朱小龍等
摘要: 針對(duì)浮式液化天然氣(Floating Liquefied Natural Gas,F(xiàn)LNG)船大型儲(chǔ)艙內(nèi)的液體晃蕩問題,分別以薄膜型儲(chǔ)艙的1∶20模型及原型為研究對(duì)象,采用CFD仿真方法分析百年一遇生存海況下液艙內(nèi)晃蕩載荷的基本規(guī)律和危險(xiǎn)工況.結(jié)果表明:在真實(shí)海況下,現(xiàn)有FLNG儲(chǔ)艙設(shè)計(jì)中的晃蕩沖擊載荷主要來源于船體縱向運(yùn)動(dòng),可能出現(xiàn)的最大沖擊載荷約為0.4 MPa,主要發(fā)生在縱艙壁與橫向隔水艙的拐角位置,危險(xiǎn)載液率為20%~30%及90%.
關(guān)鍵詞: 浮式液化天然氣船; 儲(chǔ)艙; 晃蕩; 危險(xiǎn)載液率; CFD
中圖分類號(hào): TE88;TB115.1文獻(xiàn)標(biāo)志碼: B
Abstract: As to the issue of liquid sloshing in the large tank of Floating Liquefied Natural Gas(FLNG) ship, the numerical models for 1∶20 model and prototype of a membrane tank are taken as the research objects, and the CFD simulation method is used to analyze the sloshing load and dangerous conditions in liquid tank under the survival sea condition in ahundredyear return period. The results indicate that, the impact load of sloshing in the current FLNG tank design is ascribed to the longitudinal motion of ship body, the possible maximum impact load is 0.4 MPa, the maximum impact load mainly occurs on the corners of the longitudinal wall and the horizontal bulkhead, and the risky filling rate is 20%~30% and 90%.
Key words: floating liquefied natural gas ship; tank; sloshing; risky filling rate; CFD
引言
隨著海洋油氣資源開發(fā)的快速發(fā)展,浮式液化天然氣船(Floating Liquefied Natural Gas, FLNG)成為該領(lǐng)域內(nèi)最前沿的設(shè)計(jì)研究.與液化氣運(yùn)輸船不同,F(xiàn)LNG船在指定海域內(nèi)長期定點(diǎn)作業(yè),且其儲(chǔ)艙內(nèi)部分裝載的情況時(shí)有發(fā)生,因此晃蕩載荷成為FLNG船儲(chǔ)艙設(shè)計(jì)的關(guān)鍵問題之一.由于晃蕩問題的非線性和隨機(jī)性,理論方法對(duì)晃蕩載荷的研究能力有限.對(duì)于三維不規(guī)則激勵(lì)下艙內(nèi)液體晃蕩載荷的研究,目前主要通過室內(nèi)小比例模型試驗(yàn)與數(shù)值計(jì)算相結(jié)合的方法,并利用相似律評(píng)估原型液艙的晃蕩載荷.CFD仿真技術(shù)是室內(nèi)模型試驗(yàn)的有效輔助手段,廣泛應(yīng)用于晃蕩問題研究[15],對(duì)于新型儲(chǔ)艙設(shè)計(jì)尤為重要.本文采用FLUENT,基于有限體積法(液面追蹤采用VOF法),結(jié)合1∶20液艙模型的晃蕩試驗(yàn),對(duì)原型液艙在真實(shí)海況激勵(lì)下的晃蕩載荷進(jìn)行評(píng)估和預(yù)測.
1數(shù)值方法
2數(shù)值方法驗(yàn)證算例
為驗(yàn)證數(shù)值方法的有效性,分別采用CFD方法和室內(nèi)模型試驗(yàn)方法對(duì)1∶20三維液艙模型簡諧激勵(lì)下的晃蕩載荷進(jìn)行對(duì)比分析,兩者的液艙尺寸、激勵(lì)方式和監(jiān)測位置均保持一致.
2.1液艙模型
試驗(yàn)所用液艙模型材料為有機(jī)玻璃,主要集中于晃蕩載荷的基本規(guī)律研究,不考慮水彈性力學(xué),因此壁厚應(yīng)足夠大以避免艙壁變形引起流場變化.模型內(nèi)部構(gòu)型和關(guān)鍵尺寸參數(shù)見圖2和表2.
2.3結(jié)果對(duì)比
2.3.1自由液面變化規(guī)律對(duì)比
自由液面的變化規(guī)律是流體流場運(yùn)動(dòng)的重要特征之一.流體的自由液面不同,整個(gè)流場以及流場相關(guān)的各物理量也不同.因此,通過比較試驗(yàn)與數(shù)值模擬在同一相位的自由液面,對(duì)數(shù)值計(jì)算的正確性進(jìn)行初步檢驗(yàn).由于試驗(yàn)采用的工況接近共振,因此在晃蕩達(dá)到穩(wěn)態(tài)后沖擊現(xiàn)象比較有規(guī)律,兩者同一相位的自由液面對(duì)比見圖3,可知,數(shù)值模擬能較好地模擬晃蕩沖擊的自由液面變化,但模擬碎波和濺射現(xiàn)象的能力有待提高.
2.3.2載荷對(duì)比
試驗(yàn)和數(shù)值在自由液面位置0.2h處壓力監(jiān)測點(diǎn)得到的壓力時(shí)程曲線見圖4.(a)相位1數(shù)值模擬(b)相位1試驗(yàn)(c)相位2數(shù)值模擬(d)相位2試驗(yàn)圖 3自由液面對(duì)比
由圖8可知,液深在0.3h以下時(shí),晃蕩載荷主要為動(dòng)壓力;液深在0.4h以上時(shí)主要為靜壓;在0.2h~0.3h液深時(shí)的晃蕩問題最為嚴(yán)重,應(yīng)重點(diǎn)考慮;0.9h液深附近由于自由液面較高,容易出現(xiàn)沖頂,在液艙設(shè)計(jì)時(shí)也應(yīng)進(jìn)行考慮.
4結(jié)論及今后工作
針對(duì)FLNG船三維薄膜型液艙的晃蕩問題,利用FLUENT進(jìn)行模型和原型液艙、簡諧激勵(lì)和真實(shí)激勵(lì)的數(shù)值仿真,結(jié)論如下:
(1)在真實(shí)海況下,現(xiàn)有FLNG船液艙中的晃蕩問題主要由船體縱向運(yùn)動(dòng)引起,船體橫向運(yùn)動(dòng)的影響相對(duì)較小.
(2)液艙內(nèi)縱向晃蕩問題嚴(yán)重,應(yīng)適當(dāng)調(diào)整液艙長度.
(3)最大晃蕩載荷約為0.4 MPa,主要出現(xiàn)在橫縱艙壁的拐角部位.
(4)載液率為20%~30%和90%時(shí)晃蕩問題嚴(yán)重,在液艙設(shè)計(jì)中應(yīng)重點(diǎn)關(guān)注.
本文所做的工作還不夠全面,下一步需對(duì)液艙尺寸參數(shù)與晃蕩載荷關(guān)系開展研究,從而從晃蕩載荷的角度對(duì)液艙設(shè)計(jì)提出有效建議.參考文獻(xiàn):
[1]祁江濤. 基于VOF法的液艙晃蕩數(shù)值模擬[D]. 無錫: 中船重工第七○二研究所, 2007: 3233.
[2]沈猛. 基于改進(jìn)VOF法的棱形液艙液體晃蕩分析及應(yīng)用[D]. 上海: 上海交通大學(xué), 2008.
[3]THIAGARAJAN K P, RAKSHIT D, REPALLE N. The airwater sloshing problem: Fundamental analysis and parametric studies on excitation and fill levels[J]. Ocean Eng, 2011, 38(2/3): 498508.
[4]HIRT C W, NICHOLS B D. Volume of Fluid(VOF) method for the dynamics of free boundaries[J]. J Comput Phys, 1981(39): 201225.
[5]MILKELIS N E, MILLER J K. Sloshing in partially filled liquid tanks and its effect on ship motions, numerical simulations and experimental verification[J]. Trans R Inst Naval Architect, 1984(126): 267277.
[6]王福軍. 計(jì)算流體動(dòng)力學(xué)分析: CFD軟件原理與應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2004.
[7]朱仁慶, 吳有生. 液艙內(nèi)流體晃蕩特性數(shù)值研究[J]. 中國造船, 2002, 43(2): 1521.
ZHU Renqing, WU Yousheng. A numerical study on sloshing phenomena in a liquid tank[J]. Shipbuilding China, 2002, 43(2): 1521.
[8]朱仁慶, 侯玲. LNG船液艙晃蕩數(shù)值模擬[J]. 江蘇科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2010, 24(1): 16.
ZHU Renqing, HOU Ling. Numerical simulation of liquid sloshing in the tanks of LNG carrier[J]. J Jiangsu Univ Sci & Technol: Nat Sci, 2010, 24(1): 16.
[9]劉楨兵. 基于VOF法的液艙晃蕩數(shù)值模擬及載荷計(jì)算[J]. 重慶理工大學(xué)學(xué)報(bào): 自然科學(xué)版, 2011, 25(3): 2429.
LIU Zhenbing. Numerical simulation of liquid tank sloshing and pressure calculation based on volume of fluid method[J]. J Chongqing Inst Technol: Nat Sci, 2011, 25(3): 2429.(編輯武曉英)
[1]祁江濤. 基于VOF法的液艙晃蕩數(shù)值模擬[D]. 無錫: 中船重工第七○二研究所, 2007: 3233.
[2]沈猛. 基于改進(jìn)VOF法的棱形液艙液體晃蕩分析及應(yīng)用[D]. 上海: 上海交通大學(xué), 2008.
[3]THIAGARAJAN K P, RAKSHIT D, REPALLE N. The airwater sloshing problem: Fundamental analysis and parametric studies on excitation and fill levels[J]. Ocean Eng, 2011, 38(2/3): 498508.
[4]HIRT C W, NICHOLS B D. Volume of Fluid(VOF) method for the dynamics of free boundaries[J]. J Comput Phys, 1981(39): 201225.
[5]MILKELIS N E, MILLER J K. Sloshing in partially filled liquid tanks and its effect on ship motions, numerical simulations and experimental verification[J]. Trans R Inst Naval Architect, 1984(126): 267277.
[6]王福軍. 計(jì)算流體動(dòng)力學(xué)分析: CFD軟件原理與應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2004.
[7]朱仁慶, 吳有生. 液艙內(nèi)流體晃蕩特性數(shù)值研究[J]. 中國造船, 2002, 43(2): 1521.
ZHU Renqing, WU Yousheng. A numerical study on sloshing phenomena in a liquid tank[J]. Shipbuilding China, 2002, 43(2): 1521.
[8]朱仁慶, 侯玲. LNG船液艙晃蕩數(shù)值模擬[J]. 江蘇科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2010, 24(1): 16.
ZHU Renqing, HOU Ling. Numerical simulation of liquid sloshing in the tanks of LNG carrier[J]. J Jiangsu Univ Sci & Technol: Nat Sci, 2010, 24(1): 16.
[9]劉楨兵. 基于VOF法的液艙晃蕩數(shù)值模擬及載荷計(jì)算[J]. 重慶理工大學(xué)學(xué)報(bào): 自然科學(xué)版, 2011, 25(3): 2429.
LIU Zhenbing. Numerical simulation of liquid tank sloshing and pressure calculation based on volume of fluid method[J]. J Chongqing Inst Technol: Nat Sci, 2011, 25(3): 2429.(編輯武曉英)
[1]祁江濤. 基于VOF法的液艙晃蕩數(shù)值模擬[D]. 無錫: 中船重工第七○二研究所, 2007: 3233.
[2]沈猛. 基于改進(jìn)VOF法的棱形液艙液體晃蕩分析及應(yīng)用[D]. 上海: 上海交通大學(xué), 2008.
[3]THIAGARAJAN K P, RAKSHIT D, REPALLE N. The airwater sloshing problem: Fundamental analysis and parametric studies on excitation and fill levels[J]. Ocean Eng, 2011, 38(2/3): 498508.
[4]HIRT C W, NICHOLS B D. Volume of Fluid(VOF) method for the dynamics of free boundaries[J]. J Comput Phys, 1981(39): 201225.
[5]MILKELIS N E, MILLER J K. Sloshing in partially filled liquid tanks and its effect on ship motions, numerical simulations and experimental verification[J]. Trans R Inst Naval Architect, 1984(126): 267277.
[6]王福軍. 計(jì)算流體動(dòng)力學(xué)分析: CFD軟件原理與應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2004.
[7]朱仁慶, 吳有生. 液艙內(nèi)流體晃蕩特性數(shù)值研究[J]. 中國造船, 2002, 43(2): 1521.
ZHU Renqing, WU Yousheng. A numerical study on sloshing phenomena in a liquid tank[J]. Shipbuilding China, 2002, 43(2): 1521.
[8]朱仁慶, 侯玲. LNG船液艙晃蕩數(shù)值模擬[J]. 江蘇科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2010, 24(1): 16.
ZHU Renqing, HOU Ling. Numerical simulation of liquid sloshing in the tanks of LNG carrier[J]. J Jiangsu Univ Sci & Technol: Nat Sci, 2010, 24(1): 16.
[9]劉楨兵. 基于VOF法的液艙晃蕩數(shù)值模擬及載荷計(jì)算[J]. 重慶理工大學(xué)學(xué)報(bào): 自然科學(xué)版, 2011, 25(3): 2429.
LIU Zhenbing. Numerical simulation of liquid tank sloshing and pressure calculation based on volume of fluid method[J]. J Chongqing Inst Technol: Nat Sci, 2011, 25(3): 2429.(編輯武曉英)