国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

環(huán)形軌自動(dòng)化制孔系統(tǒng)孔位修正方法

2015-01-08 06:03畢運(yùn)波涂國嬌沈立恒李汝鵬
關(guān)鍵詞:制孔孔位壁板

畢運(yùn)波,涂國嬌,方 偉,沈立恒,李汝鵬

(1.浙江大學(xué)機(jī)械工程學(xué)系,浙江杭州310027;2.浙江大學(xué)土木工程學(xué)系,浙江杭州310027)

環(huán)形軌自動(dòng)化制孔系統(tǒng)孔位修正方法

畢運(yùn)波1,涂國嬌1,方 偉2,沈立恒2,李汝鵬2

(1.浙江大學(xué)機(jī)械工程學(xué)系,浙江杭州310027;2.浙江大學(xué)土木工程學(xué)系,浙江杭州310027)

為了滿足大型飛機(jī)機(jī)身段壁板對接面區(qū)域的高質(zhì)量制孔要求,提出基于六軸聯(lián)動(dòng)環(huán)形軌自動(dòng)化制孔系統(tǒng)的孔位修正方法.該方法采用激光位移傳感器以非接觸測量的方式測量并求解得到基準(zhǔn)孔的法矢,結(jié)合視覺測量系統(tǒng)獲取的基準(zhǔn)孔孔位誤差,通過插值Coons曲面方法計(jì)算待加工孔的孔位誤差向量,并補(bǔ)償至理論坐標(biāo),實(shí)現(xiàn)孔位修正.利用筒狀飛機(jī)機(jī)身壁板模型對該方法進(jìn)行驗(yàn)證.結(jié)果表明,與雙線性插補(bǔ)方法相比,該方法綜合考慮了壁板外形表面曲率變化因素,孔位修正精度較高,保證了機(jī)身段壁板對接區(qū)域制孔的幾何精度要求.

環(huán)形軌自動(dòng)化制孔系統(tǒng);激光位移傳感器;法矢;Coons曲面;孔位修正

在飛機(jī)裝配過程中,飛機(jī)結(jié)構(gòu)件之間的連接通常以機(jī)械連接為主,而連接孔加工和裝配質(zhì)量對于提高連接精度、保證飛機(jī)使用壽命及安全性有重要影響.據(jù)統(tǒng)計(jì)可知,70%的飛機(jī)機(jī)體疲勞失效事故起因于結(jié)構(gòu)連接部位,其中80%的疲勞裂紋往往發(fā)生于連接孔處[1].為了提高飛機(jī)裝配質(zhì)量和效率,可以采用自動(dòng)化制孔設(shè)備改善連接孔的加工精度和質(zhì)量.環(huán)形軌自動(dòng)化制孔系統(tǒng)作為一種重要的自動(dòng)化制孔設(shè)備,主要用于實(shí)現(xiàn)機(jī)身段壁板對接面區(qū)域制孔.由于壁板對接面區(qū)域待加工孔的理論孔位與實(shí)際孔位之間存在偏差,導(dǎo)致末端執(zhí)行器難以實(shí)現(xiàn)精確定位.產(chǎn)品制造幾何誤差、溫度變化引起的熱變形誤差及自重導(dǎo)致的變形誤差等因素都可以導(dǎo)致孔位偏差.為了保證實(shí)際孔間距和排距的均勻分布,有必要對理論孔位置進(jìn)行修正.在對孔位修正技術(shù)的研究中,Zhu等[2]通過基于制孔區(qū)域的基準(zhǔn)孔誤差向量構(gòu)建雙線性誤差平面,實(shí)現(xiàn)了對制孔區(qū)域的孔位進(jìn)行線性插值補(bǔ)償.機(jī)身段壁板對接區(qū)域主要由二次曲面及三次曲面構(gòu)成,且孔位誤差與壁板的曲率有關(guān),故雙線性插值補(bǔ)償方法存在一定的局限性.

為了準(zhǔn)確表達(dá)機(jī)身段壁板對接面處的二次曲面和三次曲面,本文在構(gòu)建孔位誤差補(bǔ)償模型過程中引入了曲面法矢信息.在法矢計(jì)算的相關(guān)研究中,薛漢杰等[3]采用三點(diǎn)接觸式位移傳感器實(shí)現(xiàn)法向調(diào)整,但由于接觸式位移傳感器精度較低,法向調(diào)整精度較難保證.秦現(xiàn)生等[4]利用機(jī)翼表面上待鉆鉚點(diǎn)附近三點(diǎn)的坐標(biāo)表征鉆鉚區(qū)域的空間姿態(tài).為了防止由于某一點(diǎn)誤差較大而影響法矢的計(jì)算精度,目前較普遍的方法是根據(jù)待鉆鉚點(diǎn)附近四點(diǎn)的坐標(biāo)表征該點(diǎn)的法矢.張來喜等[5]提出的四點(diǎn)擬合球面算法,以球面近似代表制孔點(diǎn)區(qū)域曲面,并用制孔點(diǎn)在球面上的法向量近似代表制孔點(diǎn)的曲面法矢,但對于與球面曲率相差較大的曲面,法矢計(jì)算較復(fù)雜且精度較低.鄒冀華等[6]通過4個(gè)安裝高度一致的激光位移傳感器調(diào)整法向,雖然實(shí)現(xiàn)了高精度的法向調(diào)整,但對激光位移傳感器的裝配工藝要求提出了更高的要求.

針對以上問題,本文提出一種面向六軸聯(lián)動(dòng)環(huán)形軌自動(dòng)化制孔系統(tǒng)的孔位修正方法.該方法利用激光位移傳感器測距獲得基準(zhǔn)孔周圍區(qū)域的四點(diǎn)坐標(biāo),并計(jì)算得到基準(zhǔn)孔法矢;結(jié)合視覺測量系統(tǒng)測得的基準(zhǔn)孔位偏差,構(gòu)建孔位誤差補(bǔ)償模型,并利用該補(bǔ)償模型修正孔位理論坐標(biāo),從而提高制孔精度,保證制孔質(zhì)量.

1 環(huán)形軌自動(dòng)化制孔設(shè)備

環(huán)形軌自動(dòng)化制孔系統(tǒng)可以在程序驅(qū)動(dòng)下實(shí)現(xiàn)六軸聯(lián)動(dòng)的數(shù)字控制、加工孔深控制、壓腳壓力自動(dòng)氣動(dòng)調(diào)節(jié)、加工表面法向測量、孔位修正等功能.憑借導(dǎo)軌上的真空吸盤,可以吸附于飛機(jī)壁板進(jìn)行制孔,且制孔效率高、質(zhì)量好,使用較方便和靈活[7].如圖1所示,該系統(tǒng)主要由末端執(zhí)行器、環(huán)形軌道、保持架、下部托架等部件組成.

環(huán)形軌末端執(zhí)行器即環(huán)形軌制孔設(shè)備,可以實(shí)現(xiàn)在弧形段區(qū)間內(nèi)5自由度的自動(dòng)化制孔.如圖2所示,該設(shè)備由X向托板、A軸轉(zhuǎn)臺(tái)、Y向托板、B軸轉(zhuǎn)臺(tái)、Z1軸托板、Z2軸托板及壓腳、激光位移傳感器(法向檢測單元)、視覺測量系統(tǒng)等組成[8].

圖1 環(huán)形軌自動(dòng)化制孔系統(tǒng)Fig.1 Flexible track automatic drilling system

圖2 環(huán)形軌末端執(zhí)行器Fig.2 End-effector of flexible track automatic drilling system

2 孔位修正原理

在環(huán)形軌自動(dòng)化制孔系統(tǒng)中,首先視覺測量系統(tǒng)可以測量得到在視覺系統(tǒng)坐標(biāo)系下的基準(zhǔn)孔坐標(biāo)QT.考慮到視覺坐標(biāo)系通常與飛機(jī)坐標(biāo)系不重合,將QT轉(zhuǎn)化為在飛機(jī)坐標(biāo)系下的基準(zhǔn)孔實(shí)際坐標(biāo)Qt,并將Qt與離線編程系統(tǒng)輸出的基準(zhǔn)孔理論坐標(biāo)Q't比較,從而得到4個(gè)基準(zhǔn)孔誤差向量ΔPi(i=1,2,3,4).末端執(zhí)行器上的4個(gè)激光位移傳感器可以測得每個(gè)基準(zhǔn)孔周圍的4點(diǎn)坐標(biāo)(xi,yi,zi),由此可以求解出各基準(zhǔn)孔法矢ni.結(jié)合ΔPi和ni(i=1,2,3,4)擬合Coons曲面構(gòu)建誤差曲面函數(shù)ΔQ(u,ω),利用待加工孔坐標(biāo)計(jì)算出孔位誤差ΔQ*,并補(bǔ)償?shù)皆摽椎睦碚撟鴺?biāo)Q上進(jìn)行孔位修正,得到新的理論坐標(biāo)Q*,計(jì)算過程如圖3所示.

3 孔位修正方法

3.1 法矢計(jì)算

法向檢測單元是制孔孔位法向修正的重要部件,由位于壓腳前端的4個(gè)激光位移傳感器A1、A2、A3和A4組成,激光位移傳感器能夠以非接觸測量的方式精確測得與被測物體之間的距離.標(biāo)定后的法向檢測單元可以確定激光位移傳感器的位置坐標(biāo)以及激光發(fā)射的方向向量[9].可以確定飛機(jī)壁板上激光投影點(diǎn)Q1、Q2、Q3和Q4的坐標(biāo)(xi,yi,zi)(i=1,2,3,4).投影點(diǎn)連線的中點(diǎn)分別為M1、M2、M3和M4,如圖4所示為待加工孔法矢的計(jì)算示意圖.

由幾何學(xué)基礎(chǔ)可知,M1、M2、M3和M4的坐標(biāo)為兩端點(diǎn)坐標(biāo)之和的1/2,結(jié)合三角形中位線定理可知,M1M2∥Q1Q3∥M3M4和M1M4∥Q2Q4∥M2M3.根據(jù)平行四邊形判定原理,可以推得M1、M2、M3和M4位于同一平面且組成平行四邊形.平面M1M2M3M4的單位法矢n可以由平行四邊形任意相鄰邊的向量積計(jì)算得到:

圖4 法矢計(jì)算示意圖Fig.4 Calculation of normal vectors

同理,可以分別得到B、C、D三點(diǎn)的切矢分別為τ2、τ3、τ4.

切矢的模長影響曲線段的豐滿程度,如圖6所示.圖中,t為圖中實(shí)線首末端點(diǎn)切矢的模長,2t、10t、20t分別為其他3條曲線首末端點(diǎn)的切矢模長.由圖6可得,當(dāng)端點(diǎn)坐標(biāo)相同時(shí),切矢模長越大,曲線越豐滿.為了得到理想的曲線段,一般切矢模長不應(yīng)超過弦長的3倍[11],在實(shí)際應(yīng)用中以擬合曲線最接近實(shí)際曲線的切矢模長為理想的切矢模長.

3.2 基準(zhǔn)孔位誤差計(jì)算

由視覺測量系統(tǒng)可得視覺系統(tǒng)坐標(biāo)系下飛機(jī)壁板上4個(gè)基準(zhǔn)孔的坐標(biāo).通過建立視覺系統(tǒng)坐標(biāo)系和飛機(jī)坐標(biāo)系之間的轉(zhuǎn)換關(guān)系,得到在飛機(jī)坐標(biāo)系下基準(zhǔn)孔的實(shí)際坐標(biāo)Qt[7].將Qt與離線編程中基準(zhǔn)孔的理論坐標(biāo)Q't之間的偏差ΔP作為孔位誤差[10],計(jì)算方法如下所示:

由式(2)可得飛機(jī)壁板上基準(zhǔn)孔的孔位誤差,可以表示為:ΔPi=(Δxi,Δyi,Δzi)(i=1,2,3,4).

3.3 孔位誤差曲面擬合和修正

3.3.1 切矢計(jì)算 采用構(gòu)造雙線性Coons曲面的方法擬合誤差曲面函數(shù).首先以Ferguson曲線擬合制孔區(qū)域垂直于航向的2條理想邊界曲線,然后以直線擬合航向的2條理想邊界曲線.

擬合Ferguson曲線需要知道各端點(diǎn)的切矢,如圖5所示為切矢計(jì)算示意圖.分別以A、B、C、D表示各基準(zhǔn)孔,P1、P2、P3和P4表示各基準(zhǔn)孔坐標(biāo)(xi,yi,zi)(i=1,2,3,4).由3.1節(jié)所述的法矢計(jì)算方法可得各基準(zhǔn)孔的法矢分別為:n1、n2、n3和n4.設(shè)向量AB→和n1構(gòu)造的平面為α,np為平面α的法向量,則A點(diǎn)的單位切矢為

圖5 切矢計(jì)算示意圖Fig.5 Calculation of tangential vectors

圖6 切矢模長對曲線段豐滿程度的影響Fig.6 Effects of tangent vectors length have on curves

3.3.2 Ferguson曲線擬合 Ferguson首先在飛機(jī)設(shè)計(jì)中應(yīng)用了參數(shù)三次曲線[12-13],曲線段的表達(dá)式為

切矢為

式中:ω∈[0,1.0];a0、a1、a2、a3為待定矢量,給定曲線的首末端點(diǎn)P1、P2及切矢τ1、τ2,可以擬合曲線如下所示:

式中:

同理,擬合P3、P4之間的曲線有

式中:

擬合后AB曲線方程為

CD曲線方程為

3.3.3 曲線嚴(yán)格上凸條件 根據(jù)凸曲線定理可知,曲線嚴(yán)格上凸的充分條件為曲線的Hessian矩陣嚴(yán)格負(fù)定[14].根據(jù)3.3.2節(jié)可得,F(xiàn)erguson曲線方程f=f(x,y,z),Hessian矩陣為

設(shè)N=?2f,若對于任何向量U=[u1,u2,u3]T都有UTNU<0,則稱該Hessian矩陣負(fù)定,該條件可以用于驗(yàn)證并調(diào)整曲線切矢.

3.3.4 Coons曲面構(gòu)造 由于環(huán)形軌自動(dòng)化制孔系統(tǒng)的加工對象多為圖7所示的飛機(jī)機(jī)身段壁板對接面區(qū)域,該類壁板沿飛機(jī)航向機(jī)身對接段區(qū)域的曲率變化較小,故P1P4、P2P3可以近似擬合成直線,表達(dá)式如下所示:

圖7 曲線擬合示意圖Fig.7 Interpolating curves of fuselage panel

插值雙線性Coons曲面[15]為

式中:

3.3.5 孔位修正 如圖8所示,ΔP1、ΔP2、ΔP3、ΔP4為各基準(zhǔn)孔的實(shí)際位置與理論位置的偏差向量.

根據(jù)3.3.4節(jié)所述的方法,可以擬合得到如下所示的制孔區(qū)域誤差曲面函數(shù):

式中:

圖8 孔位修正圖Fig.8 Hole position correction

其中,

將制孔點(diǎn)坐標(biāo)投影到圖8所示的u、ω方向,可得該制孔點(diǎn)在u、ω方向的坐標(biāo)u*、ω*,并將u*、ω*代入式(15),可得待加工區(qū)域任一點(diǎn)P0的誤差向量:

式中:

將ΔQ*補(bǔ)償至待加工孔的理論坐標(biāo)上即可實(shí)現(xiàn)孔位修正.

4 算例及試驗(yàn)

4.1 法矢求取算例

為了驗(yàn)證上述法矢計(jì)算方法的正確性與合理性,以下式所示的橢圓曲面為例進(jìn)行說明:

式中:a=3000,b=2000.M(420.791,1980.228,-53.445)為曲面上待加工孔位坐標(biāo),且M點(diǎn)處的曲面外法矢的理論值nthe=[0.094,0.996,0].如圖9所示,記各位移傳感器的安裝平面為β,傳感器探頭位置A1、A2、A3、A4構(gòu)成中心為A0的87 mm×92 mm的矩形,A0點(diǎn)和待加工點(diǎn)M均處于末端執(zhí)行器的軸線上,實(shí)際檢測過程中點(diǎn)M位置由控制系統(tǒng)讀出.傳感器以直線A0M的方向?qū)η孢M(jìn)行檢測.其中A0M=91.367,可得A0坐標(biāo)為(441.081,2069.314,-53.445),且4個(gè)位移傳感器的檢測值為A1M1=95.328,A2M2=80.689,A3M3=88.259,A4M4=102.085;求得在M點(diǎn)處的曲面外法矢為ncal=[-0.094,-0.996,0],nthe與測量所得的外法矢ncal夾角的余弦值如下式所示:nthencal/(|nthe‖ncal|)≈1.該式表明,nthe與ncal的夾角近似為0,即兩者近似平行,證明該法矢求取算法具有較高的精度.

圖9 法矢求取示意圖Fig.9 Calculation of normal vector

4.2 孔位修正算例

為了驗(yàn)證上述孔位修正算法的正確性與合理性,以下式所示的圓筒形飛機(jī)壁板為例進(jìn)行驗(yàn)證.

具體步驟如下.

1)如圖10所示,取壁板上夾角∠AOB=60°的區(qū)域?yàn)檠芯繉ο?其中A、B、C和D為該制孔區(qū)域的基準(zhǔn)孔,孔位坐標(biāo)及法矢如表1所示.AD和BC均為直線且相互平行,圖中點(diǎn)為1~16均勻分布于制孔區(qū)域的孔位,即孔間距和排距分布均勻.

圖10 孔位示意圖Fig.10 Positions of all holes

表1 基準(zhǔn)孔位的理論坐標(biāo)及法矢Tab.1 Nominalcoordinatesandnormalvectorsofreference holes

2)假設(shè)由于安裝誤差及制孔誤差等因素的影響導(dǎo)致基準(zhǔn)孔A、B、C、D偏移至如圖10所示A*、B*、C*和D*的位置.基準(zhǔn)孔的偏差如表2所示,為了保證待加工孔的間距和排距分布均勻,1~16孔偏移后的理想坐標(biāo)值如表3所示.

表2 4個(gè)基準(zhǔn)孔偏差Tab.2 Erroroffourreferenceholes

表3 偏移后各孔坐標(biāo)Tab.3 Coordinatesof16holesaftertransformation

表4 孔位修正法插補(bǔ)后各孔坐標(biāo)Tab.4 Coordinatesof16holesaftererrorinterpolating withmethodofpositioncorrection

表5 雙線性插補(bǔ)法修正后的各孔坐標(biāo)Tab.5 Coordinatesof16holesaftererrorinterpolating withdoublelinearpositioncorrectionmethod

3)分別利用雙線性插補(bǔ)和本文所述的孔位修正方法對待加工區(qū)域內(nèi)的16個(gè)孔位進(jìn)行孔位修正,并將修正后的坐標(biāo)投影到壁板上.如表4和5所示分別為采用上述2種方法進(jìn)行孔位修正后的各孔在壁板上的投影坐標(biāo).將投影點(diǎn)的坐標(biāo)與表3中1~16孔的坐標(biāo)比較得到的誤差曲線分布如圖11所示.圖中,ΔE1為未修正時(shí)各孔的位置偏差,ΔE2為利用本文所述孔位修正方法插補(bǔ)后各孔的位置偏差,ΔE3為利用雙線性插補(bǔ)方法進(jìn)行孔位修正后各孔的位置偏差.

圖11 各孔定位精度比較圖Fig.11 Comparison of position errors of16 holes

在不進(jìn)行補(bǔ)償?shù)那闆r下,與各孔的理論值相比,最大孔位偏差可達(dá)5.586 mm,而最小孔位偏差有3.302 mm;當(dāng)采用雙線性插補(bǔ)方法進(jìn)行補(bǔ)償后,最大孔位偏差減小至2.442 mm,而最小孔位偏差為0.175 mm;當(dāng)采用本文方法進(jìn)行誤差補(bǔ)償后,最大孔位偏差進(jìn)一步減小,僅為0.628 mm,而最小孔位偏差只有0.005 mm,孔位精度得到明顯提高.比較以上結(jié)果可知,本文所述的孔位修正方法可以明顯地改善孔位間的相對位置精度,且孔位修正效果優(yōu)于線性插補(bǔ),滿足機(jī)身段對接區(qū)域壁板制孔的幾何精度要求.

5 結(jié) 論

(1)本文提出新的曲面法矢計(jì)算方法,能夠快速、有效地獲取壁板加工表面法矢信息.

(2)基于壁板加工表面法矢和孔位視覺測量數(shù)據(jù),構(gòu)建新的孔位誤差曲面補(bǔ)償模型,能夠有效地修正孔位理論坐標(biāo),保證制孔精度.

(3)算例結(jié)果表明,本文提出的孔位修正方法綜合考慮了壁板外形表面的曲率變化,孔位修正的效果優(yōu)于線性插補(bǔ)方法.

):

[1]許國康.自動(dòng)鉆鉚技術(shù)及其在數(shù)字化裝配中的應(yīng)用[J].航空制造技術(shù),2005(6):45-49.

XU Guo-kang.Automatic riveting technology and the apply in digital assembly[J].Aeronautical Manufacturing Technology,2005(6):45-49.

[2]ZHU W,QU W.An off-line programming system for robotic drilling in aerospace manufacturing[J].International Journal of Advanced Manufacturing Technology,2013,68(9-12):2535-2545.

[3]薛漢杰,張敬佩.蒙皮類部件鉆孔法向的測量和調(diào)整[J].航空制造技術(shù),2010(23):60-62.

XUE Han-jie,ZHANG Jing-pei.Normal measurement and adjustment for skin drilling[J].Aeronautical Manufacturing Technology,2010(23):60-62.

[4]秦現(xiàn)生,汪文旦,樓阿莉,等.大型壁板數(shù)控制孔的三點(diǎn)快速調(diào)平算法[J].航空學(xué)報(bào),2007,28(6):1455-1460.

QIN Xian-sheng,WANG Wen-dan,LOU A-li,et al.Three-point bracket regulation algorithm for drilling and riveting of aerofoil[J].Acta Aeronautica et Astronautica Sinica,2007,28(6):1455-1460.

[5]張來喜,王興松.曲面柔性制孔機(jī)器人末端執(zhí)行器及其法向姿態(tài)調(diào)整的一種新算法[J].東南大學(xué)學(xué)報(bào):英文版,2012,28(1):29-34.

ZHANG Lai-xi,WANG Xing-song.A novel algorithm of normal attitude regulation for the designed end-effector of a flexible drilling robot[J].Journal of Southeast University:English Edition,2012,28(1):29-34.

[6]鄒冀華,周萬勇,韓先國.飛機(jī)裝配中基于3-RPS的并聯(lián)機(jī)構(gòu)法向調(diào)整算法[J].中國機(jī)械工程,2011,22(5):557-560.

ZOU Ji-hua,ZHOU Wan-yong,HAN Xian-guo.Normal adjusting algorithm of a 3-RPS parallel mechanism in airplane assembly[J].China Mechanical Engineering,2011,22(5):557-560.

[7]BI Yun-bo,JIANG Yi-hang,LI Yong-chao,et al.A new flexible track automatic drilling system[J].Mechanics and Materials,2013,433-435:2178-2183.

[8]江一行.環(huán)形軌自動(dòng)化制孔系統(tǒng)開發(fā)及其運(yùn)動(dòng)學(xué)方程解析[D].杭州:浙江大學(xué),2014.

JIANG Yi-hang.Development andkinematics equation analysis of flexible track automatic drilling system[D].Hangzhou:Zhejiang University,2014.

[9]畢運(yùn)波,李永超,顧金偉,等.機(jī)器人自動(dòng)化制孔系統(tǒng)[J].浙江大學(xué)學(xué)報(bào):工學(xué)版,2014,48(8):1427-1433.BI Yun-bo,LI Yong-chao,GU Jin-wei,et al.Robotic automatic drilling system[J].Journal of Zhejiang University:Engineering Science,2014,48(8):1427-1433.

[10]TIAN Wei,ZHOU Wei-xue,ZHOU Wei,et al.Autonormalization algorithm for robotic precision drilling system in aircraft component assembly[J].Chinese Journal of Aeronautics,2013,26(2):495-500.

[11]FAUX I D,PRAT M J.Computational geometry for design and manufacture[M].Chichester:Ellis Horwood Ltd,1979.

[12]FERGUSON J C.Multivariable curve interpolation,report No.D2-22504[R].Seattle:The Boeing Company,1963.

[13]FERGUSON J C.Multivariable curve interpolation [J].Journal of the ACM,1964,11(2):221-228.

[14]BOYD S,VANDENBERGHE L.Convex optimization [M].England:Cambridge University Press,1906.

[15]朱心雄.自由曲線曲面造型技術(shù)[M].北京:科學(xué)出版社,2000.

Correcting method of hole position for flexible track automatic drilling system

BI Yun-bo1,TU Guo-jiao1,F(xiàn)ANG Wei2,SHEN Li-heng2,LI Ru-peng2

(1.Department of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China;2.Department of Civil Engineering,Zhejiang University,Hangzhou 310027,China)

A method of hole position correction for a flexible track automatic drilling system with six axes was proposed in order to meet the high drilling accuracy requirement of aerospace fuselage join assembly.The method was presented by measuring and computing the normal vector of the reference holes through four non-contact laser displacement sensors.The error of reference holes can be obtained based on the vision measurement system.A position correction method using error data of reference holes was developed by interpolating the Coons surface.Then the position correction can be realized by adding error to the nominal coordinates of the holes.The method was tested on a cylinder model.Results indicate that the method accounting for the changing curvature of the panel shape has higher accuracy of hole position correction and can effectively meet the geometric accuracy requirement of aircraft panels compared with the double linear interpolating method.

flexible track automatic drilling system;laser displacement sensor;normal vector;Coons surface;hole position correction

TH12

A

1008-973X(2015)10-1863-07

2014-09-05.浙江大學(xué)學(xué)報(bào)(工學(xué)版)網(wǎng)址:www.journals.zju.edu.cn/eng

國家自然科學(xué)基金資助項(xiàng)目(51275463).

畢運(yùn)波(1979—),男,副教授,從事飛機(jī)數(shù)字化裝配技術(shù)的研究.ORCID:0000-0002-6270-3030.E-mail:zjubyb@zju.edu.cn

猜你喜歡
制孔孔位壁板
孔洞缺陷位置對灰?guī)r力學(xué)特性影響的數(shù)值模擬研究
自動(dòng)制孔孔位修正技術(shù)應(yīng)用
淺析飛機(jī)裝配自動(dòng)進(jìn)給鉆應(yīng)用及精度控制
難加工材料(CFRP/Ti)疊層自適應(yīng)制孔研究
機(jī)器人制孔系統(tǒng)與制孔工藝參數(shù)優(yōu)化方法研究
基于Kriging模型插值的孔位修正策略
某大型飛機(jī)復(fù)合材料壁板工藝仿真及驗(yàn)證技術(shù)
機(jī)身框與長桁、蒙皮的連接形式研究
機(jī)翼下壁板裂紋擴(kuò)展分析
機(jī)翼下壁板裂紋擴(kuò)展分析
双辽市| 平乡县| 临安市| 三明市| 克拉玛依市| 玉环县| 陇川县| 法库县| 育儿| 巫溪县| 马鞍山市| 汽车| 历史| 历史| 兴化市| 菏泽市| 江陵县| 武宣县| 化州市| 德令哈市| 泰来县| 五莲县| 神农架林区| 普安县| 措勤县| 怀集县| 清徐县| 任丘市| 潼关县| 平潭县| 洛川县| 北票市| 稻城县| 福清市| 周至县| 涞源县| 柯坪县| 胶南市| 宝山区| 霍州市| 澎湖县|