国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

帶隨機(jī)回報(bào)的一類離散馬氏風(fēng)險(xiǎn)模型的分紅問題(英文)

2014-11-14 16:06:44鄧迎春樂勝杰肖和錄

鄧迎春 樂勝杰 肖和錄 等

摘要考慮了帶隨機(jī)回報(bào)的一類離散馬氏風(fēng)險(xiǎn)模型.在此模型中,賠付的發(fā)生概率,賠付額的分布函數(shù)都是由一個(gè)離散時(shí)間的馬氏鏈調(diào)控.當(dāng)保險(xiǎn)公司采用門檻分紅策略時(shí),通過計(jì)算得到了破產(chǎn)前的期望折現(xiàn)分紅總量滿足的一組線性方程.最后,給出了期望折現(xiàn)分紅總量的顯式解析式.

關(guān)鍵詞馬氏風(fēng)險(xiǎn)模型;隨機(jī)回報(bào);門檻分紅;期望折現(xiàn)分紅量

We introduce a constant dividend barrier into the model (1). Assume that any surplus of the insurer above the level b (a positive integer) is immediately paid out to the shareholders so that the surplus is brought back to the level b. When the surplus is below, nothing is done. Once the surplus is negative, the insurer is ruined and the process stops. Let V(n) denote the surplus at time n. Then

References:

[1]YUEN K C, GUO J. Ruin probabilities for timecorrelated claims in the compound binomial model[J].Insurance: Math Eco, 2001,29(1):4757.

[2]GERBER H U. Mathematical fun with the compound binomial process[J]. Astin Bull, 1988,18(2):161168.

[3]CHENG S, GERBER H U, SHIU E S W. Discounted pribabilities and ruin theory in the compound binomial model[J]. Insurance: Math Eco, 2000,26(23):239250.

[4]GONG R, YANG X. The nite time survival probabilities in the fully discrete compound binomial model[J]. Chin J Appl Probab Statist, 2001,17(4):6599.

[5]TAN J Y, YANG X Q. The divideng problems for compound binomoal model with stochastic return on investments[J]. Nonlinear Math for Uncertainty Appl, 2011,100:239246.

[6]TAN J Y, YANG X Q. The compound binomial model with randomized decisions on paying dividends[J]. Insurance: Math Eco, 2006,39(1):118.

[7]DE FINETTI B. Su unimpostazione alternativa della teoria collettiva del rischio[J]. Transactions of the XVth International Congress of Actuaries, 1957,2:433443.

[8]LIN X S, WILLMOT G E, DREKIC S. The classical risk model with a constant dividend barrier:Analysis of the GerberShiu discounted penalty function[J]. Insurance: Math Eco, 2003,33(3):551566.

[9]LIN X S, PAVLOVA K P. The compound Poisson risk model with a threshold dividend strategy[J].Insurance: Math Eco, 2006,38(1):5780.

[10]ZHOU J M, OU H, MO X Y, et al. The compound Poisson risk model perturbed by diusion with doublethreshold dividend barriers to shareholders and policyholders[J]. J Natur Sci Hunan Norm Univ, 2012,35(6):113.

[11]COSSETTE H, LANDRIAULT D, MARCEAN E. Compound binomial risk model in a Markovian environment[J]. Insurance: Math Eco, 2004,35(2):425443.

[12]YUEN K C, GUO J Y. Some results on the compound Markov binomial model[J]. Scand Actuar J, 2006,2006(3):129140.

[13]PAULSEN J, GJESSING H K. Optimal choice of dividend barriers for a risk process with stochastic return on investments[J]. Insurance: Math Eco, 1997,20(3):215223.

(編輯胡文杰)

摘要考慮了帶隨機(jī)回報(bào)的一類離散馬氏風(fēng)險(xiǎn)模型.在此模型中,賠付的發(fā)生概率,賠付額的分布函數(shù)都是由一個(gè)離散時(shí)間的馬氏鏈調(diào)控.當(dāng)保險(xiǎn)公司采用門檻分紅策略時(shí),通過計(jì)算得到了破產(chǎn)前的期望折現(xiàn)分紅總量滿足的一組線性方程.最后,給出了期望折現(xiàn)分紅總量的顯式解析式.

關(guān)鍵詞馬氏風(fēng)險(xiǎn)模型;隨機(jī)回報(bào);門檻分紅;期望折現(xiàn)分紅量

We introduce a constant dividend barrier into the model (1). Assume that any surplus of the insurer above the level b (a positive integer) is immediately paid out to the shareholders so that the surplus is brought back to the level b. When the surplus is below, nothing is done. Once the surplus is negative, the insurer is ruined and the process stops. Let V(n) denote the surplus at time n. Then

References:

[1]YUEN K C, GUO J. Ruin probabilities for timecorrelated claims in the compound binomial model[J].Insurance: Math Eco, 2001,29(1):4757.

[2]GERBER H U. Mathematical fun with the compound binomial process[J]. Astin Bull, 1988,18(2):161168.

[3]CHENG S, GERBER H U, SHIU E S W. Discounted pribabilities and ruin theory in the compound binomial model[J]. Insurance: Math Eco, 2000,26(23):239250.

[4]GONG R, YANG X. The nite time survival probabilities in the fully discrete compound binomial model[J]. Chin J Appl Probab Statist, 2001,17(4):6599.

[5]TAN J Y, YANG X Q. The divideng problems for compound binomoal model with stochastic return on investments[J]. Nonlinear Math for Uncertainty Appl, 2011,100:239246.

[6]TAN J Y, YANG X Q. The compound binomial model with randomized decisions on paying dividends[J]. Insurance: Math Eco, 2006,39(1):118.

[7]DE FINETTI B. Su unimpostazione alternativa della teoria collettiva del rischio[J]. Transactions of the XVth International Congress of Actuaries, 1957,2:433443.

[8]LIN X S, WILLMOT G E, DREKIC S. The classical risk model with a constant dividend barrier:Analysis of the GerberShiu discounted penalty function[J]. Insurance: Math Eco, 2003,33(3):551566.

[9]LIN X S, PAVLOVA K P. The compound Poisson risk model with a threshold dividend strategy[J].Insurance: Math Eco, 2006,38(1):5780.

[10]ZHOU J M, OU H, MO X Y, et al. The compound Poisson risk model perturbed by diusion with doublethreshold dividend barriers to shareholders and policyholders[J]. J Natur Sci Hunan Norm Univ, 2012,35(6):113.

[11]COSSETTE H, LANDRIAULT D, MARCEAN E. Compound binomial risk model in a Markovian environment[J]. Insurance: Math Eco, 2004,35(2):425443.

[12]YUEN K C, GUO J Y. Some results on the compound Markov binomial model[J]. Scand Actuar J, 2006,2006(3):129140.

[13]PAULSEN J, GJESSING H K. Optimal choice of dividend barriers for a risk process with stochastic return on investments[J]. Insurance: Math Eco, 1997,20(3):215223.

(編輯胡文杰)

摘要考慮了帶隨機(jī)回報(bào)的一類離散馬氏風(fēng)險(xiǎn)模型.在此模型中,賠付的發(fā)生概率,賠付額的分布函數(shù)都是由一個(gè)離散時(shí)間的馬氏鏈調(diào)控.當(dāng)保險(xiǎn)公司采用門檻分紅策略時(shí),通過計(jì)算得到了破產(chǎn)前的期望折現(xiàn)分紅總量滿足的一組線性方程.最后,給出了期望折現(xiàn)分紅總量的顯式解析式.

關(guān)鍵詞馬氏風(fēng)險(xiǎn)模型;隨機(jī)回報(bào);門檻分紅;期望折現(xiàn)分紅量

We introduce a constant dividend barrier into the model (1). Assume that any surplus of the insurer above the level b (a positive integer) is immediately paid out to the shareholders so that the surplus is brought back to the level b. When the surplus is below, nothing is done. Once the surplus is negative, the insurer is ruined and the process stops. Let V(n) denote the surplus at time n. Then

References:

[1]YUEN K C, GUO J. Ruin probabilities for timecorrelated claims in the compound binomial model[J].Insurance: Math Eco, 2001,29(1):4757.

[2]GERBER H U. Mathematical fun with the compound binomial process[J]. Astin Bull, 1988,18(2):161168.

[3]CHENG S, GERBER H U, SHIU E S W. Discounted pribabilities and ruin theory in the compound binomial model[J]. Insurance: Math Eco, 2000,26(23):239250.

[4]GONG R, YANG X. The nite time survival probabilities in the fully discrete compound binomial model[J]. Chin J Appl Probab Statist, 2001,17(4):6599.

[5]TAN J Y, YANG X Q. The divideng problems for compound binomoal model with stochastic return on investments[J]. Nonlinear Math for Uncertainty Appl, 2011,100:239246.

[6]TAN J Y, YANG X Q. The compound binomial model with randomized decisions on paying dividends[J]. Insurance: Math Eco, 2006,39(1):118.

[7]DE FINETTI B. Su unimpostazione alternativa della teoria collettiva del rischio[J]. Transactions of the XVth International Congress of Actuaries, 1957,2:433443.

[8]LIN X S, WILLMOT G E, DREKIC S. The classical risk model with a constant dividend barrier:Analysis of the GerberShiu discounted penalty function[J]. Insurance: Math Eco, 2003,33(3):551566.

[9]LIN X S, PAVLOVA K P. The compound Poisson risk model with a threshold dividend strategy[J].Insurance: Math Eco, 2006,38(1):5780.

[10]ZHOU J M, OU H, MO X Y, et al. The compound Poisson risk model perturbed by diusion with doublethreshold dividend barriers to shareholders and policyholders[J]. J Natur Sci Hunan Norm Univ, 2012,35(6):113.

[11]COSSETTE H, LANDRIAULT D, MARCEAN E. Compound binomial risk model in a Markovian environment[J]. Insurance: Math Eco, 2004,35(2):425443.

[12]YUEN K C, GUO J Y. Some results on the compound Markov binomial model[J]. Scand Actuar J, 2006,2006(3):129140.

[13]PAULSEN J, GJESSING H K. Optimal choice of dividend barriers for a risk process with stochastic return on investments[J]. Insurance: Math Eco, 1997,20(3):215223.

(編輯胡文杰)

鸡西市| 巧家县| 林西县| 大庆市| 阜新市| 天气| 申扎县| 砀山县| 武胜县| 金坛市| 禹州市| 扎囊县| 花莲县| 庄河市| 余姚市| 闵行区| 金湖县| 云浮市| 兴宁市| 衡东县| 会东县| 灵川县| 郧西县| 治县。| 奉贤区| 松桃| 淅川县| 五原县| 桂东县| 元江| 分宜县| 军事| 垫江县| 永康市| 纳雍县| 晋江市| 冕宁县| 卓尼县| 兴文县| 修水县| 许昌县|