(shí)時定量PCR檢測表明,ZmCIPK基因的表達(dá)受干旱、鹽脅迫和高溫誘導(dǎo),說明玉米ZmCIPK基因可能參與玉米對逆境脅迫的應(yīng)答。

關(guān)鍵詞:玉米(Zea mays L.);ZmCIPK基因;表達(dá)模式;逆境

中圖分類號:Q786 文獻(xiàn)標(biāo)識碼:A 文章編號:0439-8114(2014)15-3665-04

Cloning and Expression Characteristics of Maize ZmCIPK Gene

YUAN De-zhi1,ZHOU Nong2

(1.Chongqing Three Gorges Vocational College, Chongqing 404155, China;

2.College of Life Science & Engineering, Chongqing Three Gorges University, Chongqing 404000, China)

Abstract: Based on EST sequence of maize(Zea mays L.) CIPK gene, the primers were designed. RT-PCR method was used to clone ZmCIPK gene from maize. The results showed that the full length of ZmCIPK gene cDNA was 1 956 bp, including a 62 bp 5′-UTR, a 337 bp 3′- UTR and an ORF of 1 557 bp. This cDNA sequence encoded a polypepide of 518 amino acid residues with a predicted molecular weight of 57.18 kDa and a basic isoelectric point of 8.94. The amino acid sequence demonstrated that ZmCIPK had a high homology with CIPK from Sorghum bicolor. Results of Quantitative real-time PCR showed that the ZmCIPK gene expressed was induced by drought, high salinity and high temperature. The expression patterns of ZmCIPK under different stresses indicated that this gene might be involved in regulating response of maize to stress.

Key words:maize(Zea mays L.);ZmCIPK gene; expression patterns; stress

收稿日期:2014-01-10

基金項(xiàng)目:重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJ131902)

作者簡介:袁德梽(1968-),男,重慶萬州人,副教授,主要從事高職高專教育管理與教學(xué)研究,(電話)18971394585(電子信箱)

610406654@qq.com。

真核細(xì)胞中鈣(Ca2+)是普遍存在的第二信使,在信號傳導(dǎo)過程中具有重要的作用[1]。Ca2+信號通過Ca2+結(jié)合蛋白進(jìn)行傳遞。目前,存在3類Ca2+結(jié)合蛋白:鈣調(diào)素[2]及類鈣調(diào)素蛋白[3](Calmodulin and calmodulin-like proteins)、鈣依賴性蛋白激酶[4](Ca2+-dependent protein kinases,CDPK)和類鈣調(diào)磷酸酶B蛋白[5](Calcineurin B-like protein,CBLs)。CBL蛋白自身不具有功能,必須與CIPK(CBL-interacting protein kinase)結(jié)合才具有功能。在植物中,CIPK是由多基因家族編碼的一類具有絲氨酸/蘇氨酸結(jié)合位點(diǎn)的蛋白激酶[1]。前人研究發(fā)現(xiàn)擬南芥有25個CIPK基因[6],水稻有30個CIPK基因[7]。CIPK在植物逆境脅迫應(yīng)答中具有重要的功能。例如,過量表達(dá)玉米ZmCIPK16可以提高轉(zhuǎn)基因擬南芥的耐鹽能力[8]。

玉米(Zea mays L.)是重要的糧食作物和飼料來源。干旱、高鹽和極端溫度等逆境脅迫嚴(yán)重影響玉米的分布和產(chǎn)量。通過轉(zhuǎn)基因的方法,將逆境相關(guān)基因進(jìn)行轉(zhuǎn)化,是提高玉米抗逆性的一種有效方法。本研究利用RT-PCR方法從玉米中克隆了1個ZmCIPK基因,并利用實(shí)時定量PCR方法分析了ZmCIPK基因在不同逆境脅迫下的表達(dá)特性,可為進(jìn)一步分析ZmCIPK基因在逆境脅迫中的功能提供線索。

1 材料與方法

1.1 材料

供試材料為玉米品種旱玉5號。

1.2 試驗(yàn)儀器和藥劑

DNA Marker、RNA提取試劑盒、凝膠回收試劑盒、大腸桿菌DH5a、感受態(tài)購于天根生化科技北京有限公司,LA-Taq酶、pMD18-T載體、2×SYBR Premix Ex Taq購于寶生物工程大連有限公司。endprint

1.3 方法

1.3.1 玉米材料處理 玉米種子經(jīng)0.1%HgCl2消毒15 min,并用蒸餾水沖洗3遍,播種于裝有蛭石的盒子中,在培養(yǎng)箱中以28 ℃,16 h光/8 h暗的條件培養(yǎng)至三葉期。對三葉期的玉米分別進(jìn)行脫水干旱脅迫、300 mmol/L NaCl脅迫和熱脅迫(45 ℃)處理,分別取處理0、2、4、6、12和24 h 的葉片,立即經(jīng)液氮冷凍,-80 ℃保存,供提取總RNA。

1.3.2 RNA提取及cDNA第一鏈的合成 根據(jù)RNA提取試劑TRIzol的操作說明書提取不同脅迫處理的玉米葉片總RNA,總RNA用DNaseⅠ處理,除去基因組DNA。按照反轉(zhuǎn)錄試劑盒的操作步驟合成cDNA第一鏈,產(chǎn)物作為基因克隆和熒光定量PCR的模板。

1.3.3 ZmCIPK基因全長cDNA的克隆及分析 根據(jù)ZmCIPK基因拼接序列設(shè)計(jì)1對特異引物, CIPK-F:(5'-AGCTGCCTGCCTCCGCTGCCGGCCGTGC-3')和CIPK-R:(5'-AGCATGATGGTTAATCGAAATATTACGAA-3'),以玉米葉片cDNA 第一鏈為模板,擴(kuò)增基因全長cDNA。50 μL體系中含cDNA(20 ng/μL)1 μL,2×GC-PCR buffer 25 μL,dNTP(10 mmol/L)2 μL,引物(25 μmol/L)1 μL 和LA-Taq酶(5 U/μL)0.5 μL,ddH2O補(bǔ)足50 μL。PCR程序?yàn)椋?4 ℃預(yù)變性4 min;94 ℃ 30 s,60 ℃ 45 s,72 ℃延伸2 min,共35個循環(huán);72 ℃延伸10 min。PCR 產(chǎn)物置于1.2%瓊脂糖中電泳,用紫外凝膠成像儀觀察結(jié)果。采用凝膠回收試劑盒回收目的片段,回收產(chǎn)物與pMD18-T載體連接后轉(zhuǎn)化E.coli DH5α 感受態(tài)細(xì)胞,涂于含有氨芐青霉素的LB 固體培養(yǎng)基上,過夜培養(yǎng),挑取白色克隆,培養(yǎng)12 h 后,進(jìn)行菌液PCR檢測,陽性克隆送北京奧科鼎盛生物科技有限公司測序。

利用DNAMAN軟件和BLAST 檢索GenBank 進(jìn)行多重序列比對和同源性分析。

1.3.4 實(shí)時定量PCR 依據(jù)qRT-PCR引物設(shè)計(jì)要求,使用Premier 5.0 設(shè)計(jì)ZmCIPK 特異性引物ZmC-qF:(5'-GCTCTCTACCACGTCCAGCAAGTC-3')和ZmC-qR:(5′- CCTCCAATTTGGTTATGATATCTGAC-3′),擴(kuò)增長度為150 bp。玉米內(nèi)參基因GAPDH(Glyceraldehyde -3-phosphate dehydrogenase,甘油醛-3-磷酸脫氫酶)用于對不同樣品cDNA 模板的均一化,所用引物為5′-CCCTTCATCACCACGGACTAC-3′和5′-AACCTTCTTGGCACCAC CCT-3′。20 μL PCR 擴(kuò)增體系為10 μL 2×SYBR Premix Ex Taq,正反向引物各0.2 μmol/L,模板cDNA 50~100 ng/μL。采用ABI7000型熒光定量PCR儀進(jìn)行實(shí)時定量PCR分析,每個樣品3次重復(fù)。PCR 程序?yàn)?5 ℃ 3 min, 95 ℃ 5 s,59 ℃ 20 s,72 ℃ 15 s,共45個循環(huán);采用2-△△CT方法對數(shù)據(jù)進(jìn)行分析。試驗(yàn)進(jìn)行3次生物學(xué)重復(fù)。

2 結(jié)果與分析

2.1 ZmCIPK基因的克隆及分析

根據(jù)拼接序列,設(shè)計(jì)1對引物,采用RT-PCR方法從玉米葉片中克隆了1個ZmCIPK基因。ZmCIPK全長cDNA為1 956 bp,5-非編碼(UTR)區(qū)長62 bp,3-UTR長337 bp,編碼區(qū)長1 557 bp,編碼518個氨基酸(圖1)。根據(jù)ZmCIPK推測的氨基酸序列預(yù)測分子量為57.18 kDa,等電點(diǎn)為8.94。ZmCIPK蛋白的N端區(qū)包含1個激酶結(jié)構(gòu)域,在C端包含1個CIPK家族中保守的NAF調(diào)節(jié)結(jié)構(gòu)域(圖2)。

同源性分析表明,ZmCIPK蛋白與高粱、小麥、水稻和大麥中的CIPK蛋白高度同源,一致性達(dá)76%~96%,其中與高粱CIPK蛋白的一致性達(dá)到95%(圖3)。

2.2 ZmCIPK基因的表達(dá)特性

為了分析ZmCIPK基因的功能,采用實(shí)時定量PCR方法分析ZmCIPK基因在不同非生物脅迫下的表達(dá)特性。如圖4、圖5、圖6所示,在PEG脅迫下,ZmCIPK基因的表達(dá)在脅迫2 h后受誘導(dǎo)上調(diào)表達(dá),在12 h達(dá)到最大值,然后表達(dá)量降低。在NaCl脅迫下,ZmCIPK基因的表達(dá)在脅迫2 h后受誘導(dǎo)上調(diào)表達(dá),然后表達(dá)量降低。在高溫脅迫下,ZmCIPK基因的表達(dá)在脅迫2 h后受誘導(dǎo)上調(diào)表達(dá),在處理6 h達(dá)到最大值,隨后表達(dá)量下降。以上這些結(jié)果表明,ZmCIPK基因的表達(dá)受高鹽和高溫誘導(dǎo),說明ZmCIPK基因參與玉米對干旱、高鹽和高溫脅迫的誘導(dǎo),可能在玉米對逆境脅迫忍耐中發(fā)揮作用。

3 討論

干旱、鹽堿和極端溫度等逆境脅迫嚴(yán)重影響植物的生長和發(fā)育進(jìn)程[9]。植物在進(jìn)化的過程中,為了抵抗不利的外界環(huán)境條件,在生理、細(xì)胞和分子水平上形成了多種防御機(jī)制。植物通過改變大量基因的表達(dá)來應(yīng)答各種逆境脅迫。這些表達(dá)變化的基因可以分為兩類,一類為細(xì)胞代謝和抗逆基因;另一類為調(diào)控基因,包括轉(zhuǎn)錄因子及蛋白激酶[10]。前人研究表明,逆境脅迫誘導(dǎo)CIPKs基因的表達(dá),這些基因在植物應(yīng)答逆境脅迫的信號傳導(dǎo)過程中具有重要的作用[2]。本研究克隆了1個玉米ZmCIPK基因并發(fā)現(xiàn)在干旱、高鹽和高溫脅迫條件下,玉米ZmCIPK基因的表達(dá)受誘導(dǎo),說明ZmCIPK基因可能在玉米對干旱、高鹽和高溫脅迫忍耐中發(fā)揮作用。下一步將構(gòu)建ZmCIPK基因植物表達(dá)載體,轉(zhuǎn)化到玉米中,對該基因在逆境脅迫中的功能進(jìn)行進(jìn)一步分析。

參考文獻(xiàn):endprint

[1] LUAN S.The CBL-CIPK network in plant calcium signaling[J]. Trends Plant Sci,2009,14(1):37-42.

[2] YANG T,POOVAIAH B W.Calcium/calmodulin-mediated signal network in plant[J].Trends Plant Sci, 2003,8(10): 505-512.

[3] JEONG J C, SHIN D, LEE J, et al. Isolation and characterization of a novel calcium/calmodulin -dependent protein kinase, AtCK, from Arabidopsis[J]. Mol Cells, 2007, 24(2):276-282.

[4] HARMON A C,GRIBSKOV M, HARPER J F. CDPKs: A kinase for every Ca2+ signal[J]. Trends Plant Sci,2000,5(4): 154-159.

[5] LUAN S, KUDLA J,RODRIGUEZ-CONCEPCION M,et al. Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants[J]. Plant Cell, 2002,14(Suppl):389-400.

[6] ALBRECHT V, RITZ O,LINDER S,et al.The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinase[J]. EMBO J, 2001,20(5):1051-1063.

[7] KOLUKISAOGLU U,WEINL S,BLAZEVIC D,et al.Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J].Plant Physiol,2004,134(1):43-58.

[8] ZHAO J F,SUN Z F, ZHENG J,et al.Cloning and characterization of a novel CBL-interacting protein kinase from maize[J]. Plant Mol Biol, 2009, 69(6):661-674.

[9] CHEN T H,MURATA N.Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes[J]. Curr Opin Plant Biol,2002,5(3):250-257.

[10] CHEONG Y H,MOON B C,KIM J K,et al.BWMK1,a rice itogen-activated protein kinase,locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor[J].Plant Physiol,2003,13(4):1961-1972.endprint

[1] LUAN S.The CBL-CIPK network in plant calcium signaling[J]. Trends Plant Sci,2009,14(1):37-42.

[2] YANG T,POOVAIAH B W.Calcium/calmodulin-mediated signal network in plant[J].Trends Plant Sci, 2003,8(10): 505-512.

[3] JEONG J C, SHIN D, LEE J, et al. Isolation and characterization of a novel calcium/calmodulin -dependent protein kinase, AtCK, from Arabidopsis[J]. Mol Cells, 2007, 24(2):276-282.

[4] HARMON A C,GRIBSKOV M, HARPER J F. CDPKs: A kinase for every Ca2+ signal[J]. Trends Plant Sci,2000,5(4): 154-159.

[5] LUAN S, KUDLA J,RODRIGUEZ-CONCEPCION M,et al. Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants[J]. Plant Cell, 2002,14(Suppl):389-400.

[6] ALBRECHT V, RITZ O,LINDER S,et al.The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinase[J]. EMBO J, 2001,20(5):1051-1063.

[7] KOLUKISAOGLU U,WEINL S,BLAZEVIC D,et al.Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J].Plant Physiol,2004,134(1):43-58.

[8] ZHAO J F,SUN Z F, ZHENG J,et al.Cloning and characterization of a novel CBL-interacting protein kinase from maize[J]. Plant Mol Biol, 2009, 69(6):661-674.

[9] CHEN T H,MURATA N.Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes[J]. Curr Opin Plant Biol,2002,5(3):250-257.

[10] CHEONG Y H,MOON B C,KIM J K,et al.BWMK1,a rice itogen-activated protein kinase,locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor[J].Plant Physiol,2003,13(4):1961-1972.endprint

[1] LUAN S.The CBL-CIPK network in plant calcium signaling[J]. Trends Plant Sci,2009,14(1):37-42.

[2] YANG T,POOVAIAH B W.Calcium/calmodulin-mediated signal network in plant[J].Trends Plant Sci, 2003,8(10): 505-512.

[3] JEONG J C, SHIN D, LEE J, et al. Isolation and characterization of a novel calcium/calmodulin -dependent protein kinase, AtCK, from Arabidopsis[J]. Mol Cells, 2007, 24(2):276-282.

[4] HARMON A C,GRIBSKOV M, HARPER J F. CDPKs: A kinase for every Ca2+ signal[J]. Trends Plant Sci,2000,5(4): 154-159.

[5] LUAN S, KUDLA J,RODRIGUEZ-CONCEPCION M,et al. Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants[J]. Plant Cell, 2002,14(Suppl):389-400.

[6] ALBRECHT V, RITZ O,LINDER S,et al.The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinase[J]. EMBO J, 2001,20(5):1051-1063.

[7] KOLUKISAOGLU U,WEINL S,BLAZEVIC D,et al.Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J].Plant Physiol,2004,134(1):43-58.

[8] ZHAO J F,SUN Z F, ZHENG J,et al.Cloning and characterization of a novel CBL-interacting protein kinase from maize[J]. Plant Mol Biol, 2009, 69(6):661-674.

[9] CHEN T H,MURATA N.Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes[J]. Curr Opin Plant Biol,2002,5(3):250-257.

[10] CHEONG Y H,MOON B C,KIM J K,et al.BWMK1,a rice itogen-activated protein kinase,locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor[J].Plant Physiol,2003,13(4):1961-1972.endprint

猜你喜歡
逆境玉米
超越逆境
做人與處世(2022年6期)2022-05-26 10:26:35
How adversity makes you stronger逆境如何讓你更強(qiáng)大
收玉米啦!
玉米適當(dāng)晚收好處多
我的玉米送給你
逆境中的哲學(xué)
玉米
大灰狼(2018年6期)2018-07-23 16:52:44
最飽滿的玉米
完形填空Ⅳ
七穗玉米
小說月刊(2014年12期)2014-04-19 02:40:11
宁波市| 手机| 东辽县| 株洲县| 湖北省| 大同县| 嘉义市| 鄂州市| 清镇市| 滦平县| 博爱县| 北海市| 华蓥市| 吉木萨尔县| 阿瓦提县| 玉屏| 延边| 宁阳县| 达孜县| 科技| 威信县| 巴南区| 大余县| 论坛| 秭归县| 吕梁市| 延长县| 邳州市| 兴文县| 天镇县| 鹤峰县| 晋城| 广东省| 塘沽区| 衡东县| 隆德县| 宝应县| 龙州县| 商洛市| 祥云县| 日土县|