湯顯強,吳 敏
(1.長江科學(xué)院a.流域水環(huán)境研究所;b.流域水資源與生態(tài)環(huán)境科學(xué)湖北省重點實驗室,武漢 430010;2.三峽地區(qū)地質(zhì)災(zāi)害與生態(tài)環(huán)境湖北省協(xié)同創(chuàng)新中心,湖北宜昌 443002)
水位調(diào)控對河口沉積物磷賦存及生物可利用性的影響
湯顯強1a,1b,2,吳 敏1a,1b,2
(1.長江科學(xué)院a.流域水環(huán)境研究所;b.流域水資源與生態(tài)環(huán)境科學(xué)湖北省重點實驗室,武漢 430010;2.三峽地區(qū)地質(zhì)災(zāi)害與生態(tài)環(huán)境湖北省協(xié)同創(chuàng)新中心,湖北宜昌 443002)
以丹江口庫區(qū)神定河河口持續(xù)淹水和間歇淹水積物為對象,探討水位調(diào)控前后不同淹水沉積物的理化性質(zhì)、磷賦存及生物可利用性變化規(guī)律。實驗持續(xù)3個水位調(diào)控循環(huán),水位變化速率分別為0,3,6 cm/d。結(jié)果表明:水位調(diào)控總體上促使沉積物OM流失和pH值升高。與對照速率(0 cm/d)相比,3 cm/d和6 cm/d水位變化使無定形鐵氧化物分別增加了185.56%~204.92%(持續(xù)淹水沉積物)和185.28%~228.76%(間歇淹水沉積物)。水位調(diào)控后,持續(xù)淹水和間歇淹水沉積物的可交換態(tài)磷(Ex-P)、鋁結(jié)合態(tài)磷(Al-P)、鐵結(jié)合態(tài)磷(Fe-P)、鈣結(jié)合態(tài)磷(Ca-P)和總磷(TP)含量均上升,OM流失降解和閉蓄態(tài)磷(O-P)活化轉(zhuǎn)化造成有機磷(Org-P)和O-P含量降低。水位調(diào)控有利于Org-P和O-P轉(zhuǎn)化為活性磷,因此應(yīng)將二者也視作沉積物生物可利用性磷組分。
磷;沉積物;水位調(diào)控;理化性質(zhì);活化
2015,32(12):8-13,17
自然和人工調(diào)節(jié)是造成湖庫等地表水體水位變化的2個重要原因。自然水位變化受降雨、蒸發(fā)等因素影響,呈現(xiàn)出隨氣候與季節(jié)更替、歷時短、不穩(wěn)定等特征[1]。人為水位調(diào)控歷時長,對相關(guān)水生態(tài)系統(tǒng)具有連鎖性、傳導(dǎo)性及累積性影響[2]?,F(xiàn)有淹水沉積物中營養(yǎng)物質(zhì)的遷移轉(zhuǎn)化和釋放沉積等研究大多在恒定或近似恒定水位條件下分開進行[3-5],這種擾動或非擾動條件下的靜態(tài)水位邊界很難反映水位動態(tài)變化過程對沉積物環(huán)境行為的影響,也不足以反映水位調(diào)控對不同淹水沉積物環(huán)境行為影響的連續(xù)性和關(guān)聯(lián)性。
目前,自然水位變化下河岸帶、湖濱帶、濕地等沉積環(huán)境中磷的累積、遷移釋放和循環(huán)等環(huán)境地球化學(xué)行為的研究較為活躍[4-5],但對人為水位調(diào)控下沉積物磷的賦存狀態(tài)及生物可利用性等關(guān)注較少。水位調(diào)控可以改變水體-沉積物界面環(huán)境,導(dǎo)致溶解氧、氧化還原條件、透光率等發(fā)生變化[6],影響不同形態(tài)磷之間的相互轉(zhuǎn)化。沉積物-水界面的氧化還原條件變化能夠改變生物可利用磷的組成及含量,促使活性磷向閉蓄態(tài)磷的轉(zhuǎn)化[7]。然而,Vicente等[8]發(fā)現(xiàn)沉積物脫水風(fēng)化和再淹沒過程均能夠降低無定形鐵氧化物含量,提高生物可利用磷的釋放水平。由此可見,水位調(diào)控可能是造成沉積物中磷賦存形態(tài)及生物可利用性改變的重要原因。
考慮到現(xiàn)場原位監(jiān)測和圍隔模擬實驗周期長、費用高,水位自主調(diào)控難,本文在室內(nèi)水位動態(tài)變化模擬實驗基礎(chǔ)上,基于磷的連續(xù)分級提取,分析水位調(diào)控前后沉積物磷賦存總量及各形態(tài)磷含量變化;探討不同水位調(diào)控模式下沉積物生物可利用磷的組成及含量變化趨勢;根據(jù)沉積物理化性質(zhì)變化,研究水位調(diào)控下不同受淹類型沉積物中磷形態(tài)的相互轉(zhuǎn)化。
2.1 實驗設(shè)計與運行
2013年5月,在丹江口庫區(qū)神定河口(N32°48′09″,E110°53′51″)分別采用采樣鏟和抓斗式采樣器,獲取表層30 cm間歇淹水和持續(xù)淹水沉積物樣品。同時,在沉積物采樣點附近采集30 L表層庫水。采用6根2 L玻璃量筒(內(nèi)徑10 cm,高48 cm),分A組(A1,A2,A3)和B組(B1,B2,B3)于室內(nèi)恒溫(25℃)條件下開展水位動態(tài)模擬,每組實驗重復(fù)1次。采集得到的間歇淹水和持續(xù)淹水沉積物樣品去除植物殘體等雜物后,在2 L的燒杯中混合均勻,然后分別加入A組和B組量筒,深度均為10 cm,再緩緩注入36 cm水庫原水為上覆水,詳見圖1。
圖1 水位調(diào)控模擬實驗裝置示意圖Fig.1 Schematic diagram of simulation experiment for the water level regulation
實驗期間,各量筒初始上覆水的水深均保持在36 cm。隨后,每天取25 mL表層水樣測定各量筒高錳酸鹽指數(shù)(CODMn)、總氮(TN)和總磷(TP),監(jiān)測數(shù)據(jù)(實驗期間水質(zhì)數(shù)據(jù)見表1)表明沉積物營養(yǎng)鹽釋放大約18 d達到平衡。將初始采集的原水冷藏于冰箱(三氯甲烷抑制微生物),待采樣結(jié)束后將冷藏原水放置至室溫后等量補充采樣損失的水量。
利用智能蠕動泵模擬水位動態(tài)變化情景(圖1)。設(shè)置A1和B1為對照,水位變化速率為0 cm/d;A2和B2,A3和B3水位變化速率分別為3 cm/d和6 cm/d。水位變化模擬實驗從2013年6月4日開始,歷時3個水位調(diào)控循環(huán),單個循環(huán)包括水位上升、穩(wěn)定、下降和再穩(wěn)定4個階段,每個階段歷時長度一樣(圖1)。
實驗期間,各量筒的最高水位均為36 cm,A2和A3最低水位為0 cm,B2和B3的最低水位分別為3 cm和6 cm。
2.2 樣品檢測和數(shù)據(jù)分析
實驗期間,當(dāng)水位處于最高或最低時,采集該量筒和相應(yīng)對照量筒中80 mL表層水樣,參照《水與廢水監(jiān)測分析方法》(第4版)測定溶解性反應(yīng)磷(SRP)和TP,pH和Eh利用HANNA便攜式pH計和氧化還原電位計測定。實驗結(jié)束后,撇棄上覆水,室內(nèi)放置沉積物,待失去流動性后,切割分離獲取表層2 cm樣品,自然風(fēng)干破碎過100目的泰勒篩(粒徑<0.149 mm)備用。
獲得的沉積物樣品(初始采樣時的背景樣品和模擬實驗后的樣品),參照《土壤理化性質(zhì)實驗指導(dǎo)書》[9]進行預(yù)處理,分別測定沉積物pH和OM,基于分級提取測定可交換態(tài)磷(Ex-P)、鋁結(jié)合態(tài)磷(Al-P)、鐵結(jié)合態(tài)磷(Fe-P)、鈣結(jié)合態(tài)磷(Ca-P)、閉蓄態(tài)磷(O-P)、總磷(TP)含量和游離態(tài)鐵(FeD)、無定形鐵(Feox)、絡(luò)合態(tài)鐵(FeP)、總鐵(FeT)和無定形鋁(Alox)[10]含量,每個指標(biāo)測試設(shè)計一個平行測試。有機磷(Org-P)含量為TP和其他無機磷組分含量的差值。
采用one-way-ANOVA方差分析和Duncan多重比較評價不同水位調(diào)控模式下上覆水中營養(yǎng)鹽和其他水質(zhì)參數(shù)間的差異。上述統(tǒng)計均采用SPSS軟件在數(shù)據(jù)正態(tài)分布條件下進行,顯著性水平p為0.05。
3.1 上覆水磷濃度變化
從表1可看出,持續(xù)淹水沉積物上覆水SRP和TP濃度均值顯著高于對應(yīng)水位調(diào)控模式下間歇淹水沉積物。水位調(diào)控對上覆水磷濃度的影響因沉積物淹沒類型而異,對間歇淹水沉積物來說,3 cm/d和6 cm/d水位調(diào)控均有利于磷釋放。與對照相比,3 cm/d水位調(diào)控下上覆水SRP和TP濃度分別升高43.75%和32.14%;對持續(xù)淹水沉積物來說,3 cm/d水位調(diào)控有利用磷釋放,而6 cm/d水位調(diào)控阻礙了磷釋放。與對照相比,6 cm/d水位調(diào)控時上覆水SRP和TP濃度均值分別減少21.28%和6.78%。
3.2 沉積物理化性質(zhì)變化
水位調(diào)控前后,不同淹沒類型沉積物的理化性質(zhì)情況見表2。從表2可看出,持續(xù)淹水沉積物OM,FeP,FeD,Feox,FeT的含量總體上高于相應(yīng)水位調(diào)控模式下的間歇淹水沉物,但前者的pH和Alox含量低于后者。水位調(diào)控速率越高,pH,Feox,Alox值越大。與持續(xù)淹水沉積物背景相比,6 cm/d水位調(diào)控造成pH上升0.13,Feox,Alox分別上升13.83,0.80 mg/kg;水位調(diào)控促使OM顯著流失,0,3,6 cm/d水位調(diào)控時,OM分別減少0.33%,1.45%,1.06%。
表1 水位調(diào)控前后上覆水磷濃度變化Table 1 Phosphorus concentrations in water above sediment before and after water level regulation
表2 水位調(diào)控前后沉積物組成變化情況Table 2 Variation of sediment composition before and after water level regulation
水位調(diào)控促進了不同鐵氧化物間相互轉(zhuǎn)化,從表2還可看出,水位調(diào)控速率越快,FeT降幅越大。與實時水位調(diào)控速率相比,3 cm/d和6 cm/d水位調(diào)控造成間歇淹水沉積物和持續(xù)淹水沉積物FeT含量分別減少5.40,12.04 g/kg。水位調(diào)控提高了沉積物FeD和Feox含量,卻降低了FeP含量,6 cm/d水位調(diào)控造成間歇淹水沉積物和持續(xù)淹水沉積物FeP含量分別減少44.74%和8.24%。
3.3 沉積物磷形態(tài)變化及影響因素分析
無論間歇淹水沉積物還是持續(xù)淹水沉積物,水位調(diào)控對磷賦存的影響趨勢一致(圖2)。
圖2 水位調(diào)控前后間歇淹水和持續(xù)淹水沉積物各形態(tài)磷含量Fig.2 Phosphorus fractional contents for intermittently submerged sediment and continuously submerged sediment before and after water regulation
以實時持續(xù)淹水沉積物為參照,6 cm/d水位調(diào)控導(dǎo)致Ex-P,Al-P,Fe-P,Ca-P含量分別上升27.27,169.20,117.64,314.26 mg/kg;與此同時,6 cm/d水位調(diào)控造成O-P和Org-P含量分別減少111.42,17.20 mg/kg。總體來看,水位調(diào)控促進了上覆水磷的沉積,與背景相比,3 cm/d和6 cm/d水位調(diào)控造成持續(xù)淹水沉積物TP含量分別上升540.98,499.85 mg/kg(圖2)。
水位調(diào)控前后沉積物各形態(tài)磷占TP比例見圖3。
圖3 水位調(diào)控前后間歇淹水和持續(xù)淹水沉積物各形態(tài)磷占TP比例Fig.3 Ratio of fractional phosphorus of different forms to TP for intermittently submerged sediment and continuously submerged sediment before and after water regulation
無論間歇淹水沉積物還是持續(xù)淹水沉積物,無機磷是TP的主要組成部分,Org-P占TP百分比不到20%。Fe-P,Ca-P,O-P是無機磷的主要形態(tài),Ex-P比例最低,不到TP含量的2.5%。與持續(xù)淹水沉積物實時相比,6 cm/d水位調(diào)控時Ex-P,Al-P,Ca-P含量分別增加了0.75%,4.41%,7.69%,卻造成OP和Org-P分別減少8.14%和4.50%。
實驗期間,間歇淹水沉積物各形態(tài)磷含量與理化性質(zhì)間的相關(guān)性分析結(jié)果見表3。從表3可看出,Fe-P和TP與FeD呈顯著正相關(guān),但其與FeT顯著負相關(guān)(p<0.01)。Ex-P,Al-P,Ca-P,FeD均與Feox顯著正相關(guān),同時與FeT顯著負相關(guān)(p<0.05)。O-P與FeP,OM呈顯著正相關(guān),與pH顯著負相關(guān)。Org-P與FeP,OM顯著正相關(guān),與pH與FeT顯著負相關(guān)。
4.1 水位調(diào)控對沉積物理化性質(zhì)的影響
周期性水位調(diào)控顯著改變了沉積物pH值、OM及鐵鋁氧化物的含量(見表2)。自然干濕交替有利于沉積物OM的流失[11],沉積物OM首先通過濃度梯度差擴散進入上覆水,進而被降解為CO2或CH4[12]。水位交替上升下降促使OM發(fā)生好氧和厭氧生物降解,導(dǎo)致沉積物OM逐漸流失和減少。對本文而言,水位降至最低時,表層沉積物活躍的反硝化過程生成的HCO3-和OH-等離子[13]是導(dǎo)致上覆水和沉積物pH值呈上升趨勢的重要原因。
沉積物鐵鋁氧化物主要以無定形態(tài)和結(jié)晶態(tài)存在[14]。從表2可看出,水位調(diào)控改變了不同鐵鋁氧化物含量,Feox,FeD,Alox增加,FeP減少。這是因為,當(dāng)水位下降時,沉積物缺氧區(qū)的結(jié)晶態(tài)鐵鋁氧化物將被迅速氧化為Feox和Alox[15]。此后,低水位穩(wěn)定期間,沉積物較長時間暴露于好氧環(huán)境中,部分Feox和Alox逐漸老化和轉(zhuǎn)化為結(jié)晶態(tài)[13]。后續(xù)水位上升再次創(chuàng)造厭氧環(huán)境,促使無定形Feox和Alox轉(zhuǎn)化為結(jié)晶態(tài)[8]。但總體來看,水位周期性變化條件下結(jié)晶態(tài)鐵鋁氧化物轉(zhuǎn)化為Feox和Alox呈現(xiàn)出主導(dǎo)和不可逆趨勢。
4.2 水位調(diào)控對沉積物磷賦存的影響
水位調(diào)控前后,Org-P和活性磷(Ex-P+Al-P+Fe+P)均是間歇淹水和持續(xù)淹水沉積物的主要磷組分,這與曹琳等[16]對蓄水前后三峽消落區(qū)土壤磷的形態(tài)分級提取結(jié)果一致,表明水位調(diào)控不能改變沉積物各形態(tài)磷分布趨勢。然而,水位調(diào)控影響土壤磷賦存含量,淹水-落干可使三峽庫區(qū)消落帶土壤磷吸附容量增加約369 mg/kg[17]。水位調(diào)控改變沉積物理化性質(zhì),進而影響各形態(tài)磷賦存變化。Feox和Alox是磷的重要吸附點位[18],無論間歇淹水還是持續(xù)淹水沉積物,水位調(diào)控均提高了Feox和Alox含量(表2),Feox和Alox與磷的結(jié)合提高了沉積物Fe-P和Al-P含量(圖2)。
Ca-P移動性較差,但酸性環(huán)境下Ca-P也能分解[19]。水位調(diào)控后,沉積物pH值由弱酸性變?yōu)槿鯄A性(表2),酸度下降后,Ca-P分解減少,沉積增多,進而提高沉積物Ca-P含量。Org-P主要賦存于沉積物OM中,水位調(diào)控期間,伴隨OM流失,沉積物Org-P含量下降,流失的Org-P并通過氧化還原或生物降解成無機磷組分。水位下降時,O-P活化并被氧化生成Fe-P[20],水位調(diào)控期間,O-P活化和轉(zhuǎn)化時造成沉積物O-P減少(圖2)。
4.3 水位調(diào)控對沉積物生物可利用性磷的影響
溶解態(tài)Ex-P是藻類直接可利用磷,能夠通過沉積物-水界面輕易釋放進入上覆水[21]。Fe-P和Al-P能夠與OH-和其他無機磷化合物交換,維持浮游植物生長[22],也屬于藻類生物可利用磷。因此,Ex-P,Al-P,Fe-P是沉積物生物可利用磷(B-P)主要成分。對本文而言,B-P是TP主要成分,占TP含量的36.21%~46.64%(圖4)。進一步線性擬合結(jié)果顯示B-P與Feox顯著線性正相關(guān)(r2=0.56),與pH和OM弱相關(guān)。如上所述,pH,OM改變分別是沉積物Ca-P和Org-P賦存變化的重要原因,與B-P關(guān)系較弱。水位調(diào)控后Feox和Fe-P含量顯著上升是B-P與Feox高度線性相關(guān)的重要原因。除Ex-P,Al-P,Fe-P外,水位調(diào)控促進了Org-P轉(zhuǎn)化和O-P活化為活性無機磷組分,因此可將Org-P和O-P也視為B-P潛在來源。
表3 沉積物各形態(tài)磷與組成成分間相關(guān)性Table 3 Correlations of fractional phosphorus in different forms and sediment compositions
(1)水位調(diào)控導(dǎo)致沉積物理化性質(zhì)發(fā)生變化,調(diào)控速率越大,OM降幅越大。水位調(diào)控促進沉積物結(jié)晶態(tài)鐵氧化物向無定形鐵氧化物轉(zhuǎn)化,造成無定形鐵鋁氧化物含量上升。
(2)水位調(diào)控改變了沉積物各形態(tài)磷含量,Ex-P,Al-P,Fe-P,Ca-P,TP含量增加,Org-P和O-P含量減少。水位調(diào)控過程中,部分Org-P和O-P轉(zhuǎn)化為B-P組分。
(3)建議進一步通過現(xiàn)場觀測或圍隔研究驗證室內(nèi)實驗結(jié)論,獲得規(guī)律性認識;加強水位調(diào)控過程中水-沉積物微界面變化特征以及表層沉積物微生物群落和數(shù)量變化研究。
[1]吳起鑫,韓貴琳,唐 楊.水位變化對湖泊(水庫)消落帶生態(tài)環(huán)境影響研究進展[J].地球與環(huán)境,2009,37(4):446-453.(WU Qi-xin,HAN Gui-lin,TANG Yang.Effects of Water Level Fluctuations on Ecological Environment of Lake/Reservoir Riparian Zone:A Review.Earth and Environment,2009,37(4):446-453.(in Chinese))
[2]WANTZEN K M,ROTHHAUPT K,M?RTL M,et al.Ecological Effects of Water-level Fluctuations in Lakes:An Urgent Issue[J].Hydrobiologia,2008,613:1-4.
[3]QIAN Y C,LIANG X Q,CHEN Y X,et al.Significance of Biological Effects on Phosphorus Transformation Processes at the Water-sediment Interface under Different Environmental Conditions[J].Ecological Engineering,2011,37(6):816-825.
[4]PALMER-FELGATE E J,BOWES M J,STRATFORD C,et al.Phosphorus Release from Sediments in A Treatment Wetland:Contrast Between DET and EPC0 Methodologies[J].Ecological Engineering,2011,37(6):826-832.
[5]VAN DER HEIDE T,SMOLDERS A J P,LAMERS L P M,et al.Nutrient Availability Correlates with Bicarbonate Accumulation in Marine and Freshwater Sediments-Empirical Evidence from Pore Water Analyses[J].Applied Geochemistry,2010,25(12):1825-1829.
[6]LEIRA M,CANTONATI M.Effects of Water-level Fluctuations on Lakes:An Annotated Bibliography[J].Hydrobiologia,2008,613:171-184.
[7]LI D P,HUANG Y.Sedimentary Phosphorus Fractions and Bioavailability as Influenced by Repeated Sediment Resuspension[J].Ecological Engineering,2010,36(7):958-962.
[8]VICENTE I,ANDERSEN F ?,HANSEN H C B,et al.Water Level Fluctuations May Decrease Phosphate Adsorption Capacity of the Sediment in Oligotrophic High Mountain Lakes[J].Hydrobiologia,2010,651(1):253-264.
[9]喬勝英.土壤理化性質(zhì)實驗指導(dǎo)書[M].北京:中國地質(zhì)大學(xué)出版社,2012.(QIAO Sheng-yin.Instruction Book of Soil Experiment for Physical and Chemical Properties[M].Beijing:China University of Geosciences Press,2012.(in Chinese))
[10]鮑士旦.土壤理化分析實驗指導(dǎo)書[M].北京:中國農(nóng)業(yè)出版社,2000.(BAO Shi-dan.Instruction Book of Physical and Chemical Analysis and Experiment for Soil[M].Beijing:Chinese Agriculture Press,2000.(in Chinese))
[11]FUREY P C,NORDIN R N,MAZUMDER A.Water Level Drawdown Affects Physical and Biogeochemical Propertiesof Littoral Sediments of A Reservoir and A Natural Lake[J].Lake and Reservoir Management,2004,20(4):280-295.
[12]SUN G Z,ZHAO Y Q,ALLEN S.Enhanced Removal of Organic Matter and Ammonia-nitrogen in A Column Experiment of Tidal Flow Constructed Wetland System[J].Journal of Biotechnology,2005,115(2):189-197.
[13]RUST C M,MARJORIE A C,FLORA J R.Control of pH During Denitrification in Subsurface Sediment Microcosms Using Encapsulated Phosphate Buffer[J].Water Research,2000,34(5):1447-1454.
[14]BALDWIND S.The Phosphorus Composition of A Diverse Series of Sediments[J].Hydrobiologia,1996,335(1):63-73.
[15]DE GROOT C J C,VAN WIJCK.The Impact of Desiccation of A Freshwater Marsh(Garcines Nord,Camargue,France)on Sediment-water-vegetation Interactions[J].Hydrobiologia,1993,252:83-94.
[16]曹 琳,吉芳英,林 茂,等.三峽庫區(qū)干濕交替消落區(qū)土壤磷形態(tài)[J].長江流域資源與環(huán)境,2011,20(1):101-106.(CAO Lin,JI Fang-yin,LIN Mao,et al.Soil Phosphorous form Analysis in Fluctuating(Drywet Cycling)Zone of Three Gorges Reservoir Area[J].Resources and Environment in the Yangtze Basin,2011,20(1):101-106.(in Chinese))
[17]王里奧,黃 川,詹艷慧,等.三峽庫區(qū)消落帶淹水-落干過程土壤磷吸附-解吸及釋放研究.[J].長江流域資源與環(huán)境,2006,15(5):593-597.(WANG Li-ao,HUANG Chuan,ZHAN Yan-hui,et al.Flooding and Subsequent Air-drying on Adsorption,Desorption and Release of Phosphorus of Soil in Drawdown Areas in Three Gorges Reservoir[J].Resources and Environment in the Yangtze Basin,2006,15(5):593-597.(in Chinese))
[18]TAKEDA I,FUKUSHIMA A.Phosphorus Purification in A Paddy Field Watershed Using A Circular Irrigation System and the Role of Iron Compounds[J].Water Research,2004,38(19):4065-4074.
[19]JIN X C,WANG S R,PANG Y,et al.Phosphorus Fractions and the Effect of pH on the Phosphorus Release of the Sediments from Different Trophic Areas in Taihu Lake,China[J].Environmental Pollution,2006,139(2):288-295.
[20]馬利民,張 明,騰衍行,等.三峽庫區(qū)消落區(qū)周期性干濕交替環(huán)境對土壤磷釋放的影響[J].環(huán)境科學(xué),2008,29(4):1035-1039.(MA Li-min,ZHANG Ming,TENG Yan-hang,et al.Characteristics of Phosphorous Release from Soil in Periodic Alternately Waterlogged and Drained Environments at WFZ of the Three Gorges Reservoir[J].Environmental Science,2008,29(4):1035-1039.(in Chinese))
[21]RIBEIRO D C,MARTINS G,NOGUEIRA R,et al.Phosphorus Fractionation in Volcanic Lake Sediments(Azores-Portugal)[J].Chemosphere,2008,70:1256-1263.
[22]KOZERSKI H P,KLEEBERG A.The Sediments and the Benthic Pelagic Exchange in the Shallow Lake MUGGELSEE[J].International Review of Hydrobiology,1998,83:77-112.
(編輯:姜小蘭)
Impacts of Water Level Regulation on Estuary Sediment Phosphorus Storage and Bioavailability
TANG Xian-qiang1,2,3,WU Min1,2,3
(1.Basin Water Environmental Research Department,Changjiang River Scientific Research Institute,Wuhan 430010,China;2.Key Lab of Basin Water Resource and Eco-environmental Science in Hubei Province,Changjiang River Scientific Research Institute,Wuhan 430010,China;3.Collaborative Innovation Center for Geo-Hazards and Eco-Environment in Three Gorges Area of Hubei Province,Yichang 443002,China)
Continuously submerged and intermittently submerged sediments collected from Shendinghe River estuary of Danjiangkou reservoir,were employed to conduct the dynamic water level(WL)regulation experiments with 3 rates of change of water level(0 cm.d-1,3 cm.d-1and 6 cm.d-1).The whole experiments lasted three WL regulating cycles(nearly four months)and each single cycle included four WL dynamic phases:decline,stable,ascend and re-stable.The results show that:WL regulation promotes OM loss of sediment and results in the increase of pH value.When compared with the data without WL regulated control,3 cm.d-1and 6 cm.d-1WL regulations lead to the increase of 185.56%-204.92%(continuously submerged sediments)and185.28%-228.76%(intermittently submerged sediments)in concentrations of amorphous iron oxides,respectively.Furthermore,after WL regulation,concentrations of exchangeable phosphorus(Ex-P),aluminum bounded phosphorus(Al-P),iron bounded phosphorus(Fe-P),calcium bounded phosphorus(Ca-P)and total phosphorus(TP)increase in intermittently submerged and continuously submerged sediments,whereas OM loss,occluded phosphorus(O-P)activation and transformation,greatly contribute to the decline of organic phosphorus(Org-P)and O-P in sediment.With respect to the activation of Org-P and O-P under WL regulation,both of the two phosphorus fractions should be categorized into bio-available phosphorus components.
phosphorus;sediment;water level regulation;physical and chemical properties;activation
S151.93
A
1001-5485(2015)12-0008-06
10.11988/ckyyb.20140539
2014-07-02;
2014-09-06
國家自然科學(xué)基金項目(51209011,51379017);長江科學(xué)院技術(shù)開發(fā)與成果轉(zhuǎn)化推廣項目(CKZS2014013/SH)
湯顯強(1981-),男,湖北竹溪人,高級工程師,主要研究方向為水資源保護與水污染控制,(電話)027-82827263(電子信箱)ckyshj@126.com。