黑大千
摘 要:瞬發(fā)伽馬射線中子活化分析技術(shù)(PGNAA)技術(shù)由于其分析精度高、在線原位測量等眾多技術(shù)優(yōu)勢,近年來被廣泛用于工業(yè)、環(huán)境、安全等諸多領(lǐng)域。本文就其技術(shù)原理、同類技術(shù)比較及其近年來在各領(lǐng)域的發(fā)展與現(xiàn)狀進行了梳理與討論。
關(guān)鍵詞:PGNAA 在線分析 元素測量
中圖分類號:O571 文獻標識碼:A 文章編號:1672-3791(2014)02(c)-0063-02
1 PGNAA基本原理及優(yōu)勢
瞬發(fā)γ射線中子活化分析(prompt gamma-ray neutron activation analysis,PGNAA)技術(shù)利用中子源產(chǎn)生的中子流轟擊靶樣品中各種元素的原子核,原子核發(fā)生輻射俘獲、非彈性散射等反應(yīng),并在小于10-14 s時間內(nèi)退激釋放出能量為2 keV~10 MeV的γ射線,通過探測器探測,根據(jù)各特征γ射線的能量和強度(峰面積)對元素進行在線定性和定量分析。
傳統(tǒng)的一些檢測方法包括X熒光分析技術(shù)、紅外分析技術(shù)和中子活化分析(neutr
on activation analysis,NAA)技術(shù)。X熒光分析技術(shù)只能測量物料近表層的元素成分,對物料和表面的平整度具有很高的要求;而紅外技術(shù)也只能測量物料的近表面成分含量,同時容易受到粉塵、濕度等環(huán)境條件的影響;NAA技術(shù)具有高準確度、高靈敏度和非破壞性分析等特點而被廣泛應(yīng)用于科研和工農(nóng)業(yè)生產(chǎn)。然而,對于一些輕元素(如H、B、N、P等)的測定,常規(guī)NAA技術(shù)顯得無能為力,同時,NAA技術(shù)是一種離線的分析方式,無法實現(xiàn)在線測量,因此無法應(yīng)用于工業(yè)在線測量分析。
由于中子穿透能力極強,與絕大多數(shù)的元素反應(yīng)都很靈敏,因此可以實現(xiàn)高靈敏度、高準確度、非破壞性、對較大體積物料分析的實時在線測量分析(見表1)。
2 PGNAA技術(shù)國內(nèi)外研究現(xiàn)狀
目前PGNAA技術(shù)按照中子源的類型主要分為兩大類:基于反應(yīng)堆和大型加速器的PGNAA技術(shù)和適于工業(yè)現(xiàn)場的大塊物料成分在線檢測的微型中子發(fā)生器和同位素中子源的PGNAA技術(shù)。
反應(yīng)堆中子源是利用原子核裂變反應(yīng)堆產(chǎn)生大量中子,反應(yīng)堆是最強的熱中子源,通過在反應(yīng)堆的壁上開孔可以把中子流引出。引出的中子流能量是接近麥克斯韋分布的連續(xù)分布,通過對其進行一定的處理可獲得各種能量的中子束。由于反應(yīng)堆中子源具有中子通量高、熱中子慢化率高等特點,因此利用其對元素進行分析的精度要明顯高于非反應(yīng)堆中子源的分析精度。從20世紀60年代以來,隨著探測器、電子學(xué)以及軟件的迅速發(fā)展,基于反應(yīng)堆的PGNAA技術(shù)也得到快速發(fā)展。迄今為止,世界上至少已在反應(yīng)堆上建立了30個PGNAA設(shè)備,中子注量率為106~1011/cm2·s。
利用大型加速器的中子源主要應(yīng)用在散裂中子源上,散裂中子源通過高能強流質(zhì)子加速器產(chǎn)生能量在1GeV以上的質(zhì)子束轟擊重元素靶(如鎢或鈾),在靶中發(fā)生散裂反應(yīng),產(chǎn)生大量的中子。它的特點是在較小的體積內(nèi)可產(chǎn)生較高的脈沖中子通量,能提供的中子能譜更加寬廣,具有高脈沖通量和優(yōu)越的脈沖時間結(jié)構(gòu),低本底,且不使用核燃料,只產(chǎn)生極少量活化產(chǎn)物。利用散裂中子源來進行PGNAA技術(shù)的研究在國際上很早就已經(jīng)開展。其中,瑞士保羅謝勒研究所(Paul Scherrer Institute,PSI)在1997年建立了散裂中子源SINQ,利用質(zhì)子加速器將質(zhì)子加速到590 MeV并用質(zhì)子束轟擊鉛靶。并在隨后的實驗中利用其對一系列的元素進行了測量分析包括H、N、B和Cl等元素。
由于利用反應(yīng)堆中子源無法用于被檢測現(xiàn)場,且仍需要取樣制樣,無法實現(xiàn)原位在線分析,滿足實際測量需求。因此,針對其局限性,近幾年許多國家的研究者將目光投向了基于非反應(yīng)堆的PGNAA技術(shù)在環(huán)境領(lǐng)域的應(yīng)用,其主要利用的是放射性同位素中子源和中子發(fā)生器。放射性同位素中子源體積小,制備簡單,使用方便,如Am-Be中子源,Cf中子源;中子發(fā)生器主要利用加速器加速的帶電粒子轟擊適當(dāng)?shù)陌泻耍ㄟ^核反應(yīng)產(chǎn)生中子,最常用的中子發(fā)生器有(D,D)和(D,T)中子管等,中子發(fā)生器的產(chǎn)額比放射性同位素中子源大得多,并且可以在很寬的能區(qū)上獲得單能中子,采用脈沖調(diào)制后,可成為脈沖中子源。基于此,利用同位素中子源Am-Be中子源、Cf中子源等,以及D-D、D-T小型密封中子管等可以應(yīng)用于環(huán)境、工業(yè)和安全等方面。
3 基于PGNAA技術(shù)的在線測量技術(shù)的國內(nèi)外應(yīng)用研究現(xiàn)狀
3.1 煤炭檢測
美國早在20世紀70年代后期就開始對PGNAA如何應(yīng)用于煤炭工業(yè)進行了研究。利用Cf中子源和一套高計數(shù)率同軸鍺探測器譜處理系統(tǒng)對其進行在線檢測分析。在1995年美國Womble等人提出利用脈沖快熱中子來進行無損檢測分析并且對煤炭在線分析進行了研究,1998年L.Dep等人針對該問題,提出利用中子發(fā)生器來對煤炭進行在線分析,脈沖調(diào)制快中子發(fā)生器和BGO探測器進行了煤的在線元素分析實驗,將其稱為脈沖快熱中子分析(Pulsed Fast Thermal Neutron Analysis,PFTNA)技術(shù)。結(jié)果表明,應(yīng)用PFTNA技術(shù)測量煤中S的精度可達0.05%,C的精度可接近1%。
3.2 水泥研究
在1995年阿根廷的學(xué)者Daniel L.等人就利用Am-Be源和高純鍺探測器對水泥中的元素進行了分析研究,其結(jié)果顯示可以測出樣品中Fe、Si、Ca和Cl元素的相對濃度。1999年R.Kheli等人也利用5Ci的Am-Be中子源和高純鍺探測器對水泥中的Si和Ca進行了測量分析,得到Ca/Si的比率。同時,Saleh H.等人也利用Cf源和高純鍺探測器研制了一套裝置對鋼筋混凝土中的Cl元素進行檢測分析。
從2004年,Naqvi等人對水泥利用中子發(fā)生器進行了很多的研究,利用D-D中子發(fā)生器對水泥中的Ca、Si和Cl等元素進行一系列的測量分析,在2009年和2011年先后對水泥粉塵和水泥中的氯元素進行了研究,其通過PGNAA技術(shù)對水泥粉塵進行分析得到其中氯元素的檢測限。endprint
3.3 安全方面的研究
在對化學(xué)武器的檢測方面,1995年EG&ORTEC公司和INEEL設(shè)計制造的PINS系統(tǒng)利用Cf源和高純鍺探測器進行檢測分析[20]。2000年德國BrukerSaxoniaAnalytik公司發(fā)明的NIGAS系統(tǒng)利用D-D中子發(fā)生器和高純鍺探測器對Cl和P等元素檢測分析。然而對C、H、O、N等元素的檢測并不靈敏。一些機場也利用中子活化分析技術(shù)對爆炸物進行檢測分析,其利用中子發(fā)生器的設(shè)備,該設(shè)備最早與1989年已得到利用,并在美國多家航空公司裝備用來檢測行旅箱子中是否有炸藥。
3.4 環(huán)境檢測方面
1996年埃及的A.S.ABDEL-HALEEM等人就利用Cf源和高純鍺探測器對當(dāng)?shù)氐囊恍┉h(huán)境樣品進行分析檢測,認為利用放射性源可以在實驗室和現(xiàn)場對環(huán)境中的樣品進行多元素檢測分析,在1998年S.L. Shue等人利用不同的中子源對土壤中的元素進行了檢測研究。2000年美國的克萊姆森大學(xué)的研究人員利用Cf中子源通過水慢化后對土壤中的氯元素進行檢測研究,利用高純鍺探測器進行測量。同時,美國西屋科學(xué)和技術(shù)中心的學(xué)者Dulloo利用中子發(fā)生器研究了固體中Hg、Cd和Pb元素的檢測效果。2006年Borsaru等人利用PGNAA技術(shù)對土壤鹽化進行了研究,通過測量Cl元素來判斷土壤的鹽化程度。Khelifi和Idiri等學(xué)者在2007—2010年Am-Be中子源對水中的污染物進行了研究分析,包括Cd、Cl、Hg、Pb和Cr等元素。Naqvi等學(xué)者的團隊在此方面做了大量的工作,其課題組在2009—2013年之間利用D-T中子發(fā)生器配合NaI、BGO、LaBr3、LaCl3等多種常用探測器對水泥、水溶液中進行了一系列的研究工作。2011年,澳大利亞研究人員利用中子發(fā)生器和伽馬探測器對土壤表面進行了分析研究并搭建了一套檢測裝置,結(jié)果表明在土壤表層,許多元素都可以很好的被檢測到。
綜上可見,PGNAA技術(shù)具有成熟的理論基礎(chǔ)和廣泛的應(yīng)用范圍,歐美國家在該方面技術(shù)具有雄厚的實力,且從未停止相關(guān)研究活動,并在近年呈現(xiàn)逐漸重視的局面。此外,更多的科研成果出于技術(shù)封鎖或商業(yè)秘密等原因未做深入報道,但研究成果已出現(xiàn)在商業(yè)化產(chǎn)品及實際使用中。因此,我國應(yīng)在PGNAA在線分析技術(shù)方向盡快開展更多的應(yīng)用研究,縮小與國外先進國家水平的差距,突破技術(shù)封鎖。
參考文獻
[1] Baechler S,Kudejova P,Jolie J,et al. Prompt gamma-ray activation analysis for determination of boron in aqueous solutions[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2002,488(1):410-418.
[2] Duffey D,O'Fallon N,Porges K G, et al.Coal composition by 252Cf neutrons and flux level corrections[J]. Trans.Am.Nucl.Soc.;(United States), 1977,26.
[3] McQuaid J H, Brown D R, Gozani T,et al.High rate spectroscopy for on-line nuclear coal analyzer (Nucoalyzer)[R].California Univ., Livermore (USA).Lawrence Livermore National Lab.,1980.
[4] Womble P C,Schultz F J, Vourvopoulos G.Non-destructive characterization using pulsed fast-thermal neutrons[J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,1995,99(1):757-760.
[5] Dep L,Belbot M,Vourvopoulos G,et al.Pulsed neutron-based on-line coal analysis[J].Journal of radioanalytical and nuclear chemistry,1998,234(1-2): 107-112.
[6] CollicoSavio D L,Mariscotti M A J, Guevara S R.Elemental Analysis of a concrete sample by capture gamma rays with a radioisotope neutron source[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1995,95(3):379-388.
[7] Khelifi R,Idiri Z,Omari L,et al. Prompt gamma neutron activation analysis of bulk concrete samples with an Am–Be neutron source[J].Applied Radiation and Isotopes,1999,51(1): 9-13.endprint
[8] Saleh H H,Livingston R A.Experimental evaluation of a portable neutron-based gamma-spectroscopy system for chloride measurements in reinforced concrete[J].Journal of Radioanalytical and Nuclear Chemistry, 2000,244(2):367-371.
[9] Naqvi A A,Nagadi M M,Baghabra Al-Amoudi O S.Elemental analysis of concrete samples using an accelerator-based PGNAA setup[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2004,225(3):331-338.
[10] Naqvi A A,Nagadi M M,Al-Amoudi O S B.Measurement of lime/silica ratio in concrete using PGNAA technique[J].Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2005,554(1): 540-545.
[11] Naqvi A A,Garwan M A,Nagadi M M, et al.Non-destructive analysis of chlorine in fly ash cement concrete[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2009,607(2):446-450.
[12] Gehrke R J,Greenwood R C, Hartwell J K,et al.US Army Experience with the PINS Chemical Assay System[M].Non-Stockpile Chemical Materiel Program,1994.
[13] Im H J,Song K.Applications of prompt gamma ray neutron activation analysis: detection of illicit materials[J].Applied Spectroscopy Reviews,2009,44(4): 317-334.
[14] Abdel-HaleemA S,Abdel-Samad M A, Zaghloul R A,et al.The uses of neutron capture γ-rays in environmental pollution measurements[J].Radiation Physics and Chemistry,1996,47(5): 719-722.
[15] Shue S L,F(xiàn)aw R E,Shultis J K. Thermal-neutron intensities in soils irradiated by fast neutrons from point sources[J].Chemical geology,1998,144(1):47-61.
[16] Howell S L,Sigg R A,Moore F S, et al. Calibration and Validation of a Monte Carlo model for PGNAA of Chlorine in Soil[J].Journal of Radioanalytical and Nuclear Chemistry, 2000,244(1):173-178.
[17] Dulloo A R, Ruddy F H,Congedo T V,et al.Experimental verification of modeling results for a PGNAA system for nondestructive assay of RCRA metals in drums[J].Applied Radiation and Isotopes,2000,53(4):499-505.
[18] Borsaru M,Smith C,Merritt J,et al. In situ determination of salinity by PGNAA[J].Applied radiation and isotopes,2006,64(5):630-637.
[19] Idiri Z,Mazrou H,Amokrane A,et al. Characterization of an Am–Be PGNAA set-up developed for in situ liquid analysis:Application to domestic waste water and industrial liquid effluents analysis[J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2010,268(2):213-218.
[20] Naqvi A A,Al-Anezi M S,Kalakada Z,et al.Response tests of a LaCl3: Ce scintillation detector with low energy prompt gamma rays from boron and cadmium[J].Applied Radiation and Isotopes,2012,70(5):882-887.
[21] Falahat S,K ble T,Schumann O,et al.Development of a surface scanning soil analysis instrument[J].Applied Radiation and Isotopes,2012,70(7):1107-1109.endprint
[8] Saleh H H,Livingston R A.Experimental evaluation of a portable neutron-based gamma-spectroscopy system for chloride measurements in reinforced concrete[J].Journal of Radioanalytical and Nuclear Chemistry, 2000,244(2):367-371.
[9] Naqvi A A,Nagadi M M,Baghabra Al-Amoudi O S.Elemental analysis of concrete samples using an accelerator-based PGNAA setup[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2004,225(3):331-338.
[10] Naqvi A A,Nagadi M M,Al-Amoudi O S B.Measurement of lime/silica ratio in concrete using PGNAA technique[J].Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2005,554(1): 540-545.
[11] Naqvi A A,Garwan M A,Nagadi M M, et al.Non-destructive analysis of chlorine in fly ash cement concrete[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2009,607(2):446-450.
[12] Gehrke R J,Greenwood R C, Hartwell J K,et al.US Army Experience with the PINS Chemical Assay System[M].Non-Stockpile Chemical Materiel Program,1994.
[13] Im H J,Song K.Applications of prompt gamma ray neutron activation analysis: detection of illicit materials[J].Applied Spectroscopy Reviews,2009,44(4): 317-334.
[14] Abdel-HaleemA S,Abdel-Samad M A, Zaghloul R A,et al.The uses of neutron capture γ-rays in environmental pollution measurements[J].Radiation Physics and Chemistry,1996,47(5): 719-722.
[15] Shue S L,F(xiàn)aw R E,Shultis J K. Thermal-neutron intensities in soils irradiated by fast neutrons from point sources[J].Chemical geology,1998,144(1):47-61.
[16] Howell S L,Sigg R A,Moore F S, et al. Calibration and Validation of a Monte Carlo model for PGNAA of Chlorine in Soil[J].Journal of Radioanalytical and Nuclear Chemistry, 2000,244(1):173-178.
[17] Dulloo A R, Ruddy F H,Congedo T V,et al.Experimental verification of modeling results for a PGNAA system for nondestructive assay of RCRA metals in drums[J].Applied Radiation and Isotopes,2000,53(4):499-505.
[18] Borsaru M,Smith C,Merritt J,et al. In situ determination of salinity by PGNAA[J].Applied radiation and isotopes,2006,64(5):630-637.
[19] Idiri Z,Mazrou H,Amokrane A,et al. Characterization of an Am–Be PGNAA set-up developed for in situ liquid analysis:Application to domestic waste water and industrial liquid effluents analysis[J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2010,268(2):213-218.
[20] Naqvi A A,Al-Anezi M S,Kalakada Z,et al.Response tests of a LaCl3: Ce scintillation detector with low energy prompt gamma rays from boron and cadmium[J].Applied Radiation and Isotopes,2012,70(5):882-887.
[21] Falahat S,K ble T,Schumann O,et al.Development of a surface scanning soil analysis instrument[J].Applied Radiation and Isotopes,2012,70(7):1107-1109.endprint
[8] Saleh H H,Livingston R A.Experimental evaluation of a portable neutron-based gamma-spectroscopy system for chloride measurements in reinforced concrete[J].Journal of Radioanalytical and Nuclear Chemistry, 2000,244(2):367-371.
[9] Naqvi A A,Nagadi M M,Baghabra Al-Amoudi O S.Elemental analysis of concrete samples using an accelerator-based PGNAA setup[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2004,225(3):331-338.
[10] Naqvi A A,Nagadi M M,Al-Amoudi O S B.Measurement of lime/silica ratio in concrete using PGNAA technique[J].Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2005,554(1): 540-545.
[11] Naqvi A A,Garwan M A,Nagadi M M, et al.Non-destructive analysis of chlorine in fly ash cement concrete[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2009,607(2):446-450.
[12] Gehrke R J,Greenwood R C, Hartwell J K,et al.US Army Experience with the PINS Chemical Assay System[M].Non-Stockpile Chemical Materiel Program,1994.
[13] Im H J,Song K.Applications of prompt gamma ray neutron activation analysis: detection of illicit materials[J].Applied Spectroscopy Reviews,2009,44(4): 317-334.
[14] Abdel-HaleemA S,Abdel-Samad M A, Zaghloul R A,et al.The uses of neutron capture γ-rays in environmental pollution measurements[J].Radiation Physics and Chemistry,1996,47(5): 719-722.
[15] Shue S L,F(xiàn)aw R E,Shultis J K. Thermal-neutron intensities in soils irradiated by fast neutrons from point sources[J].Chemical geology,1998,144(1):47-61.
[16] Howell S L,Sigg R A,Moore F S, et al. Calibration and Validation of a Monte Carlo model for PGNAA of Chlorine in Soil[J].Journal of Radioanalytical and Nuclear Chemistry, 2000,244(1):173-178.
[17] Dulloo A R, Ruddy F H,Congedo T V,et al.Experimental verification of modeling results for a PGNAA system for nondestructive assay of RCRA metals in drums[J].Applied Radiation and Isotopes,2000,53(4):499-505.
[18] Borsaru M,Smith C,Merritt J,et al. In situ determination of salinity by PGNAA[J].Applied radiation and isotopes,2006,64(5):630-637.
[19] Idiri Z,Mazrou H,Amokrane A,et al. Characterization of an Am–Be PGNAA set-up developed for in situ liquid analysis:Application to domestic waste water and industrial liquid effluents analysis[J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2010,268(2):213-218.
[20] Naqvi A A,Al-Anezi M S,Kalakada Z,et al.Response tests of a LaCl3: Ce scintillation detector with low energy prompt gamma rays from boron and cadmium[J].Applied Radiation and Isotopes,2012,70(5):882-887.
[21] Falahat S,K ble T,Schumann O,et al.Development of a surface scanning soil analysis instrument[J].Applied Radiation and Isotopes,2012,70(7):1107-1109.endprint