王慧敏
(延邊大學(xué)工學(xué)院,吉林 延邊朝鮮族自治州 133002)
隨著科學(xué)的發(fā)展, 圖像匹配在越來越多的領(lǐng)域中得到應(yīng)用,其在圖像處理中起到重要作用。
圖像匹配的方法大致上可以分為針對(duì)區(qū)域和針對(duì)特征兩種類型。 基于區(qū)域的匹配算法是對(duì)包含在該區(qū)域的所有像素進(jìn)行匹配,計(jì)算量較大,而且對(duì)原始圖像樣本的旋轉(zhuǎn)角度、光照條件有著較高的要求[1]。 基于特征的匹配算法是對(duì)原始圖像樣本進(jìn)行特征點(diǎn)提取,尋找不同圖片之間相同的特征點(diǎn),工作量較小。 常見的算法有SIFT、SURF、Harris 等,其中SIFT 算法相對(duì)于其他算法在圖像尺度、視角變化、光照等方面的變化有較好的魯棒性[2]。
SIFT 算法是David Lowe 在1999年發(fā)表,于2004年總結(jié)并提出的一種基于尺度空間的圖像縮放、 旋轉(zhuǎn)方向變換保持不變性的特征匹配算法。其核心思路是首先構(gòu)建尺度空間,檢測(cè)極值點(diǎn),獲得尺度不變性。 其次對(duì)特征點(diǎn)過濾并進(jìn)行精確定位,剔除不穩(wěn)定的特征點(diǎn),并且在特征點(diǎn)處提取特征描述符,為特征點(diǎn)分配方向值,并生成特征描述子,利用特征描述符尋找匹配點(diǎn)[3][4]。具體操作步驟如下:
(1)尺度空間極值檢測(cè)
在不同尺度參數(shù)σ 變化時(shí),高斯函數(shù)G(x,y,σ)和輸入圖像I(x,y)卷積可以得到輸入圖像的尺度空間L(x,y,σ):
其中σ 是尺度因子,該值越大圖像被平滑得越大;該值越小圖像被平滑得越小。
SIFT 算法檢測(cè)尺度空間主要采用DoG 算子, 其中DoG 算子定義為兩個(gè)不同尺度的高斯核的差分。
(2)特征點(diǎn)的方向分配
利用關(guān)鍵點(diǎn)鄰域像素的梯度方向分布特征為每個(gè)關(guān)鍵點(diǎn)指定方向參數(shù),使算子具備旋轉(zhuǎn)不變性。
上式為(x,y)處梯度的模值和方向公式,其中L 所用的尺度為每個(gè)關(guān)鍵點(diǎn)各自所在的尺度。
(3)SIFT 特征向量
首先把坐標(biāo)軸旋轉(zhuǎn)為關(guān)鍵點(diǎn)的方向, 以確保旋轉(zhuǎn)不變性。實(shí)際計(jì)算過程中對(duì)每個(gè)關(guān)鍵點(diǎn)使用16 個(gè)種子點(diǎn)來描述,這樣對(duì)每一個(gè)關(guān)鍵點(diǎn)產(chǎn)生128 維的SIFT 特征向量,從而提高匹配的穩(wěn)定性。
(4)特征點(diǎn)匹配
生成SIFT 特征向量后,查找每一個(gè)特征點(diǎn)在另外一個(gè)圖像中的最鄰近點(diǎn),也就是對(duì)兩個(gè)樣本進(jìn)行特征向量相似度計(jì)算,理想情況下兩個(gè)樣本之間相同部分的特征點(diǎn)應(yīng)具有相同的特征向量。 為了去掉因圖像本身產(chǎn)生的沒有匹配關(guān)系的特征點(diǎn),比較最臨近距離和次鄰近距離。 當(dāng)他們的比值小于設(shè)定的閾值時(shí)判定為錯(cuò)誤匹配點(diǎn),將錯(cuò)誤的匹配點(diǎn)去掉。
為了驗(yàn)證SIFT 算法的特點(diǎn)本實(shí)驗(yàn)中采取了兩組圖片樣本進(jìn)行分析。
樣本一為建筑風(fēng)景圖片。 我們對(duì)該圖片進(jìn)行了局部裁剪,然后進(jìn)行等比放大,屬于局部放大圖像匹配,用來測(cè)試SIFT 算法對(duì)幾何變形的圖像的匹配能力。
樣本二為書本圖片。 我們對(duì)該原始樣本進(jìn)行了不同角度的拍攝,具有較大的傾斜角度,屬于旋轉(zhuǎn)圖像匹配,用來測(cè)試SIFT算法對(duì)不同方位的圖像的匹配能力。
為了達(dá)到匹配感官度的統(tǒng)一性,對(duì)一組樣本中的前后兩張圖片均采用了相同的分辨率。 本算法用MATLAB(2010a)進(jìn)行編程,樣本圖片的比例閾值我們?cè)O(shè)為0.47,結(jié)果如下圖。
圖1 第一組樣本匹配結(jié)果
圖2 第二組二組樣本匹配結(jié)果
圖1 是第一組樣本的匹配結(jié)果,可以看出兩張圖像的SIFT特征的方向、尺度信息較為準(zhǔn)確,與直觀觀感判斷相吻合。 圖2是第二組樣本的匹配結(jié)果, 從圖中可以看出兩張圖像中對(duì)應(yīng)的SIFT 特征得到了很好的匹配,在較大旋轉(zhuǎn)角度下SIFT 算法保持了良好的方向性。 對(duì)兩組試驗(yàn)的具體數(shù)據(jù)進(jìn)行統(tǒng)計(jì),可得表1。
表1 匹配數(shù)據(jù)統(tǒng)計(jì)
由上表中可以看出SIFT 特征匹配算法可以對(duì)不同方位、具有一定傾斜角度的圖像進(jìn)行準(zhǔn)確的匹配,體現(xiàn)出SIFT 算法的特點(diǎn)。 但是從第一組樣本數(shù)據(jù)中可以看到, 隨著圖像復(fù)雜度增加,SIFT 算法需要對(duì)各個(gè)尺度進(jìn)行復(fù)雜度較高的計(jì)算,因而計(jì)算用時(shí)會(huì)大幅度增加。
本文利用SIFT 算法的特征實(shí)現(xiàn)了二維圖像的匹配, 驗(yàn)證了SIFT 算法具有良好的尺度、旋轉(zhuǎn)、光照等不變的特征,其識(shí)別速度較慢等缺點(diǎn)可以通過與其他圖像匹配算法的結(jié)合來彌補(bǔ),具有較好的研究?jī)r(jià)值。
[1]吳建波,趙新民,朱信忠,等.基于一種SIFT 優(yōu)化算法的圖像檢索[J].微型電腦應(yīng)用,2011,27(5):4-7.
[2]孔曉東,屈磊,桂國(guó)富,等.基于極約束和邊緣點(diǎn)檢測(cè)的圖像密集匹配[J].計(jì)算機(jī)工程,2004(20):178-179.
[3]Lowe D.Distinctive Image Feature from Scale -Invariant Key-points [J].International Journal of Computer Vision,2004,60(2):90-110.
[4]Cordeliaschmind,Rogermohr. Loeal Gray value Invarianls ofr Image Relrieval [J]. Pallem Analysis and Maehine Intelligenee,IEEE Transaclions,1997,19(15):530-535.