侯中麗,趙前進
(安徽理工大學理學院,安徽 淮南232001)
Thiele型有理插值常被用來逼近帶極點的函數(shù),但是它難以避免極點和不可達點,也難以控制極點。Berrut,Baltensperger,Klein,Nguyen等對重心有理插值進行了深入的研究[2-15],張玉武給出了二元重心有理插值的具體形式,插值節(jié)點較多并且是等距節(jié)點時,逼近效果不是很好。在文獻[1]中,F(xiàn)loater和Hormann通過在子節(jié)點集上構造插值多項式,然后用特定的權函數(shù)對這些插值多項式進行重心型的混合,構造了無極點高精度的復合重心有理插值。本文將文獻[1]中的方法推廣到矩形域上的二元復合重心有理插值。首先在小矩形域上構造二元重心有理插值,然后基于特定的權函數(shù)進行重心型的復合,構造二元復合重心有理插值,并且證明了其插值性質(zhì)。最后,給出的數(shù)值例子說明了新方法的逼近效果。
設矩形區(qū)域D=(a,b)×(c,d),
對任意整數(shù)d1和d2(0≤d1≤m,0≤d2≤n),對于每個i=0,1,2,…,m-d1,j=0,1,2,…,n-d2,設Pij(x,y)為{(xk,yq)|k=i,i+1,…,i+d1;q=j,j+1,…,j+d2}上的二元重心有理插值,對重心有理插值復合,構造二元有理函數(shù)
圖1 被插值函數(shù)
圖2 m=n=10時的插值函數(shù)
圖3 m=n=10的誤差函數(shù)
圖4 m=n=20時的插值函數(shù)
表1 不同方法的最大誤差
例2 取函數(shù)f(x,y)=e-x2-y2在區(qū)間[-1,1]×[-1,1],m=n=50,d1=d2=5,用二元復合重心有理插值得到的最大絕對誤差為3.710172249e-04;用二元重心有理插值得到的最大絕對誤差為0.0054671356??梢娦路椒ǖ牟逯敌Ч麅?yōu)于(26)式的插值效果。
本文給出矩形域上的二元復合重心有理插值,首先在每個小矩形域上構造二元重心有理插值,然后復合重心方法,構造出了二元復合重心有理插值,證明了二元復合重心有理插值無極點和不可達點,最后給出數(shù)值例子驗證了新方法的逼近效果。
[1]Michael S.Floater,Kai Hormann.Barycentric Rational Interpolation with No Poles and High Rates of Approxi-mation[J].Numer.Math.2007(107):315-331.
[2]Berrut J P,Mittelmann H.Matrices for the Direct Determination of the Barycentric Weights of Rational Interpolation[J].J.Comput.Appl.Math,1997(78):355-370.
[3]Berrut J.-P.The Barycentric Weights of Rational Interpolation with Prescribed Poles[J].Journal of Computational and Applied Mathematics,1997(86):45-52.
[4]Berrut J.P.A Matrix for Determining Lower Complexity Barycentric Representations of Rational Interpolants[J].Numerical Algorithms,2000,24(1-2):17-29.
[5]Berrut J.-P.,Trefethen L N.Barycentric Lagrange Interpolation[J].SIAM.,2004(46):501-517.
[6]Berrut,J.-P.,Baltensperger,R.,Mittelmann,H.D.Recent Developments in Barycentric Rational Interpolation.In:deBruin,M.G.,Mache,D.H.,Szabados,J.,(eds)Trends and Applications in Constructive Approximation[J].International Series of Numerical Mathematics,2005(151):27-51.
[7]Klein,G.,and Berrut,J.-P.Linear Barycentric Rational Quadrature[J].BIT Numer.Math.,52(2012):407-424.
[8]Hormann,K.,Klein,G.,De Marchi,S.et al.Barycentric Rational Interpolation at Quasi-equidistant Nodes.Dolomites Res.Notes Approx.,2012(5):1-6.
[9]Schneider C.,Werner W.,Some New Aspects of Rational Interpolation[J].Math.Comp.,1986,175(47):285-299.
[10]H.T.Nguyen,A.Cuyt,O.S.Celis,Shape Control in Multivariate Barycentric Rational Interpolation,Proc[J].ICNAAM,2010(1281):543-548.
[11]Klein,G.,Berrut,J.-P.,Linear Rational Finite Differences From Derivatives of Barycentric Rational Interpolants[J].SIAM J.Numer.Anal.,2012(50):643-656.
[12]Georges Klein.An Extension of the Floater-Hormann Family of Barycentric Rational Interpolants[J].Mathematics of Computation,2013,82(284):2273-2292.
[13]Georges Klein,Jean-Paul Berrut.Linear Barycentric Rational Quadrature[M].BIT,2011.
[14]Berrut J.P.A Matrix for Determining Lower Complexity Barycentric Representations of Rational Interpolants[J].Numerical Algorithms,2000,24(1-2):17-29.
[15]MichaelS.Floater,J.Kosinka.Barycentric Interpolation and Mappings on Smooth Convex Domains.Proceedings of the 14th ACM Symposium on Solid and Physical Modeling[C].2010.