朱文麗 吳軍
Notch信號通路在神經(jīng)系統(tǒng)疾病中的研究進(jìn)展
朱文麗 吳軍
Notch信號通路調(diào)節(jié)發(fā)育中的多個細(xì)胞過程,尤其在神經(jīng)系統(tǒng)的生長發(fā)育中起著重要作用,如調(diào)控膠質(zhì)細(xì)胞再生、神經(jīng)發(fā)生、神經(jīng)突起形成等。因此,Notch信號的異常將導(dǎo)致多種神經(jīng)系統(tǒng)疾病。本文就Notch信號通路的結(jié)構(gòu)、功能、調(diào)節(jié)神經(jīng)系統(tǒng)發(fā)育及所致神經(jīng)系統(tǒng)疾病進(jìn)行綜述。
Notch信號通路;神經(jīng)系統(tǒng)發(fā)育;神經(jīng)系統(tǒng)疾病
人體器官及組織的發(fā)育和維持需要細(xì)胞間不斷地相互作用和通信,其中Notch信號通路就是一個主要涉及細(xì)胞與細(xì)胞間通信的信號通路。Notch信號通路是一種進(jìn)化上高度保守的細(xì)胞間通信途徑,最初被發(fā)現(xiàn)是由于該突變型等位基因?qū)е鹿壍某峋壋霈F(xiàn)切口[1],隨后在脊椎動物及無脊椎動物的胚胎發(fā)育中發(fā)現(xiàn)Notch信號通路在此過程中起著關(guān)鍵作用。Notch信號通路在許多細(xì)胞過程中也有明確的作用,如成體生物中多種細(xì)胞類型的分化、活化、凋亡、增殖及左右不對稱、區(qū)室界限形成、體節(jié)形成和血管生成[2-3]等。Notch信號通路對多種器官系統(tǒng)具有明確的重要性,尤其在神經(jīng)系統(tǒng)和心血管系統(tǒng)。本文根據(jù)最新研究進(jìn)展,主要闡述Notch信號通路的結(jié)構(gòu)、功能,其與神經(jīng)系統(tǒng)發(fā)育的關(guān)系及其異常所致的神經(jīng)系統(tǒng)疾病。
1.1 Notch受體 Notch信號通路由Notch受體、Notch配體及CSL(CBF1/RBP-j/Su(H)/Lag-1)等組成。哺乳動物存在4個Notch受體(Notch1-4),其為具有高度保守區(qū)域的Ⅰ型單次跨膜糖蛋白,是相對分子質(zhì)量(Mr)約為300 000的異二聚體分子,由胞外區(qū)、跨膜區(qū)及胞內(nèi)區(qū)組成。Notch蛋白的胞外區(qū)都包含29~36個串聯(lián)的表皮生長因子(epidermal growth factor ,EGF)樣重復(fù)序列(其中一些參與調(diào)節(jié)EGF與配體間的相互作用),在其后是包括3個富含半胱氨酸的Lin12-Notch重復(fù)序列(LNR)和1個含異二聚體結(jié)構(gòu)域(HD)的獨特的負(fù)調(diào)控區(qū)域,該區(qū)域通過隱藏和保護(hù)金屬蛋白酶S2裂解位點來防止Notch受體出現(xiàn)非配體依賴性的激活[4]。Notch的跨膜區(qū)內(nèi)含S3蛋白水解位點,該位點的水解繼發(fā)于S2位點的水解,由γ-分泌酶復(fù)合物的蛋白水解亞基早老素蛋白(presenilin)介導(dǎo),釋放具有活性的Notch胞內(nèi)結(jié)構(gòu)域(Notch intracellular domain,NICD)。Notch胞內(nèi)區(qū)包含1個RAM (RBP-j kappa associated molecular)結(jié)構(gòu)域、若干個錨蛋白(ankyrin,ANK)樣重復(fù)序列、1個轉(zhuǎn)錄激活區(qū)(transcriptional activation domain,TAD)、兩個核定位序列(nuclear location sequence,NLS)及1個脯氨酸-谷氨酸-絲氨酸-蘇氨酸富集區(qū)(proline- glutamate- serine-threonine rich region,PEST)序列。RAM結(jié)構(gòu)域和ANK重復(fù)序列已被確認(rèn)與CSL(CBF1/RBP-j/Su(H)/Lag-1)轉(zhuǎn)錄因子作用有關(guān);TAD主要存在于Notch1和Notch2中,參與激活下游基因的表達(dá);PEST序列富含脯氨酸、谷氨酸、絲氨酸及蘇氨酸殘基,與泛素介導(dǎo)的Notch胞內(nèi)段降解有關(guān)[5]。
1.2 Notch配體 Notch配體也為Ⅰ型跨膜糖蛋白,在果蠅中為Delta、Serrate,線蟲中為Lag2,故又被稱為DSL(Delta-Serrate-Lag-2)蛋白,哺乳動物共有5種經(jīng)典的Notch配體,即Delta-like(Dll)1、3、4和Jagged1、2,它們分別同源于果蠅的Delta和Serrate配體。這些配體的胞膜外區(qū)含有數(shù)個串聯(lián)的EGF樣重復(fù)序列及1個保守的富含半胱氨酸的DSL序列,該序列在與Notch受體的相互作用中起關(guān)鍵作用,而其胞內(nèi)區(qū)結(jié)構(gòu)較短且無明顯相似性。除了經(jīng)典配體外,還有人報道存在一些活化或抑制Notch信號通路的非經(jīng)典Notch配體[6],它們包括DNER(Delta and Notch-like epidermal growth factor-related receptor)、黏著分子F3/接觸蛋白(Contactin)1、NB-3/Contactin6和Dlk1/2(Delta-like 1/2同系物)等。
1.3 Notch信號通路的傳遞及效應(yīng)因子 Notch信號通路與其他信號通路相比結(jié)構(gòu)較簡單,轉(zhuǎn)導(dǎo)時不需要第二信使和蛋白激酶的參與。Notch信號通路的活化需要Notch蛋白進(jìn)行3次水解,第一次在高爾基體內(nèi)被Furin樣轉(zhuǎn)化酶切割S1位點形成兩個片段,分別為180 000含胞外區(qū)的大片段和120 000含跨膜區(qū)和胞內(nèi)區(qū)的小片段,然后兩者通過Ca2+依賴性的非共價鍵結(jié)合并定位至細(xì)胞膜形成異源二聚體。當(dāng)臨近細(xì)胞表面上的Notch配體與受體結(jié)合后,Notch受體發(fā)生兩次蛋白水解,首先激活金屬蛋白酶家族的腫瘤壞死因子α轉(zhuǎn)換酶(tumor necrosis factor α-converting enzyme, TACE),TACE在靠近包膜外的S2位點切割Notch受體,釋放大部分胞外區(qū),由此導(dǎo)致跨膜區(qū)和胞內(nèi)區(qū)的構(gòu)型發(fā)生變化,暴露S3位點,誘導(dǎo)Presenilin在此位點切割Notch受體,釋放Notch胞內(nèi)結(jié)構(gòu)域(NICD)入細(xì)胞質(zhì)。具有核定位信號的NICD進(jìn)入細(xì)胞核與CSL家族的DNA結(jié)合蛋白相互作用來啟動對Notch靶基因的轉(zhuǎn)錄,如Hes(Hairy-Enhancer of Split)家族和Hey(Hairy-Enhancer of Split related with YRPW motif)家族[7]。與經(jīng)典的Notch信號通路不同,非經(jīng)典的Notch信號通路可被非經(jīng)典的配體啟動,或不需要Notch受體的裂解。此外,在某些形式的非經(jīng)典信號中沒有CSL的參與,這可能反映了其與其他信號通路相互作用的上游NICD-CSL交互[6,8]。
Notch信號通路廣泛分布于成年生物的組織和器官中,并調(diào)控其發(fā)育過程。在大腦中,它可以維持神經(jīng)干細(xì)胞的穩(wěn)態(tài)和神經(jīng)上皮細(xì)胞尖-基底的極性[9-10];在神經(jīng)嵴發(fā)育過程中,調(diào)控心臟流出道處對應(yīng)的神經(jīng)嵴前體的形狀[11],促進(jìn)施萬前體細(xì)胞向施萬細(xì)胞轉(zhuǎn)化,促進(jìn)施萬細(xì)胞增殖并抑制髓鞘形成[12]等;脊椎、脊髓及體節(jié)的發(fā)育主要通過Notch靶基因的振蕩來進(jìn)行體節(jié)分割[13-14];在頜面結(jié)構(gòu)的形成中,Notch信號的喪失會導(dǎo)致腭裂、舌腭融合及其他頜面畸形,亦可引起存在頜面畸形的Alagille綜合征[15];Notch信號在內(nèi)耳發(fā)育的多個方面都起到重要作用,如決定毛細(xì)胞和支持細(xì)胞的命運,促進(jìn)感覺細(xì)胞的分化、成熟[16-17]等;眼晶狀體中的纖維細(xì)胞分化、晶狀體的形成及其形狀大小、鞏膜及角膜等多個眼部結(jié)構(gòu)的發(fā)育亦與Notch信號通路相關(guān)[18];在心血管系統(tǒng)的發(fā)育中,Notch信號與心臟形狀、心肌細(xì)胞分化、心室小梁形成、心臟電傳導(dǎo)、瓣膜發(fā)育、冠狀血管發(fā)育及心臟流出道發(fā)育有關(guān)[19-20],此外,Notch1信號對于心外膜的維護(hù)、發(fā)育以及心外膜源性細(xì)胞的分化至關(guān)重要,敲除心外膜Notch1的胚胎將會出現(xiàn)心包出血,這可能與心外膜的完整性破壞及心外膜細(xì)胞外基質(zhì)發(fā)育落后有關(guān)[21];在造血系統(tǒng)(包括免疫及淋巴系統(tǒng)),Notch信號與發(fā)育中的第二次造血高峰有關(guān),并且調(diào)控B淋巴細(xì)胞和T淋巴細(xì)胞發(fā)育的平衡,維持造血干細(xì)胞和髓細(xì)胞的穩(wěn)態(tài)[22],調(diào)節(jié)脾臟中T細(xì)胞系限制的祖細(xì)胞的產(chǎn)生和邊緣區(qū)B細(xì)胞的發(fā)育以及CD8+樹突狀細(xì)胞的穩(wěn)態(tài)[23];在消化系統(tǒng),Notch信號調(diào)節(jié)食管上皮細(xì)胞的穩(wěn)態(tài)[24],調(diào)控腸道細(xì)胞的增殖和分化,調(diào)節(jié)小鼠膽管基板的形成及肝內(nèi)膽管的形態(tài),并控制肝臟發(fā)育并調(diào)節(jié)膽道分化[25-26],胰腺內(nèi)分泌細(xì)胞通過Notch信號的旁側(cè)抑制作用來抑制其相鄰細(xì)胞向內(nèi)分泌細(xì)胞分化,維持胰腺內(nèi)分泌前體細(xì)胞穩(wěn)態(tài),抑制末端腺泡細(xì)胞分化,以及決定胰腺上皮細(xì)胞的分支和芽的大小[27];在內(nèi)分泌系統(tǒng),Notch信號調(diào)節(jié)垂體的增殖或生長,促進(jìn)促黑素細(xì)胞和促性腺素細(xì)胞分化[28-29],調(diào)節(jié)甲狀腺細(xì)胞和C細(xì)胞祖細(xì)胞的數(shù)量及其分化并調(diào)節(jié)內(nèi)分泌功能[30];在生殖系統(tǒng),前列腺分葉所需的祖細(xì)胞有Notch1的表達(dá),前列腺間質(zhì)細(xì)胞的生長也需Notch2和Dlk1表達(dá)[31],維持睪丸間質(zhì)祖細(xì)胞的穩(wěn)態(tài),調(diào)節(jié)精子生成,通過肌動蛋白獨立的細(xì)胞質(zhì)流和卵母細(xì)胞的細(xì)胞化來控制卵母細(xì)胞的生長等[32-33];此外,有人報道Notch信號還可調(diào)節(jié)皮膚上皮細(xì)胞的黏附、增殖、毛囊或乳頭狀突起的分化和穩(wěn)態(tài)等[34]。
Notch信號通路在神經(jīng)系統(tǒng)發(fā)育過程中和成人大腦中神經(jīng)發(fā)生和膠質(zhì)細(xì)胞再生均有調(diào)節(jié)作用[35]。有文獻(xiàn)顯示Notch信號可以抑制發(fā)育中神經(jīng)元的軸突生長,反之,抑制Notch信號可促進(jìn)軸突延長,而且Notch信號在體外培養(yǎng)的海馬神經(jīng)元中的激活與轉(zhuǎn)錄因子Hes1和Hes5的表達(dá)增加有關(guān)[36],Hes轉(zhuǎn)錄因子調(diào)節(jié)與細(xì)胞分化相關(guān)的多個基因的表達(dá),其中之一就是堿性螺旋-環(huán)-螺旋轉(zhuǎn)錄因子神經(jīng)元素3(neurogenin3,Ngn3),神經(jīng)元中Notch信號的活化使Ngn3表達(dá)減少,而Ngn3參與中樞神經(jīng)系統(tǒng)的不同發(fā)育過程。在脊髓發(fā)育中,Ngn3表達(dá)在膠質(zhì)前體細(xì)胞中,并參與成熟少突膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的正常分化[37]。在雞胚中,Ngn3可促進(jìn)早期視網(wǎng)膜的神經(jīng)形成[38]。在下丘腦,Ngn3可調(diào)節(jié)數(shù)個神經(jīng)元群的分化,其中包括促黑皮素(proopiomelanocortin,POMC)神經(jīng)元和神經(jīng)肽Y(neuropetideY,NPY)神經(jīng)元,它們在維持能量平衡和控制食物攝入中起重要作用[39]。在海馬神經(jīng)元中,Ngn3促進(jìn)樹突生長并調(diào)節(jié)傳入性GABA能突觸的數(shù)量。此外,Notch信號通路在神經(jīng)干細(xì)胞(neural stem cell,NSC)的維持和分化中也起著重要作用,通過旁側(cè)抑制作用使最初的同質(zhì)細(xì)胞群分化為不同類型的細(xì)胞,在哺乳動物大腦發(fā)育的生發(fā)區(qū),NSCs起初只是進(jìn)行增殖,然后部分細(xì)胞亞群開始進(jìn)行神經(jīng)細(xì)胞的分化,而其他細(xì)胞仍保持為NSCs,在此過程中,NSCs亞群表達(dá)原神經(jīng)基因(如Mash1/Ascl1、Ngn1、Ngn2等)來誘導(dǎo)神經(jīng)細(xì)胞的分化。在這些進(jìn)行神經(jīng)細(xì)胞分化的細(xì)胞中,Notch配體如Dll1表達(dá)上調(diào),其反饋性激活臨近細(xì)胞的Notch信號通路,致使臨近細(xì)胞的神經(jīng)分化被抑制從而保持為NSCs。對于哺乳動物的神經(jīng)前體細(xì)胞,Notch信號通路的活化在不同細(xì)胞發(fā)育時間上發(fā)揮著兩個截然不同的效應(yīng),即Notch信號在神經(jīng)元形成期間抑制神經(jīng)元形成,促進(jìn)神經(jīng)前體細(xì)胞的維持[40]。此外,Notch信號可促進(jìn)周圍神經(jīng)系統(tǒng)和視網(wǎng)膜的膠質(zhì)細(xì)胞再生。
4.1 阿爾茨海默病(Alzheimer disease,AD) AD是大腦皮質(zhì)的一種變性疾病,其起病隱襲,癡呆進(jìn)行性發(fā)展,臨床表現(xiàn)為記憶障礙、失語、失用、失認(rèn)、抽象思維和計算損害、人格和行為改變等,嚴(yán)重影響患者的生活和社會能力。此病病因不明,可能與遺傳、環(huán)境、年齡等多種因素有關(guān)。有人提出,與年齡相關(guān)的人類疾病中出現(xiàn)Notch基因的表達(dá),表現(xiàn)最顯著的就是AD,這是由于Notch信號的傳導(dǎo)和淀粉樣前體蛋白(amyloid precursor protein,APP)的處理都需要γ-分泌酶切割[41]。一項原位雜交研究顯示編碼Notch和早老素的mRNA在正常大腦的海馬和內(nèi)嗅神經(jīng)元中有明顯表達(dá),而且在皮層神經(jīng)元和浦肯野細(xì)胞中也有表達(dá)。值得注意的是,Notch的切割在AD患者的腦組織中明顯增加,而且一些研究已經(jīng)提出,在正常大腦中分解Notch1和APP的γ-分泌酶的活性增加與年齡相關(guān),而年齡是散發(fā)型AD的危險因素[42]。此外,家族性AD相關(guān)的早老素基因突變的神經(jīng)元培養(yǎng)常常顯示Notch信號出現(xiàn)異常改變[43],一些研究也報道了Notch與APP之間的相互作用導(dǎo)致AD進(jìn)行性的神經(jīng)退行性變[44]。不幸的是,到目前為止γ-分泌酶抑制劑對AD的潛在治療作用仍不是很明確。
4.2 伴皮質(zhì)下梗死和白質(zhì)腦病的常染色體顯性遺傳性腦動脈病(cerebral autosome dominant arteriopathy with subcortical infarcts and leukoencephalopathy,CADASIL) CADASIL是一種全身性的動脈病,臨床上以中年起病、反復(fù)發(fā)作的皮質(zhì)下缺血性腦卒中、偏頭痛、精神異常、逐漸出現(xiàn)多發(fā)性腦梗死和癡呆為特征,是家族性腦卒中和血管性癡呆的原因之一。有研究證實,CADASIL的發(fā)生與19q12上Notch3基因的多位點突變有關(guān),Notch3的大部分突變發(fā)生在其胞外EGF樣重復(fù)序列的半胱氨酸殘基處,使二硫鍵形成受損,這可能是引起腦內(nèi)血管平滑肌細(xì)胞的基底膜內(nèi)出現(xiàn)Notch3胞外區(qū)成分異常沉積的原因,這些異常沉積物在電子顯微鏡下為顆粒狀嗜鋨物質(zhì)[45]。還有證據(jù)表明,由邊緣酶引起的Notch3受體EGF樣重復(fù)序列中O型巖藻糖殘基的糖基化障礙出現(xiàn)在CADASIL患者的Notch3突變體中,這可能影響配體的相互作用或轉(zhuǎn)運[46]。但是CADASIL相關(guān)的Notch3突變是否導(dǎo)致Notch3信號功能的缺失或增強還不是很清楚。
4.3 神經(jīng)膠質(zhì)瘤 神經(jīng)膠質(zhì)瘤是起源于神經(jīng)膠質(zhì)細(xì)胞(包括放射狀膠質(zhì)細(xì)胞)的腦部腫瘤,包括室管膜瘤、少突膠質(zhì)瘤和星形細(xì)胞瘤。上述疾病瘤細(xì)胞常呈浸潤性快速增長,且由于其對化療和放療不敏感且復(fù)發(fā)率高,預(yù)后較差。有人提出Notch信號可能參與了神經(jīng)膠質(zhì)瘤的形成和/或惡化,例如,神經(jīng)干細(xì)胞系Notch受體胞內(nèi)結(jié)構(gòu)區(qū)的過度表達(dá)足以將其轉(zhuǎn)變?yōu)橐粋€致癌細(xì)胞系[47]。還有研究發(fā)現(xiàn)膠質(zhì)母細(xì)胞瘤即最惡性膠質(zhì)瘤其特點之一就是異常的Notch信號導(dǎo)致表皮生長因子受體(epidermal growth factor receptor,EGFR)異常[48]。雖然不是所有神經(jīng)膠質(zhì)瘤的發(fā)生均源于Notch信號的中斷,但Notch信號與維持腫瘤干細(xì)胞及促進(jìn)其增殖密切相關(guān),當(dāng)神經(jīng)膠質(zhì)瘤,尤其是浸潤性膠質(zhì)母細(xì)胞瘤的兩個特征性過程即缺氧和血管生成發(fā)生時,Notch信號就會被活化。Notch信號在低惡性級別的腫瘤中可能呈中度表達(dá)并且為非活性的,但在膠質(zhì)母細(xì)胞瘤中則高度表達(dá)且具有活性,而且Notch信號通過維持腫瘤干細(xì)胞的相對靜止?fàn)顟B(tài)來增強神經(jīng)膠質(zhì)瘤的抗輻射性,從而使這些細(xì)胞對治療不敏感[49]。然而,Notch信號也可能限制腦膠質(zhì)瘤的生長及嚴(yán)重程度,如在一些髓母細(xì)胞瘤中,Notch1可抑制其生長,這可能與其環(huán)境依賴性有關(guān)。
4.4 多發(fā)性硬化(multiple sclerosis,MS) MS是以中樞神經(jīng)系統(tǒng)白質(zhì)脫髓鞘病變?yōu)樘攸c的自身免疫性疾病,臨床表現(xiàn)為空間和時間的多發(fā)性,其確切病因及發(fā)病機制仍不明確。在早期的研究中發(fā)現(xiàn),MS病變部位反應(yīng)性增生的星形膠質(zhì)細(xì)胞有Jagged1的表達(dá),少突膠質(zhì)細(xì)胞的前體細(xì)胞有Notch1和HES5表達(dá)。 Nakahara等[50]研究發(fā)現(xiàn)人類MS病變部位的脫髓鞘軸突上有大量的Contactin蛋白表達(dá),而且在少突膠質(zhì)細(xì)胞的前體細(xì)胞中Notch1被激活,其抑制少突膠質(zhì)細(xì)胞的分化,從而導(dǎo)致髓鞘再生失?。淮送?,由于軸突是F3/Contactin表達(dá)的1個主要位點,MS損傷部位的髓鞘再生失敗可能也反映了Contactin/Notch1依賴的少突膠質(zhì)細(xì)胞分化活性的喪失。也有人在大鼠脫髓鞘疾病模型的研究中發(fā)現(xiàn),Notch信號的活化阻止了少突膠質(zhì)細(xì)胞分化及隨后的髓鞘再生,最終導(dǎo)致膠質(zhì)瘢痕形成[51]。
4.5 缺血性腦損傷 Notch信號通路參與缺血性腦損傷機制的研究正日益受到重視,其通過多種機制對缺血性腦損傷產(chǎn)生影響。首先,神經(jīng)元中Notch的表達(dá)與腦卒中后細(xì)胞凋亡水平有關(guān)[52],Notch信號可通過增加細(xì)胞凋亡級聯(lián)、活化小膠質(zhì)細(xì)胞及刺激炎性細(xì)胞浸潤來誘導(dǎo)腦缺血后的神經(jīng)元細(xì)胞凋亡,這表明阻斷Notch信號可能防止神經(jīng)元細(xì)胞凋亡。另有文獻(xiàn)報道,七氟醚預(yù)處理可活化Notch信號,使其通過抑制神經(jīng)細(xì)胞凋亡來對短暫性腦缺血起保護(hù)作用[53]。其次,Notch信號在缺血性腦損傷部位活化和募集淋巴細(xì)胞,引起淋巴細(xì)胞增殖和細(xì)胞因子產(chǎn)生來促進(jìn)免疫炎性反應(yīng),因此封鎖Notch信號可能通過抑制免疫反應(yīng)來減少非細(xì)胞自主性的神經(jīng)細(xì)胞死亡。第三,Notch信號可能參與了神經(jīng)損傷后的反應(yīng)性膠質(zhì)細(xì)胞增生,尤其是子代細(xì)胞中神經(jīng)膠質(zhì)原纖維酸性蛋白(GFAP)陽性細(xì)胞的增生,而γ-分泌酶抑制劑抑制Notch信號后可減少腦梗死周圍區(qū)的反應(yīng)性膠質(zhì)細(xì)胞增生[54]。最近有人報道,Notch信號可上調(diào)Olig2的表達(dá),并促進(jìn)Olig2定位于體內(nèi)GFAP陽性反應(yīng)性膠質(zhì)細(xì)胞的核內(nèi),而Olig2對于反應(yīng)性膠質(zhì)細(xì)胞增生是必不可少的[55]。
4.6 其他神經(jīng)系統(tǒng)疾病 Notch信號與神經(jīng)系統(tǒng)疾病間的聯(lián)系還體現(xiàn)在朊蛋白病中,患有朊蛋白病的小鼠皮層中可見NICD蛋白升高,且伴有朊蛋白異構(gòu)體PrPSc(一種蛋白質(zhì)侵染顆粒,具有傳染性)水平升高,它們具有時間相關(guān)性,值得注意的是,Notch1 mRNA的豐富表達(dá)及NICD的轉(zhuǎn)位與神經(jīng)元的樹突萎縮有關(guān),而且用γ-分泌酶抑制劑(并加用奎納克林降低PrPSc水平)治療感染朊蛋白的小鼠可防止樹突萎縮[56]。此外,有實驗研究顯示Notch4活性的增加會導(dǎo)致腦動靜脈畸形樣的血管發(fā)育異常,這意味著Notch4活性的增加是人類腦動靜脈畸形的一個潛在的分子病因[57]。還有研究顯示Presenilin1缺陷的小鼠由于皮層神經(jīng)元的過度遷移而導(dǎo)致全腦部皮層發(fā)育不良,這可能與Cajal-Retzius神經(jīng)元上Notch1的分布改變有關(guān)[58]。
綜上所述,Notch受體與配體結(jié)合激活Notch信號通路來完成細(xì)胞間的通信,它在一定程度上決定著不同細(xì)胞類型的命運,影響全身多個組織器官的生長發(fā)育,尤其是神經(jīng)系統(tǒng)的生長發(fā)育,Notch信號通路的各個組成部分的異??蓪?dǎo)致多種神經(jīng)系統(tǒng)疾病。由此可見,揭示Notch信號通路調(diào)控的機制,了解Notch信號功能的多樣性,有助于對不同Notch信號異常所致的病變提出更具針對性的治療方法。
[1]de Celis JF, Garcia-Bellido A. Roles of the Notch gene in Drosophila wing morphogenesis[J]. Mech Dev,1994,46(2):109-122.
[2]Fortini ME. Notch signaling: the core pathway and its posttranslational regulation[J]. Dev Cell,2009,16(5):633-647.
[3]Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism[J]. Cell,2009,137(2):216-233.
[4]Sanchez-Irizarry C, Carpenter AC, Weng AP, et al. Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats[J]. Mol Cell Biol,2004,24(21):9265-9273.
[5]Fiuza UM, Arias AM. Cell and molecular biology of Notch[J]. J Endocrinol,2007,194(3):459-474.
[6]D’Souza B, Meloty-Kapella L, Weinmaster G. Canonical and non-canonical Notch ligands[J]. Curr Top Dev Biol,2010,92:73-129.
[7]Fryer CJ, Lamar E, Turbachova I, et al. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex[J]. Genes Dev,2002,16(11):1397-1411.
[8]Heitzler P. Biodiversity and noncanonical Notch signaling[J]. Curr Top Dev Biol,2010,92:457-481.
[9]Ohata S, Aoki R, Kinoshita S, et al. Dual roles of Notch in regulation of apically restricted mitosis and apicobasal polarity of neuroepithelial cells[J]. Neuron,2011,69(2):215-230.
[10]Tanigaki K, Honjo T. Two opposing roles of RBP-J in Notch signaling[J]. Curr Top Dev Biol,2010,92:231-252.
[11]van den Akker NM, Caolo V, Molin DG. Cellular decisions in cardiac outflow tract and coronary development: an act by VEGF and NOTCH[J]. Differentiation,2012,84(1):62-78.
[12]Mirsky R, Woodhoo A, Parkinson DB, et al. Novel signals controlling embryonic schwann cell development, myelination and dedifferentiation[J]. J Peripher Nerv Syst,2008,13(2):122-135.
[13]Kageyama R, Niwa Y, Shimojo H, et al. Ultradian oscillations in Notch signaling regulate dynamic biological events[J]. Curr Top Dev Biol,2010,92:311-331.
[14]Dunwoodie SL. The role of Notch in patterning the human vertebral column[J]. Curr Opin Genet Dev,2009,19(4):329-337.
[15]Loomes KM, Stevens SA, O’Brien ML, et al. Dll3 and Notch1 genetic interactions model axial segmental and craniofacial malformations of human birth defects[J]. Dev Dyn,2007,236(10):2943-2951.
[16]Yamamoto N, Chang W, Kelley MW. Rbpj regulates development of prosensory cells in the mammalian inner ear[J]. Dev Biol,2011,353(2):367-379.
[17]Cotanche DA, Kaiser CL. Hair cell fate decisions in cochlear development and regeneration[J]. Hear Res,2010,266(1-2):18-25.
[18]Rowan S, Conley KW, Le TT, et al. Notch signaling regulates growth and differentiation in the mammalian lens[J]. Dev Biol,2008,321(1):111-122.
[19]de la Pompa JL, Epstein JA. Coordinating tissue interactions: Notch signaling in cardiac development and disease[J]. Dev Cell,2012,22(2):244-254.
[20]Macgrogan D, Luna-Zurita L, de la Pompa JL. Notch signaling in cardiac valve development and disease[J]. Birth Defects Res A Clin Mol Teratol,2011,91(6):449-459.
[21]Del MG, Casanova JC, Guadix JA, et al. Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis[J]. Circ Res,2011,108(7):824-836.
[22]Bigas A, Robert-Moreno A, Espinosa L. The Notch pathway in the developing hematopoietic system[J]. Int J Dev Biol,2010,54(6-7):1175-1188.
[23]Yuan JS, Kousis PC, Suliman S, et al. Functions of notch signaling in the immune system: consensus and controversies[J]. Annu Rev Immunol,2010,28:343-365.
[24]Ohashi S, Natsuizaka M, Yashiro-Ohtani Y, et al. NOTCH1 and NOTCH3 coordinate esophageal squamous differentiation through a CSL-dependent transcriptional network[J]. Gastroenterology,2010,139(6):2113-2123.
[25]Zong Y, Panikkar A, Xu J, et al. Notch signaling controls liver development by regulating biliary differentiation[J]. Development,2009,136(10):1727-1739.
[26]Lozier J, Mccright B, Gridley T. Notch signaling regulates bile duct morphogenesis in mice[J]. PLoS One,2008,3(3):e1851.
[27]Kim W, Shin YK, Kim BJ, et al. Notch signaling in pancreatic endocrine cell and diabetes[J]. Biochem Biophys Res Commun,2010,392(3):247-251.
[28]Davis SW, Castinetti F, Carvalho LR, et al. Molecular mechanisms of pituitary organogenesis: In search of novel regulatory genes[J]. Mol Cell Endocrinol,2010,323(1):4-19.
[29]Monahan P, Rybak S, Raetzman LT. The notch target gene HES1 regulates cell cycle inhibitor expression in the developing pituitary[J]. Endocrinology,2009,150(9):4386-4394.
[30]Carre A, Rachdi L, Tron E, et al. Hes1 is required for appropriate morphogenesis and differentiation during mouse thyroid gland development[J]. PLoS One,2011,6(2):e16752.
[31]Orr B, Grace OC, Vanpoucke G, et al. A role for notch signaling in stromal survival and differentiation during prostate development[J]. Endocrinology,2009,150(1):463-472.
[32]Barsoum IB, Yao HH. Fetal Leydig cells: progenitor cell maintenance and differentiation[J]. J Androl,2010,31(1):11-15.
[33]Nadarajan S, Govindan JA, Mcgovern M, et al. MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans[J]. Development,2009,136(13):2223-2234.
[34]Hayashi T, Kageyama Y, Ishizaka K, et al. Requirement of Notch 1 and its ligand jagged 2 expressions for spermatogenesis in rat and human testes[J]. J Androl,2001,22(6):999-1011.
[35]Pierfelice T, Alberi L, Gaiano N. Notch in the vertebrate nervous system: an old dog with new tricks[J]. Neuron,2011,69(5):840-855.
[36]Salama-Cohen P, Arevalo MA, Meier J, et al. NGF controls dendrite development in hippocampal neurons by binding to p75NTR and modulating the cellular targets of Notch[J]. Mol Biol Cell,2005,16(1):339-347.
[37]Lee J, Wu Y, Qi Y, et al. Neurogenin3 participates in gliogenesis in the developing vertebrate spinal cord[J]. Dev Biol,2003,253(1):84-98.
[38]Ma W, Yan RT, Mao W, et al. Neurogenin3 promotes early retinal neurogenesis[J]. Mol Cell Neurosci,2009,40(2):187-198.
[39]Pelling M, Anthwal N, Mcnay D, et al. Differential requirements for neurogenin 3 in the development of POMC and NPY neurons in the hypothalamus[J]. Dev Biol,2011,349(2):406-416.
[40]Miller FD, Gauthier AS. Timing is everything: making neurons versus glia in the developing cortex[J]. Neuron,2007,54(3):357-369.
[41]Berezovska O, Xia MQ, Hyman BT. Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease[J]. J Neuropathol Exp Neurol,1998,57(8):738-745.
[42]Franberg J, Karlstrom H, Winblad B, et al. gamma-Secretase dependent production of intracellular domains is reduced in adult compared to embryonic rat brain membranes[J]. PLoS One,2010,5(3):e9772.
[43]Veeraraghavalu K, Choi SH, Zhang X, et al. Presenilin 1 mutants impair the self-renewal and differentiation of adult murine subventricular zone-neuronal progenitors via cell-autonomous mechanisms involving notch signaling[J]. J Neurosci,2010,30(20):6903-6915.
[44]Oh S Y, Chen C D, Abraham C R. Cell-type dependent modulation of Notch signaling by the amyloid precursor protein[J]. J Neurochem,2010,113(1):262-274.
[45]Joutel A, Andreux F, Gaulis S, et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients[J]. J Clin Invest,2000,105(5):597-605.
[46]Arboleda-Velasquez JF, Rampal R, Fung E, et al. CADASIL mutations impair Notch3 glycosylation by Fringe[J]. Hum Mol Genet,2005,14(12):1631-1639.
[47]Zhang XP, Zheng G, Zou L, et al. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells[J]. Mol Cell Biochem,2008,307(1-2):101-108.
[48]Purow BW, Sundaresan TK, Burdick MJ, et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53[J]. Carcinogenesis,2008,29(5):918-925.
[49]Stockhausen MT, Kristoffersen K, Poulsen HS. The functional role of Notch signaling in human gliomas[J]. Neuro Oncol,2010,12(2):199-211.
[50]Nakahara J, Kanekura K, Nawa M, et al. Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis[J]. J Clin Invest,2009,119(1):169-181.
[51]Jurynczyk M, Jurewicz A, Bielecki B, et al. Overcoming failure to repair demyelination in EAE: gamma-secretase inhibition of Notch signaling[J]. J Neurol Sci,2008,265(1-2):5-11.
[52]Alberi L, Chi Z, Kadam SD, et al. Neonatal stroke in mice causes long-term changes in neuronal Notch-2 expression that may contribute to prolonged injury[J]. Stroke,2010,41(10 Suppl):S64-S71.
[53]Yang Q, Yan W, Li X, et al. Activation of canonical notch signaling pathway is involved in the ischemic tolerance induced by sevoflurane preconditioning in mice[J]. Anesthesiology,2012,117(5):996-1005.
[54]Shimada IS, Borders A, Aronshtam A, et al. Proliferating reactive astrocytes are regulated by Notch-1 in the peri-infarct area after stroke[J]. Stroke,2011,42(11):3231-3237.
[55]Marumo T, Takagi Y, Muraki K, et al. Notch signaling regulates nucleocytoplasmic Olig2 translocation in reactive astrocytes differentiation after ischemic stroke[J]. Neurosci Res,2013,75(3):204-209.
[56]Spilman P, Lessard P, Sattavat M, et al. A gamma-secretase inhibitor and quinacrine reduce prions and prevent dendritic degeneration in murine brains[J]. Proc Natl Acad Sci U S A,2008,105(30):10595-10600.
[57]Murphy PA, Lam MT, Wu X, et al. Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice[J]. Proc Natl Acad Sci U S A,2008,105(31):10901-10906.
[58]Hartmann D, De Strooper B, Saftig P. Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly[J]. Curr Biol,1999,9(14):719-727.
(本文編輯:鄒晨雙)
10.3969/j.issn.1006-2963.2015.02.015
710043 陜西省第四人民醫(yī)院神經(jīng)內(nèi)科(朱文麗)
吳軍,Email:362509832@qq.com
R741.02
A
1006-2963 (2015)02-0133-06
2014-08-17)