李海龍,畢曉瑩
血管性認知障礙(vascular cognitive impairment,VCI)是目前人群中僅次于阿爾茨海默?。ˋlzheimer's disease,AD)導致癡呆的第二位疾病,隨著腦血管疾病發(fā)病率的不斷升高以及動脈粥樣硬化、高血壓、糖尿病等血管性危險因素在人群中愈發(fā)普遍,血管性認知障礙所導致的癡呆已成為影響患者生存質(zhì)量的重要疾病[1]。目前血管性認知障礙的發(fā)病機制不明,缺血低灌注、血腦屏障破壞、神經(jīng)營養(yǎng)解偶聯(lián)等最終導致的以少突膠質(zhì)細胞死亡和髓鞘蛋白丟失為特征的腦白質(zhì)脫髓鞘病變被認為是其重要的病理生理過程[1-2]。病理學研究顯示,損傷腦白質(zhì)中的氧化應激和炎癥反應標記物(如細胞因子和黏附分子)的水平與血管性認知障礙相關(guān)[3-5]。與此同時,損傷區(qū)域還出現(xiàn)了小膠質(zhì)細胞(microglia)的激活和反應性的星形膠質(zhì)細胞(reactive astrocytes,RAs),且伴有外周血中上述標記物的上升[6-9]。因此,血管性認知障礙的炎癥假說認為這種缺血缺血氧環(huán)境下的小膠質(zhì)細胞過度激活介導的炎癥反應可破壞血腦屏障,并造成腦白質(zhì)的損傷(white matter lesions,WMLs),促進血管性認知障礙的發(fā)生發(fā)展。本文就缺氧誘導小膠質(zhì)細胞激活進而介導非特異性炎癥反應導致白質(zhì)脫髓鞘損傷的機制研究做一綜述。
小膠質(zhì)細胞是中樞神經(jīng)系統(tǒng)中的固有免疫細胞,對病原體和組織損傷起首要的反應。激活的小膠質(zhì)細胞可產(chǎn)生大量的有助于清除病原感染和壞死組織的促炎介質(zhì),包括細胞因子、趨化因子、活性氧簇(reactive oxygen species,ROS)和一氧化氮。然而長期過度的小膠質(zhì)細胞激活可導致病理性炎癥觸發(fā)神經(jīng)毒性反應進而引起神經(jīng)退行性疾病或腫瘤形成[10-11]。同時這種過度活化狀態(tài)的小膠質(zhì)細胞也是腦內(nèi)腫瘤壞死因子(tumor necrosis factor,TNF)α、白細胞介素(interleukin,IL)-1β、IL-6等具有神經(jīng)毒性的促炎因子的主要來源[12]。因此,小膠質(zhì)細胞的過度激活是血管性認知障礙中慢性持續(xù)炎癥反應啟動的關(guān)鍵環(huán)節(jié)。
在正常腦內(nèi),小膠質(zhì)細胞正?;罨癄顟B(tài)的維持依賴于神經(jīng)元持續(xù)地表達一種CX3趨化因子配體1(CX3 chemokine ligand1,CX3CL1)作用于小膠質(zhì)細胞上的特有CX3趨化因子受體(CX3 chemokine receptors,CX3CR1)[13-14]。有研究在短暫大腦中動脈阻斷(middle cerebral artery occlusion,MCAO)動物模型中發(fā)現(xiàn),CX3CR1敲除的小鼠腦梗死區(qū)面積及血腦屏障破壞程度均輕于對照組,且IL-1β和TNF-α信使核糖核酸(messenger ribonucleic acid,mRNA)的表達均低于對照組[15]。這與Cardona[16]與Corona等[17]發(fā)現(xiàn)在給予細菌脂多糖(lipopolysaccharides,LPS)注射的CX3CR1敲除小鼠腦組織中IL-1β表達較未敲除的對照組明顯升高的結(jié)果并不一致。另一項研究發(fā)現(xiàn),在MCAO小鼠模型中,與對照組相比,CX3CR1缺失的小鼠除了梗死面積減少外,還展現(xiàn)出較少的神經(jīng)元凋亡和活性氧水平,同時小膠質(zhì)細胞更多表現(xiàn)為可替代激活狀態(tài)(M2型)且伴有TNF-α、IL-1β、IL-6表達的明顯下降[18]。因此,在缺血缺氧環(huán)境下,CX3CR1信號缺失可能通過促進小膠質(zhì)細胞可替代激活狀態(tài)(M2型)表達來抑制小膠質(zhì)細胞經(jīng)典激活狀態(tài)(M1型)從而發(fā)揮神經(jīng)保護作用,這對減緩小膠質(zhì)細胞過度激活對神經(jīng)元或少突膠質(zhì)細胞造成的損害可能具有重要意義。
在血管性認知障礙中,慢性腦缺血被認為是導致WMLs的主要病因。一些研究報道,激活的小膠質(zhì)細胞在WMLs的病理生理過程中十分關(guān)鍵[19-20]。劉勇等在體外實驗中的研究發(fā)現(xiàn),通過構(gòu)建針對CX3CR1的短發(fā)夾核糖核酸(short hairpin ribonucleic acid,shRNA)并轉(zhuǎn)導低氧條件下培養(yǎng)的小膠質(zhì)細胞,可使低氧誘導的小膠質(zhì)細胞增殖減緩,且細胞因子TNF-α和IL-1β表達下降,同時伴有絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)與蛋白激酶C(protein kinase C,PKC)總蛋白的表達下降,提示p38MAPK/PKC通路的激活可能參與了缺氧所介導的小膠質(zhì)細胞激活和炎癥因子釋放[21]。這與在體實驗中,CX3CR1敲除的MCAO模型小鼠病變側(cè)腦內(nèi)上述炎性細胞因子的表達下降結(jié)果一致,但不同于LPS誘導小膠質(zhì)細胞激活模型中CX3CR1敲除后IL-1β表達升高。這提示CX3CR1信號缺失對機體在受外界刺激后炎癥因子水平的影響并不一致,這可能與小膠質(zhì)細胞激活的啟動因素不同有關(guān),特別是在不同的病理條件下,CX3CL1-CX3CR1信號對小膠質(zhì)細胞的調(diào)節(jié)作用可能有所不同,但其作用機制目前仍不十分清楚。有學者猜測,CX3CL1的膜結(jié)合形式是維持小膠質(zhì)細胞靜息狀態(tài)的主要分子,可抑制IL-1β和TNF-α的釋放,而可溶解形式CX3CL1與CX3CR1結(jié)合可激活小膠質(zhì)細胞釋放以IL-1β為主的炎性細胞因子[22]。
TOLL樣受體4(Toll-like receptor 4,TLR 4)主要表達于小膠質(zhì)細胞,可被多種內(nèi)源性或外源性因子所激活,通過進一步激活下游的信號通路,參與小膠質(zhì)細胞介導的神經(jīng)炎癥反應[23]。目前的研究已發(fā)現(xiàn)TLR4依賴的小膠質(zhì)細胞激活參與了多種神經(jīng)免疫疾病及退行性疾病的慢性炎癥過程[24-25]。此外,近年來的研究發(fā)現(xiàn)TLR4所介導的炎癥反應還參與了腦缺血性疾病的發(fā)生。Caso等[26-27]首次對TLR4在永久MCAO小鼠模型中的作用進行了研究,結(jié)果發(fā)現(xiàn)TLR4敲除的小鼠在缺血創(chuàng)傷后IL-1β水平降低,同時伴有梗死區(qū)面積減小及反映血腦屏障破壞程度的基質(zhì)金屬蛋白酶(matrix metalloproteinase-9,MMP-9)表達減少。體外研究中同樣發(fā)現(xiàn),缺氧可使小膠質(zhì)細胞TLR4表達升高[28]。這說明TLR4信號參與了缺血性炎癥反應及其造成的腦組織破壞。此外,有研究在脊髓缺血再灌注損傷的模型中發(fā)現(xiàn),TLR4敲除可減緩脊髓中小膠質(zhì)細胞的活化程度及炎癥因子的釋放[29]。在術(shù)后認知障礙的研究中發(fā)現(xiàn),隨著TLR4和炎癥因子表達水平恢復正常,認知功能隨之改善[30]。因此,缺血條件下TLR4高表達對小膠質(zhì)細胞的活化同樣具有一定的調(diào)節(jié)作用,且可能損害認知功能,但尚缺乏慢性缺血低灌注狀態(tài)下的研究。
目前缺血缺氧導致小膠質(zhì)細胞TLR4高表達及其激活下游炎性信號通路的機制尚不十分清楚。其中缺血缺氧所介導的熱休克蛋白60(heat shock proteins,HSP60)和高遷移率蛋白-1(high-mobility group box 1,HMGB1)被認為是缺血缺氧下與TLR4相結(jié)合而參與炎癥反應的潛在內(nèi)源性配體[31-32]。TLR4所介導的信號主要通過髓樣分化因子88(myeloid differentiation factor 88,MyD88)和干擾素TIR結(jié)構(gòu)域銜接蛋白(Toll/interleukin-1receptor-domain-containing adaptorinducing interferon-β,TRIF)兩個通路進行傳遞。體外研究發(fā)現(xiàn),在小膠質(zhì)細胞中,低氧可使LPS介導的干擾素調(diào)節(jié)因子3(interferon regulatory factor-3,IRF-3)的激活及隨后β干擾素的表達增強,但同時抑制LPS通過MyD88通路激活核轉(zhuǎn)錄因子kappa B(nucleartranscriptionfactor kappa B,NF-κB)[28]。提示低氧對TLR4下游的信號通路調(diào)節(jié)可能與其他刺激有所不同。而在缺血預適應對腦缺血性損傷的保護機制研究中發(fā)現(xiàn),大鼠經(jīng)短暫的缺血預適應后,TRIF/IRF-3表達水平升高,盡管NF-κB的表達同時升高,但其在細胞質(zhì)中始終維持著一種不活躍狀態(tài)[33]。因此,在缺血缺氧條件下TLR4下游信號通路的表達變化可能是小膠質(zhì)細胞所介導的炎癥反應強弱的關(guān)鍵,其中TRIF信號通路對炎癥介導的缺血性損傷具有一定的保護作用。鑒于在血管性認知障礙中炎癥因子水平與認知損害密切相關(guān),通過調(diào)節(jié)TLR4下游信號的表達可能在抑制血管性認知障礙發(fā)生發(fā)展中具有重要作用。
近些年來的研究發(fā)現(xiàn),由靜息狀態(tài)激活后的小膠質(zhì)細胞可表現(xiàn)為兩種不同活化狀態(tài):經(jīng)典激活狀態(tài)(M1型)和選擇性激活狀態(tài)(M2型)。M2型小膠質(zhì)細胞通過產(chǎn)生抗炎細胞因子及神經(jīng)營養(yǎng)因子發(fā)揮神經(jīng)保護作用促進內(nèi)穩(wěn)態(tài)的恢復,而在外界損傷刺激下,小膠質(zhì)細胞激活常表現(xiàn)為M1型進而釋放大量的炎性細胞因子及ROS,而過度釋放的TNF-α還可作用于小膠質(zhì)細胞上的TNF-R1促使其持續(xù)激活介導慢性炎癥的發(fā)生[34]。臨床研究發(fā)現(xiàn),伴有小膠質(zhì)細胞活化標記物YKL-40和sCD14持續(xù)升高的輕度認知損害患者更易發(fā)展為血管性癡呆(vascular dementia,VaD)[35]。因而小膠質(zhì)細胞的持續(xù)活化是促進血管性認知障礙發(fā)生發(fā)展的重要因素。
以少突膠質(zhì)細胞死亡為主的髓鞘脫失及再生障礙是血管性認知障礙進行性發(fā)展的重要病理學特征。在腦血管疾病及多種血管性危險因素造成的缺血缺氧條件下,小膠質(zhì)細胞可被激活為M1狀態(tài),進而釋放大量炎癥因子對少突膠質(zhì)細胞及神經(jīng)元的軸突造成損害。過度釋放的TNF-α和IL-1β作為主要炎癥因子可進一步作用于神經(jīng)元或少突膠質(zhì)細胞上的相應受體產(chǎn)生炎性損傷作用。TNF-α激活其受體TNF-R1可通過半胱天冬酶信號通路誘導細胞凋亡[36]。在初生小鼠中,當暴露于低氧環(huán)境時,腦室周圍白質(zhì)少突膠質(zhì)細胞上的TNF-R1表達增多,TNF-α可與之結(jié)合加強其介導少突膠質(zhì)細胞的凋亡[19]。體外研究還發(fā)現(xiàn),來自TNF-R1/TNFR2敲除的小鼠中獲得的少突膠質(zhì)細胞祖細胞能夠抵抗由LPS介導的小膠質(zhì)細胞毒性作用[37]。IL-1R1在低氧時也有表達升高,IL-1β與之結(jié)合后盡管并不引起細胞凋亡,但過度表達的IL-1β可通過與神經(jīng)干細胞上的IL-1R1結(jié)合激活NF-κB信號可抑制海馬的神經(jīng)再生循環(huán),甚至導致動物的抑郁行為[38]。因此,低氧條件下TNF-R1在少突膠質(zhì)細胞上的過度表達從而介導TNF-α所引起的少突膠質(zhì)細胞凋亡以及IL-1β作用于神經(jīng)干細胞所導致的神經(jīng)再生障礙可能是血管性認知障礙WMLs發(fā)生的重要機制。與M1型小膠質(zhì)細胞不同的是,M2型小膠質(zhì)細胞對腦白質(zhì)脫髓鞘損傷中少突膠質(zhì)細胞的分化具有驅(qū)動作用,且為髓鞘再生所必需,其釋放的活化素A(activin-A)促進少突膠質(zhì)細胞前體細胞(oligodendrocyte precursor cells,OPCs)向少突膠質(zhì)細胞的分化[39]。由此可見,適當?shù)卣{(diào)節(jié)小膠質(zhì)細胞的活化狀態(tài)可能有助于減少缺血缺氧條件下的少突膠質(zhì)細胞損傷并促進髓鞘再生修復。
近些年的研究發(fā)現(xiàn),慢性缺血缺氧所導致的腦白質(zhì)損傷主要是由于OPCs的成熟終止以致不能夠正常分化為少突膠質(zhì)細胞進而形成髓鞘,且可能是血管性癡呆中腦白質(zhì)脫髓鞘損傷后髓鞘再生障礙的重要原因[40-41]。腦內(nèi)多種細胞源性的神經(jīng)營養(yǎng)因子對OPCs向少突膠質(zhì)細胞的分化成熟修復髓鞘具有促進作用[42-44]。因此,在缺血缺氧微環(huán)境下,改善低水平的神經(jīng)營養(yǎng)因子表達可能有助于修復血管性認知障礙損傷的白質(zhì)。
腦內(nèi)神經(jīng)營養(yǎng)因子種類和來源十分復雜,其中神經(jīng)膠質(zhì)細胞是其主要來源,其神經(jīng)保護及修復髓鞘的作用與抑制炎癥因子的促凋亡作用密切相關(guān)。Wang Y等[45]在缺血缺氧腦損傷模型中發(fā)現(xiàn),神經(jīng)生長因子(nerve growth factor,NGF)和腦源性神經(jīng)生長因子(brainderived neurotrophic factor,BDNF)表達水平顯著降低,同時伴TNF-α和IL-1β的表達增高。這提示小膠質(zhì)細胞激活釋放的炎性細胞因子與神經(jīng)營養(yǎng)因子對缺血性損傷起相反的調(diào)節(jié)作用。大量釋放的TNF-α可與少突膠質(zhì)細胞及OPCs上的TNFR1結(jié)合造成細胞損傷,而與TNFR2結(jié)合則具有神經(jīng)保護作用。體外研究發(fā)現(xiàn),TNF-α作用于TNFR2后可激活磷脂酰肌醇3激酶-蛋白激酶B/Akt通路介導星形膠質(zhì)細胞源性的白血病抑制因子(leukemia inhibitory factor,LIF)產(chǎn)生,從而促進共培養(yǎng)的OPCs分化為髓鞘堿性蛋白表達陽性的成熟少突膠質(zhì)細胞[42]。與TNFR2作用相似的是,胰島素樣生長因子1(insulin-like growth factor-1,IGF-1)也可通過激活磷脂酰肌醇3激酶-蛋白激酶B/Akt通路進而阻斷TNF-α誘導的線粒體凋亡來保護OPCs從而促進其分化[46]。此外,盡管小膠質(zhì)細胞被認為是導致缺血后腦組織炎性損傷的主要細胞,但在短暫腦缺血后恢復靜息狀態(tài)小膠質(zhì)細胞可通過釋放IGF-1發(fā)揮神經(jīng)保護作用[47]。IL-1β敲除的小鼠可伴有小膠質(zhì)細胞和星形膠質(zhì)細胞生成IGF-1減少以至其腦內(nèi)急性脫髓鞘損傷后少突膠質(zhì)細胞成熟障礙[48]。因此,在缺血后炎癥反應中,炎癥因子除了對組織造成損害外,還具有一定介導神經(jīng)營養(yǎng)因子表達促進OPCs及少突膠質(zhì)細胞分化成熟的作用,同時神經(jīng)營養(yǎng)因子對抗炎癥因子所誘導的凋亡具有神經(jīng)保護作用,這一系列相互的調(diào)節(jié)作用在促進神經(jīng)元再生及髓鞘修復中有望成為有效的治療策略。
近年來,炎性機制在癡呆的發(fā)病機制中的作用越來越受到重視。與AD病理中Aβ沉積誘導的慢性炎癥致神經(jīng)元變性不同的是,在血管性認知障礙中,其慢性炎癥反應常由多種血管性危險因素導致的缺血缺氧所引起,且病理改變多以腦室旁深部白質(zhì)病變?yōu)樘卣鳌P∧z質(zhì)細胞作為中樞神經(jīng)系統(tǒng)中起免疫監(jiān)視的主要細胞,其在慢性缺血缺氧條件下的持續(xù)激活必然是血管性認知障礙發(fā)生發(fā)展的關(guān)鍵環(huán)節(jié)。小膠質(zhì)細胞激活所釋放的多種細胞因子能夠通過與相應受體結(jié)合從而產(chǎn)生多種形式的生物學效應,參與少突膠質(zhì)細胞的凋亡及髓鞘的脫失。這一病理生理過程的調(diào)控十分復雜,本文僅對小膠質(zhì)細胞激活介導的炎癥反應及其在血管性認知障礙少突膠質(zhì)細胞損傷及修復中的作用進行了綜述,在缺血性炎性損傷方面為未來有關(guān)血管性認知障礙的基礎和臨床研究提供了參考。缺血缺氧對小膠質(zhì)細胞激活的調(diào)節(jié)機制、小膠質(zhì)細胞不同活化狀態(tài)相互轉(zhuǎn)化的機制以及OPCs分化成熟障礙的機制等值得更深入的研究。此外,小膠質(zhì)細胞激活介導的氧化應激反應等非炎性因素在血管性認知障礙中的作用也值得進一步研究。
1 Iadecola C. The pathobiology of vascular dementia[J].Neuron, 2013, 80:844-866.
2 Brickman AM, Siedlecki KL, Muraskin J, et al. White matter hyperintensities and cognition:testing the reserve hypothesis[J]. Neurobiol Aging, 2011, 32:1588-1598.
3 Candelario-Jalil E, Thompson J, Taheri S, et al. Matrix metalloproteinases are associated with increased blood-brain barrier opening in vascular cognitive impairment[J]. Stroke, 2011, 42:1345-1350.
4 Back SA, Kroenke CD, Sherman LS, et al. White matter lesions defined by diffusion tensor imaging in older adults[J]. Ann Neurol, 2011, 70:465-476.
5 Fernando MS, Simpson JE, Matthews F, et al.White matter lesions in an unselected cohort of the elderly:molecular pathology suggests origin from chronic hypoperfusion injury[J]. Stroke, 2006,37:1391-1398.
6 Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly:astrocytic, microglial and oligodendrocyte precursor cell responses[J]. Neuropathol Appl Neurobiol, 2007, 33:410-419.
7 Bai Z, Stamova B, Xu H, et al. Distinctive RNA expression profiles in blood associated with Alzheimer disease after accounting for white matter hyperintensities[J]. Alzheimer Dis Assoc Disord,2014, 28:226-233.
8 Rouhl RP, Damoiseaux JG, Lodder J, et al. Vascular inflammation in cerebral small vessel disease[J].Neurobiol Aging, 2012, 33:1800-1806.
9 Gallacher J, Bayer A, Lowe G, et al. Is sticky blood bad for the brain?:Hemostatic and inflammatory systems and dementia in the Caerphilly Prospective Study[J]. Arterioscler Thromb Vasc Biol, 2010,30:599-604.
10 Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease[J]. Nat Rev Neurol, 2010,6:193-201.
11 Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration[J].Cell, 2010, 140:918-934.
12 Block ML, Zecca L, Hong JS. Microgliamediated neurotoxicity:uncovering the molecular mechanisms[J]. Nat Rev Neurosci, 2007, 8:57-69.
13 Hanisch UK, Kettenmann H. Microglia:active sensor and versatile effector cells in the normal and pathologic brain[J]. Nat Neurosci, 2007, 10:1387-1394.
14 Biber K, Neumann H, Inoue K, et al. Neuronal'On' and 'Off' signals control microglia[J]. Trends Neurosci, 2007, 30:596-602.
15 Denes A, Ferenczi S, Halasz J, et al. Role of CX3CR1(fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse[J]. J Cereb Blood Flow Metab, 2008, 28:1707-1721.
16 Cardona AE, Pioro EP, Sasse ME, et al. Control of microglial neurotoxicity by the fractalkine receptor[J].Nat Neurosci, 2006, 9:917-924.
17 Corona AW, Huang Y, O'Connor JC, et al. Fractalkine receptor(CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide[J].J Neuroinflammation, 2010, 7:93.
18 Tang Z, Gan Y, Liu Q, et al. CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke[J]. J Neuroinflammation, 2014, 11:26.
19 Deng Y, Lu J, Sivakumar V, et al. Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats[J]. Brain Pathol,2008, 18:387-400.
20 Boer K, Troost D, Jansen F, et al. Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex[J]. Neuropathology,2008, 28:577-590.
21 Liu Y, Zhao T, Yang Z, et al. CX3CR1 RNAi inhibits hypoxia-induced microglia activation via p38MAPK/PKC pathway[J]. Int J Exp Pathol, 2014, 95:153-157.22 Wolf Y, Yona S, Kim KW, et al. Microglia, seen from the CX3CR1 angle[J]. Front Cell Neurosci, 2013, 7:26.23 Okun E, Griffioen KJ, Lathia JD, et al. Toll-like receptors in neurodegeneration[J]. Brain Res Rev,2009, 59:278-292.
24 Song M, Jin J, Lim JE, et al. TLR4 mutation reduces microglial activation, increases Abeta deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease[J]. J Neuroinflammation, 2011,8:92.
25 Howell OW, Rundle JL, Garg A, et al. Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis[J]. J Neuropathol Exp Neurol, 2010, 69:1017-1033.
26 Caso JR, Pradillo JM, Hurtado O, et al. Tolllike receptor 4 is involved in subacute stressinduced neuroinflammation and in the worsening of experimental stroke[J]. Stroke, 2008, 39:1314-1320.27 Caso JR, Pradillo JM, Hurtado O, et al. Tolllike receptor 4 is involved in brain damage and inflammation after experimental stroke[J]. Circulation,2007, 115:1599-1608.
28 Ock J, Jeong J, Choi WS, et al. Regulation of Toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia[J]. J Neurosci Res, 2007, 85:1989-1995.
29 Bell MT, Puskas F, Agoston VA, et al. Tolllike receptor 4-dependent microglial activation mediates spinal cord ischemia-reperfusion injury[J].Circulation, 2013, 128(11 Suppl 1):S152-156.
30 Wang Y, He H, Li D, et al. The role of the TLR4 signaling pathway in cognitive deficits following surgery in aged rats[J]. Mol Med Rep, 2013, 7:1137-1142.
31 Brea D, Blanco M, Ramos-Cabrer P, et al. Toll-like receptors 2 and 4 in ischemic stroke:outcome and therapeutic values[J]. J Cereb Blood Flow Metab,2011, 31:1424-1431.
32 Qiu J, Xu J, Zheng Y, et al. High-mobility group box 1 promotes metalloproteinase-9 upregulation through Toll-like receptor 4 after cerebral ischemia[J]. Stroke,2010, 41:2077-2082.
33 Li H, Jin M, Lv T, et al. Mechanism of focal cerebral ischemic tolerance in rats with ischemic preconditioning involves MyD88- and TRIF-dependent pathways[J]. Exp Ther Med, 2013, 6:1375-1379.
34 Kuno R, Wang J, Kawanokuchi J, et al. Autocrine activation of microglia by tumor necrosis factoralpha[J]. J Neuroimmunol, 2005, 162:89-96.
35 Olsson B, Hertze J, Lautner R, et al. Microglial markers are elevated in the prodromal phase of Alzheimer's disease and vascular dementia[J]. J Alzheimers Dis, 2013, 33:45-53.
36 Nakazawa T, Nakazawa C, Matsubara A, et al. Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma[J]. J Neurosci, 2006, 26:12633-12641.
37 Li J, Ramenaden ER, Peng J, et al. Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present[J]. J Neurosci, 2008,28:5321-5330.
38 Koo JW, Russo SJ, Ferguson D, et al. Nuclear factorkappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior[J]. Proc Natl Acad Sci USA, 2010, 107:2669-2674.
39 Miron VE, Boyd A, Zhao JW, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination[J]. Nat Neurosci, 2013,16:1211-1218.
40 Segovia KN, McClure M, Moravec M, et al. Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury[J]. Ann Neurol, 2008,63:520-530.
41 Miyamoto N, Maki T, Pham LD, et al. Oxidative stress interferes with white matter renewal after prolonged cerebral hypoperfusion in mice[J]. Stroke,2013, 44:3516-3521.
42 Fischer R, Wajant H, Kontermann R, et al.Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor[J]. Glia, 2014, 62:272-283.
43 VonDran MW, Singh H, Honeywell JZ, et al. Levels of BDNF impact oligodendrocyte lineage cells following a cuprizone lesion[J]. J Neurosci, 2011, 31:14182-14190.
44 Cui QL, Fragoso G, Miron VE, et al. Response of human oligodendrocyte progenitors to growth factors and axon signals[J]. J Neuropathol Exp Neurol, 2010,69:930-944.
45 Wang Y, Cao M, Liu A, et al. Changes of inflammatory cytokines and neurotrophins emphasized their roles in hypoxic-ischemic brain damage[J]. Int J Neurosci,2013, 123:191-195.
46 Pang Y, Zheng B, Fan LW, et al. IGF-1 protects oligodendrocyte progenitors against TNFalphainduced damage by activation of PI3K/Akt and interruption of the mitochondrial apoptotic pathway[J].Glia, 2007, 55:1099-1107.
47 Lalancette-Hebert M, Gowing G, Simard A, et al.Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain[J]. J Neurosci,2007, 27:2596-2605.
48 Mason JL, Suzuki K, Chaplin DD, et al. Interleukin-1beta promotes repair of the CNS[J]. J Neurosci, 2001,21:7046-7052.
【點睛】
小膠質(zhì)細胞在腦缺血損傷后的極化(M1型與M2型)對腦白質(zhì)髓鞘損傷及修復具有不同作用和機制。本文對小膠質(zhì)細胞與血管性認知障礙白質(zhì)損傷的關(guān)系進行了綜述,為進一步尋找血管性認知障礙的治療靶點提供參考。