顏 晨,余德才,江 勇(.常州市第一人民醫(yī)院肝膽外科,江蘇常州 3003;.南京大學(xué)醫(yī)學(xué)院附屬鼓樓醫(yī)院肝膽外科,江蘇南京 0000)
癌細(xì)胞代謝相關(guān)的耐藥干預(yù)方法的研究進(jìn)展
顏 晨1,余德才2,江 勇1
(1.常州市第一人民醫(yī)院肝膽外科,江蘇常州 213003;2.南京大學(xué)醫(yī)學(xué)院附屬鼓樓醫(yī)院肝膽外科,江蘇南京 210000)
癌細(xì)胞的代謝與正常細(xì)胞有很大差別,癌細(xì)胞主要由無氧糖酵解供能,其脂肪酸及谷氨酰胺的合成也都高于正常細(xì)胞。而癌細(xì)胞代謝中的Warburg效應(yīng)、脂肪酸合成及谷氨酰胺降解失調(diào)中一些關(guān)鍵酶的活性與癌細(xì)胞耐藥密切相關(guān)。例如,乳酸脫氫酶A與乳腺癌的紫杉醇/曲妥珠單抗耐藥相關(guān);脂肪酸合成酶與乳腺癌的多西紫杉醇/曲妥珠單抗/多柔比星耐藥相關(guān);谷氨酰胺酶與胃癌的順鉑耐藥相關(guān)等。因此,針對這些與癌細(xì)胞耐藥相關(guān)的代謝途徑的治療方法,與化療藥物聯(lián)合應(yīng)用,可能會克服癌細(xì)胞耐藥。本文綜述癌細(xì)胞代謝與癌癥耐藥的關(guān)系,即通過抑制代謝過程中關(guān)鍵酶的活性來克服癌細(xì)胞耐藥,最終提高癌癥治療療效。
癌癥;細(xì)胞代謝;抗藥性
癌癥的藥物治療(包括化療及靶向藥物治療)是目前抗癌癥治療的最常用措施。然而,藥物對癌癥的作用僅在治療初期有效,隨著治療周期的延長,都不可避免地出現(xiàn)耐藥現(xiàn)象,使得許多抗癌癥藥物失敗,癌癥復(fù)發(fā),成為癌癥治療中最難克服的難題[1]。因此,研究癌細(xì)胞耐藥的機(jī)制,提高治療療效,具有重要的臨床意義。自從Warburg發(fā)現(xiàn)癌細(xì)胞與正常細(xì)胞存在顯著的代謝差異以來,許多學(xué)者將癌癥看做是一個“代謝疾病”,并且針對癌癥代謝特點(diǎn)改善癌癥治療已成為熱門話題[2-4]。大量實驗數(shù)據(jù)表明,癌細(xì)胞特有的代謝特點(diǎn)與癌細(xì)胞耐藥之間存在密切聯(lián)系,本文將對癌細(xì)胞代謝過程中主要的關(guān)鍵酶與耐藥間的關(guān)系及相應(yīng)的機(jī)制作一綜述。
癌細(xì)胞的代謝特點(diǎn)和正常細(xì)胞有明顯的不同,即使在供氧充足的情況下,葡萄糖向乳酸轉(zhuǎn)換,而不是像正常細(xì)胞那樣經(jīng)三羧酸循環(huán)由線粒體氧化磷酸化產(chǎn)生ATP。癌細(xì)胞的這種代謝特點(diǎn)稱為“Warburg效應(yīng)”[5]。癌細(xì)胞以無氧糖酵解作為主要的能量獲取方式被認(rèn)為是癌細(xì)胞一個重要特征。癌細(xì)胞不需外源性信號的刺激即可直接啟動細(xì)胞對營養(yǎng)物質(zhì)的攝?。?]。癌細(xì)胞的這種特點(diǎn)有利于促進(jìn)其快速增殖,還能增加過氧化物生成誘導(dǎo)DNA損傷加速基因突變率。即便是采用糖酵解這種效率較低的能量利用方式,癌細(xì)胞仍然可通過大量高速的糖酵解過程獲得足夠的ATP[7]。
除了依賴無氧糖酵解,癌細(xì)胞還有其他一些代謝特點(diǎn),例如脂肪酸的從頭合成增加以及谷氨酰胺的代謝增強(qiáng)[8]。癌細(xì)胞通過大量的脂肪酸從頭合成獲得新的膜結(jié)構(gòu),其中包含一些特殊的脂類成分形成脂筏結(jié)構(gòu)以促進(jìn)細(xì)胞生長相關(guān)受體活化,一些脂類的中間產(chǎn)物如單酰輔酶A參與了生長因子受體的轉(zhuǎn)錄調(diào)控[9],一些循環(huán)脂類還能直接促進(jìn)癌細(xì)胞的生長和轉(zhuǎn)移[10]。這些研究表明,癌細(xì)胞通過脂肪酸的從頭合成途徑,一方面促進(jìn)細(xì)胞膜的形成,支持快速分裂,另一方面利用脂代謝中間產(chǎn)物或翻譯后修飾產(chǎn)物對促增殖和存活相關(guān)通路進(jìn)行正向調(diào)控。有研究表明,谷氨酰胺代謝是癌細(xì)胞主要的氮源,并優(yōu)先被癌細(xì)胞攝?。?1]。腫瘤的生長和血谷氨酰胺濃度呈負(fù)相關(guān)。癌細(xì)胞能快速消耗大量谷氨酰胺,原因有二:其一,癌細(xì)胞運(yùn)輸谷氨酰胺穿過血漿細(xì)胞膜的速度較非癌細(xì)胞快,如人肝癌細(xì)胞消耗谷氨酰胺的速度比正常細(xì)胞快5~10倍[12]。其二,癌細(xì)胞內(nèi)谷氨酰胺酶(glutaminase,GLS)異?;钴S,GLS是癌細(xì)胞谷氨酰胺降解的限速酶,將谷氨酰胺分解為谷氨酸和氨。
癌細(xì)胞的這些特點(diǎn)導(dǎo)致三大物質(zhì)循環(huán)過程中關(guān)鍵酶的活性及表達(dá)量明顯不同于正常細(xì)胞。而這些酶代謝失調(diào)產(chǎn)生的中間產(chǎn)物可以促進(jìn)癌細(xì)胞自身的生物合成[13]。并且在癌癥治療過程中和癌癥耐藥密切相關(guān)。
通??拱┧幬锸峭ㄟ^阻斷細(xì)胞增殖周期中重要的過程造成細(xì)胞不可逆的損傷或誘導(dǎo)細(xì)胞凋亡起作用的。其作用機(jī)制包括:①影響核酸合成。例如吉西他濱和5-氟尿嘧啶(5-fluorouracil,5-FU)分別通過抑制核糖核苷酸還原酶和胸苷酸合成酶而起作用。②影響蛋白合成。例如長春新堿通過干擾蛋白質(zhì)代謝、抑制氨基酸在細(xì)胞膜的轉(zhuǎn)運(yùn)而起作用。③直接破壞DNA。例如絲裂霉素通過與DNA形成交叉連接使細(xì)胞DNA解聚,以及引起DNA單鏈斷裂而起作用。④嵌入DNA中干擾模板作用。例如多柔比星及其家族藥物通過抑制拓?fù)洚悩?gòu)酶干擾模板形成而起作用。⑤影響體內(nèi)激素平衡。例如糖皮質(zhì)激素通過影響體內(nèi)腎上腺皮質(zhì)激素的平衡而起作用[14]。
使用一定療程的化療藥物治療后,絕大多數(shù)癌癥患者都會出現(xiàn)的藥物耐受是導(dǎo)致癌癥治療失敗的最主要原因。癌癥耐藥基于癌細(xì)胞中單一或少數(shù)幾個位點(diǎn)的結(jié)構(gòu)和功能發(fā)生改變,主要機(jī)制有:①細(xì)胞膜抑制藥物轉(zhuǎn)運(yùn)、促進(jìn)藥物外排;②細(xì)胞漿內(nèi)藥物靶酶或代謝酶的活性改變;③細(xì)胞核內(nèi)DNA修復(fù)功能增強(qiáng)[16];④細(xì)胞內(nèi)與耐藥或抗凋亡相關(guān)的分子表達(dá)量升高等[15]。克服癌癥耐藥從而提高化療療效已成為當(dāng)今研究的熱門話題。隨著對癌細(xì)胞代謝研究的深入,越來越多的實驗表明,癌細(xì)胞的代謝失調(diào)與腫瘤耐藥之間有重要的關(guān)聯(lián)。
大量證據(jù)表明,癌細(xì)胞代謝失調(diào)在癌癥治療過程中和癌癥耐藥密切相關(guān)。如乳酸脫氫酶A在乳腺癌的治療過程中與紫杉醇/曲妥珠單抗耐藥相關(guān)[17];丙酮酸脫氫酶激酶3在宮頸癌和結(jié)腸癌的治療過程中與低氧誘導(dǎo)的藥物耐藥有關(guān)[18];脂肪酸合成酶在乳腺癌的治療過程中與多西紫杉醇/曲妥珠單抗/多柔比星耐藥相關(guān),以及在胰腺癌的治療過程中與吉西他濱和放療耐藥相關(guān)[19];GLS在胃癌的治療過程中與順鉑耐藥相關(guān)[20]。癌細(xì)胞代謝失調(diào)引起癌癥耐藥的分子機(jī)制極其復(fù)雜。例如,增強(qiáng)的糖酵解可生成更多的ATP和NADPH,而NADPH是一個重要的抗氧化劑,可抑制化療藥物誘導(dǎo)的氧化損傷,從而產(chǎn)生癌癥耐藥。其中高ATP水平在癌癥耐藥中也起著一定的作用。一方面,高ATP水平可激活A(yù)TP結(jié)合盒(ATP-binding cassette,ABC)轉(zhuǎn)運(yùn),從而增加藥物外排[21]。另一方面,高ATP水平還可上調(diào)低氧誘導(dǎo)因子1(hypoxia inducible factor-1,HIF-1)信號,誘導(dǎo)低氧相關(guān)的藥物耐受。HIF-1α又與藥物耐受密切相關(guān)。首先,HIF-1α可增強(qiáng)糖酵解過程中關(guān)鍵酶的活性,促進(jìn)代謝由氧化磷酸化向糖酵解轉(zhuǎn)變,降低三羧酸循環(huán)途徑產(chǎn)生的活性氧(reactine oxygen species,ROS),防止DNA損傷,激活DNA修復(fù)和應(yīng)激反應(yīng)的途徑,抑制癌細(xì)胞凋亡[22-23]。其次,HIF-1α可促進(jìn)細(xì)胞膜碳酸酐酶的表達(dá),使細(xì)胞外環(huán)境酸化,引起細(xì)胞內(nèi)外pH差值增加,這將會減少化療藥物的被動吸收量,促使活性藥物外排,從而不足以維持胞內(nèi)抗癌藥物濃度[24]。最后,HIF-1α可促進(jìn)抗凋亡信號基因表達(dá)。通過表達(dá)抗凋亡信號(生存素,Bcl-Xl和Mcl-1等)逃避化療藥物的殺傷作用[25]。
3.1 針對葡萄糖代謝酶
葡萄糖代謝是一個非常復(fù)雜的過程,它是細(xì)胞所需能量的主要來源,有一系列酶參與這一過程。其中一些關(guān)鍵酶,包括葡萄糖轉(zhuǎn)運(yùn)體,己糖激酶(hexekinase,HK),乳酸脫氫酶(lactate dehydrogenase,LDH)以及丙酮酸脫氫酶激酶(pyruvate dehydrogenase,PDH)與癌癥耐藥有密切關(guān)系。
3.1.1 葡萄糖轉(zhuǎn)運(yùn)體
葡萄糖通過胞膜從胞外轉(zhuǎn)運(yùn)到胞內(nèi)是葡萄糖代謝的第一限速步驟,主要由葡萄糖轉(zhuǎn)運(yùn)蛋白(glucose transporters,GLUT)家族參與這一過程。在癌細(xì)胞中,經(jīng)??梢奊LUT家族代謝失調(diào)[26]。人類GLUT家族包括14種亞型(GLUT1~14 或SLC2A1~14)。WZB117是GLUT1的一種抑制劑,可通過抑制葡萄糖的攝取來抑制糖酵解過程,從而降低細(xì)胞內(nèi)ATP水平。對于應(yīng)用WZB117治療的癌癥患者,添加外源性ATP可降低WZB117的療效,提示降低癌細(xì)胞內(nèi)ATP水平可能是WZB117抗癌治療的一個重要機(jī)制[27]。此外,WZB117還可誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),導(dǎo)致細(xì)胞周期停滯。WZB117和順鉑或紫杉醇聯(lián)合還可顯示出協(xié)同的抗癌效果[28]。在低氧條件下,GLUT1的抑制劑根皮素(phloretin)可顯著提高柔紅霉素的抗癌療效,并克服低氧引起的耐藥[29]。GLUT4參與多發(fā)性骨髓瘤(multiple myeloma,MM)細(xì)胞的葡萄糖攝取過程。而GLUT4的特異性抑制劑,利托那韋可降低Mcl-1蛋白的表達(dá),從而抑制MM細(xì)胞對葡萄糖的攝取,進(jìn)而誘導(dǎo)MM細(xì)胞凋亡。此外,利托那韋還可抑制初級骨髓瘤細(xì)胞的增殖,提高癌細(xì)胞對多柔比星的敏感性[30]。
3.1.2 己糖激酶
HK在糖酵解和細(xì)胞凋亡中均起重要作用。其抑制劑,如2-脫氧葡萄糖(2-deoxyglucose,2-DG)、3-溴丙酮酸(3-bromo-pyruvate,3-BrPA)和氯尼達(dá)明(lonidamine,LND)已用于早期臨床試驗,三者聯(lián)合抗癌癥的療效已有文獻(xiàn)詳細(xì)闡述[31]。2-DG作為葡萄糖的無毒類似物,可競爭性地抑制癌細(xì)胞對葡萄糖的攝取,從而降低細(xì)胞內(nèi)ATP水平,抑制細(xì)胞分裂增殖周期,進(jìn)而導(dǎo)致細(xì)胞凋亡[32]。在氧充足的條件下,2-DG還可誘導(dǎo)未折疊蛋白反應(yīng),引起下游的一些唯BH3域蛋白提前凋亡。唯BH3域蛋白是Bcl-2家族蛋白的一種,此外Bcl-2家族蛋白還包括抗凋亡成員(Bcl-2,Bcl-XL,Bcl-w,Mcl-1和A1)、促凋亡成員(Bax和Bak)。它們在癌癥的發(fā)生、發(fā)展、凋亡以及癌癥耐藥方面都起重要作用[33]。ABT-737和ABT-263都是Bcl-2的小分子抑制劑,有研究表明,聯(lián)合應(yīng)用2-DG或LND可以促進(jìn)ABT-263/ 737誘導(dǎo)的細(xì)胞凋亡[34-38]。其機(jī)制可從以下2方面闡述:①2-DG可激活A(yù)MP活化蛋白激酶以及抑制Mcl-1的轉(zhuǎn)化,從而降低Mcl-1的水平[34];②2-DG減弱Bak和Mcl-1的相互作用,進(jìn)而增強(qiáng)了ABT-263/737從Mcl-1/Bcl-XL/Bak異源體中釋放Bak的作用,從而引起細(xì)胞凋亡[36]。表明2-DG-ABT-737聯(lián)合使用可以改善ABT-737耐藥。
曲妥珠單抗是一種針對ErbB2的人源化單克隆抗體,在治療ErbB2+的乳腺癌患者中有很好療效,但是大多數(shù)患者都會出現(xiàn)后天性曲妥珠單抗耐藥[36]。有研究表明,ErbB2的過度表達(dá)可促進(jìn)糖酵解并增加癌細(xì)胞對糖酵解抑制劑的敏感性[37]。2-DG/曲妥珠單抗聯(lián)合可顯著抑制糖酵解,從而抑制曲妥珠單抗敏感/耐藥的乳腺癌細(xì)胞的生長。這些結(jié)果表明,2-DG可改善曲妥珠單抗耐藥,增強(qiáng)曲妥珠單抗治療ErbB2+乳腺癌的療效。
3-BrPA是一種作用于HKⅡ的抑制劑,是一些特定癌癥化療的敏感藥物[38]。3-BrPA可抑制細(xì)胞內(nèi)ATP的產(chǎn)生,從而降低ABC的活性,抑制藥物外排,維持細(xì)胞內(nèi)較高藥物濃度,達(dá)到不斷殺滅癌細(xì)胞的目的。還有研究表明,3-BrPA可以增強(qiáng)柔紅霉素和多柔比星的細(xì)胞毒作用,聯(lián)合應(yīng)用柔紅霉素和3-BrPA可顯著抑制MM小鼠腫瘤的生長[39]。此外,3-BrPA還可通過逆轉(zhuǎn)耐藥表型機(jī)制,改善奧沙利鉑和5-FU等化療藥物引起的耐藥[40-41]。
3.1.3 乳酸脫氫酶A(LDHA)
LDHA催化糖酵解途徑的最后一步反應(yīng),將丙酮酸和NADH轉(zhuǎn)化成乳酸和NAD+,對腫瘤的生長起關(guān)鍵作用。抑制癌細(xì)胞中LDHA的活性可促進(jìn)細(xì)胞轉(zhuǎn)變?yōu)橛醒鹾粑?,從而降低癌?xì)胞在低氧環(huán)境下的增殖能力,并且通過升高ROS水平促進(jìn)細(xì)胞凋亡[42-43]。另外,NAD+生成抑制劑FK866和FX11聯(lián)合應(yīng)用在異種移植模型中還可使淋巴瘤得到治愈[44]。
眾所周知,熱休克因子1(heat shock factor 1,HSF1)的基本功能是調(diào)節(jié)熱休克反應(yīng),但最近的研究指出,HSF1的非熱休克功能對于癌癥的發(fā)生發(fā)展同樣重要[46]。Dai等[45]報道HSF1可增加癌細(xì)胞對葡萄糖的攝取,增加乳酸生成量以及提高LDHA活性。HSF1是真核生物熱休克反應(yīng)的主要調(diào)節(jié)因子。有研究表明,上調(diào)HSF1和LDHA可促進(jìn)糖酵解,產(chǎn)生癌癥耐藥[19]。
3.1.4 丙酮酸脫氫酶
PDH是細(xì)胞進(jìn)行三羧酸循環(huán)生成ATP的限速酶,催化丙酮酸轉(zhuǎn)化為乙酰輔酶A。PDH激酶(PDH kinase,PDK)可使PDH磷酸化并抑制其活性,此時它限制了丙酮酸進(jìn)入線粒體,導(dǎo)致三羧酸循環(huán)不能正常進(jìn)行。PDK有4種亞型(PDK1~4),而其中PDK3在低氧條件下腫瘤細(xì)胞的糖酵解過程中起最主要作用。低氧介導(dǎo)的PDK3過多表達(dá)顯著抑制了癌細(xì)胞凋亡,增加了癌細(xì)胞對順鉑或紫杉醇的耐藥[47-48]。此外,結(jié)腸癌患者組織中升高的PDK3水平與癌癥的嚴(yán)重程度密切相關(guān),往往有較差的預(yù)后[49]。
二氯乙酸(dichloroacetate,DCA)是PDK的一種抑制劑,可使PDK失活從而活化PDH,使細(xì)胞代謝由糖酵解轉(zhuǎn)變?yōu)橛醒鹾粑?。在臨床試驗中,DCA和奧美拉唑的聯(lián)合已顯示出協(xié)同抗癌療效[50]。DCA,奧美拉唑和他莫昔芬的聯(lián)合可完全阻斷纖維肉瘤細(xì)胞的增殖,而不影響人類正常成纖維細(xì)胞的增殖。DCA還可通過誘導(dǎo)更多的線粒體介導(dǎo)的細(xì)胞凋亡途徑,增加5-氟尿嘧啶的抗癌療效[51]。此外,DCA還可增強(qiáng)放療的療效。曹等[52]報道,DCA和Bcl-2抑制劑協(xié)同作用可使野生型以及Bcl-2過度表達(dá)型癌細(xì)胞對放療更加敏感。
3.2 針對谷氨酰胺代謝
谷氨酰胺在細(xì)胞增殖和能量代謝過程中發(fā)揮重要作用。谷氨酰胺分解包括2個步驟:首先在GLS的催化下轉(zhuǎn)化為谷氨酸,然后由谷氨酸脫氫酶催化轉(zhuǎn)化為α-酮戊二酸。哺乳動物中有腎型GLS (GLS1)和肝型GLS(GLS2)。利用13C同位素示蹤代謝實驗表明,癌細(xì)胞利用谷氨酰胺分解提供碳源參與三羧酸循環(huán),而產(chǎn)生的中間體被用作原料參與其他的生物合成過程[53]。谷氨酰胺和亮氨酸聯(lián)合誘導(dǎo)谷氨酰胺分解可激活哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin 1,mTOR1)信號,從而觸發(fā)細(xì)胞分裂增殖和抑制自噬。mTOR信號通路參與高度惡性產(chǎn)AFP型胃癌(AFPGC)的順鉑耐藥[54]。提示增強(qiáng)的谷氨酰胺代謝可能與順鉑耐藥有關(guān)。
二甲基-2-[5-苯基乙?;?1,2,4-噻二唑-2-基]乙基硫醚(BPTES),是一種GLS1抑制劑,可抑制癌細(xì)胞在有氧條件下的增殖。通過BPTES抑制GLS1的活性,可抑制攜帶異檸檬酸脫氫酶1(isocitrate dehydrogenase,IDH1)基因突變型膠質(zhì)細(xì)胞瘤細(xì)胞的生長。也降低谷氨酰胺和α-酮戊二酸水平,增加糖酵解中間體,從而提高突變型IDH1患者的治療療效[55]。
西羅莫司是一種mTORC1抑制劑,可增強(qiáng)順鉑治療AFPGC的療效[54]。通過NVP-BEZ235 (PI3K/mTOR抑制劑)抑制mTORC1,可提高化療藥物諸如環(huán)磷酰胺、糖胞苷及地塞米松治療T細(xì)胞急性淋巴細(xì)胞白血病的療效。此外,NVP-BEZ235還可敏化長春新堿耐藥型Jurkat細(xì)胞,這表明通過抑制mTORC1的活性有可能逆轉(zhuǎn)化療耐藥[56]。谷氨酰胺分解會激活mTORC1信號,而應(yīng)用GLS抑制劑或小干擾(siRNA)抑制谷氨酰胺分解,可降低mTORC1活性,從而使癌細(xì)胞對化療藥物敏感[57]。
3.3 針對脂肪酸代謝
脂肪酸可通過從頭合成及氧化分解過程為機(jī)體提供能量支持。在癌細(xì)胞中,脂肪酸的從頭合成明顯上調(diào),其中發(fā)揮主要作用的是脂肪酸合成酶。脂肪酸合成酶在大多數(shù)癌癥中都高表達(dá),且與癌癥較差的預(yù)后密切相關(guān)。G28UCM是FASN的一種抑制劑,可明顯縮小實驗動物的移植瘤體積,且不會出現(xiàn)厭食、體質(zhì)量下降等不良反應(yīng)[58]。在體外針對曲妥珠單抗耐藥細(xì)胞株(AU565T)及拉帕替尼耐藥細(xì)胞株(AU65LR)的實驗中,G28UCM和曲妥珠單抗、拉帕替尼聯(lián)合使用可表現(xiàn)出良好的協(xié)同作用[59]。
癌細(xì)胞通過改變自身物質(zhì)代謝特點(diǎn),如增強(qiáng)有氧糖酵解,增加脂肪酸從頭合成以及谷氨酰胺代謝來滿足自身對能量和生物合成的需求,這些特點(diǎn)可以促進(jìn)癌細(xì)胞增殖,降低藥物誘導(dǎo)的細(xì)胞凋亡,從而產(chǎn)生癌癥耐藥。這些事實表明,癌細(xì)胞的代謝失調(diào)和癌癥耐藥有密切的關(guān)系,以癌細(xì)胞代謝過程中關(guān)鍵酶作為靶點(diǎn),可用來改善癌癥耐藥從而提高化療藥物對癌癥患者的療效。然而,針對代謝失調(diào)引起癌癥耐藥的分子機(jī)制尚未完全清楚,仍需進(jìn)一步研究。聯(lián)合癌癥化療和抗代謝治療,結(jié)合個體化治療理念,將有助于進(jìn)一步提高癌癥患者的療效。
[1]Holohan C,Van Schaeybroeck S,Longley DB,Johnston PG.Cancer drug resistance:an evolving paradigm[J].Nat Rev Cancer,2013,13(10):714-726.
[2] Coller HA.Is cancer a metabolic disease?[J].Am J Pathol,2014,184(1):4-17.
[3] Seyfried TN,Shelton LM.Cancer as a metabolic disease[J].Nutr Metab(Lond),2010,7:7.
[4] Zhang Y,Yang JM.Altered energy metabolism in cancer:a unique opportunity for therapeutic intervention[J].Cancer Biol Ther,2013 14(2):81-89.
[5]Warburg O.On respiratory impairment in cancer cells[J].Science,1956,124(3215):269-270.
[6] CatalanoV,TurdoA,DiFrancoS,DieliF,TodaroM,Stassi G.Tumor and its microenvironment:a synergistic interplay[J].Semin Cancer Biol,2013,23 (6):522-532.
[7] Dang CV.Links between metabolism and cancer [J].Genes Dev,2012,26(9):877-890.
[8] Zhao Y,Butler EB,Tan M.Targeting cellular metabolism to improve cancer therapeutics[J]. Cell Death Dis,2013,4:e532.
[9]Menendez JA,Lupu R.Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis [J].Nat Rev Cancer,2007,7(10):763-777.
[10] Bauer DE,Hatzivassiliou G,Zhao F,Andreadis C,Thompson CB.ATP citrate lyase is an important component of cell growth and transformation[J]. Oncogene,2005,24(41):6314-6322.
[11] Mohamed A,Deng X,Khuri FR,Owonikoko TK. Altered glutamine metabolism and therapeutic opportunities for lung cancer[J].Clin Lung Cancer,2014,15(1):7-15.
[12] Pawlik TM,Souba WW,Sweeney TJ,Bode BP. Amino acid uptake and regulation in multicellular hepatoma spheroids[J].J Surg Res,2000,91 (1):15-25.
[13] Dang CV.Glutaminolysis:supplying carbon or nitrogen or both for cancer cells?[J].Cell Cycle,2010,9(19):3884-3886.
[14] Kaplan O.Correspondence re:M.Fanciulli et al,Energy metabolism of human LoVo colon carcinoma cells:correlation to drug resistance and influence of lonidamine.Clin Cancer Res,6:1590-1597,2000[J].Clin Cancer Res,2000,6(10):4166-4167.
[15] Wu SH,Bi JF,Cloughesy T,Cavenee WK,Mischel PS.Emerging function of mTORC2 as a core regulator in glioblastoma:metabolic reprogramming and drug resistance[J].Cancer Biol Med,2014,11(4):255-263.
[16] Das V,Kanakkanthara A,Chan A,Miller JH. Potential role of tubulin tyrosine ligase-like enzymes in tumorigenesis and cancer cell resistance[J]. Cancer Lett,2014,350(1-2):1-4.
[17] Liu H,Liu Y,Zhang JT.A new mechanism of drug resistance in breast cancer cells:fatty acid synthase overexpression-mediated palmitate overproduction[J].Mol Cancer Ther,2008,7(2):263-270.
[18] Wang JB,Erickson JW,F(xiàn)uji R,Ramachandran S,Gao P,Dinavahi R,et al.Targeting mitochondrial glutaminase activity inhibits oncogenic transformation [J].Cancer Cell,2010,18(3):207-219.
[19] Zhao Y,Liu H,Liu Z,Ding Y,Ledoux SP,Wilson GL,et al.Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism[J].Cancer Res,2011,71 (13):4585-4597.
[20] Zhou M,Zhao Y,Ding Y,Liu H,Liu Z,F(xiàn)odstad O,et al.Warburg effect in chemosensitivity:targeting lactate dehydrogenase-A re-sensitizes Taxol-resistant cancer cells to Taxol[J].Mol Cancer,2010,9:33.
[21]Nuruzzaman M,Zhang R,Cao HZ,Luo ZY. Plant pleiotropic drug resistance transporters:transport mechanism,gene expression,and function [J].J Integr Plant Biol,2014,56(8):729-740.
[22] Murono K,Tsuno NH,Kawai K,Sasaki K,Hongo K,Kaneko M,et al.SN-38 overcomes chemoresistanceofcolorectalcancercells induced by hypoxia,through HIF1alpha[J].Anticancer Res,2012,32(3):865-872.
[23] Flamant L,Notte A,Ninane N,Raes M,Michiels C. Anti-apoptotic role of HIF-1 and AP-1 in paclitaxel exposed breast cancer cells under hypoxia[J]. Mol Cancer,2010,9:191.
[24] CeradiniDJ, KulkarniAR, CallaghanMJ,Tepper OM,Bastidas N,Kleinman ME,et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J]. Nat Med,2004,10(8):858-864.
[25]Liu Y,Seipel C,Lopez ME,Nuchtern JG,Brandt ML,et al.A retrospective study of multimodalanalgesictreatmentafterlaparoscopic appendectomy in children[J].Paediatr Anaesth,2012,33(12):1187-1192.
[26] Macheda ML,Rogers S,Best JD.Molecular and cellular regulation of glucose transporter(GLUT)proteins in cancer[J].J Cell Physiol,2005,202 (3):654-662.
[27] Qian Y,Wang X,Liu Y,Li Y,Colvin RA,Tong L,et al.Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells[J].Cancer Lett,2014,351(2):242-251.
[28] Monti E,Gariboldi MB.HIF-1 as a target for cancer chemotherapy,chemosensitization and chemoprevention[J].Curr Mol Pharmacol,2011,4(1):62-77.
[29] Cao X,F(xiàn)ang L,Gibbs S,Huang Y,Dai Z,Wen P,et al.Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia[J].Cancer Chemother Pharmacol,2007,59(4):495-505.
[30]McBrayer SK,Cheng JC,Singhal S,Krett NL,Rosen ST,Shanmugam M.Multiple myeloma exhibits novel dependence on GLUT4,GLUT8,and GLUT11:implications for glucose transporterdirected therapy[J].Blood,2012,119(20):4686-4697.
[31] El Mjiyad N,Caro-Maldonado A,Ramírez-Peinado S,Mu?oz-Pinedo C.Sugar-free approaches to cancer cell killing[J].Oncogene,2011,30(3):253-264.
[32] Pelicano H,Martin DS,Xu RH,Huang P.Glycolysis inhibition for anticancer treatment[J].Oncogene,2006,25(34):4633-4646.
[33] Nishioka T,Luo LY,Shen L,He H,Mariyannis A,Dai W,et al.Nicotine increases the resistance of lung cancer cells to cisplatin through enhancing Bcl-2 stability[J].Br J Cancer,2014,110(7):1785-1792.
[34]Coloff JL,Macintyre AN,Nichols AG,Liu T,Gallo CA,Plas DR,et al.Akt-dependent glucose metabolism promotes Mcl-1 synthesis to maintain cell survival and resistance to Bcl-2 inhibition[J]. Cancer Res,2011,71(15):5204-5213.
[35] Meynet O,Bénéteau M,Jacquin MA,Pradelli LA,Cornille A,Carles M,et al.Glycolysis inhibition targets Mcl-1 to restore sensitivity of lymphoma cells to ABT-737-induced apoptosis[J].Leukemia,2012,26(5):1145-1147.
[36] Yamaguchi R,Janssen E,Perkins G,Ellisman M,Kitada S,Reed JC.Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy[J].PLoS One,2011,6(9):e24102.
[37] Zhao YH,Zhou M,Liu H,Ding Y,Khong HT,Yu D,et al.Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth [J].Oncogene,2009,28(42):3689-3701.
[38] Geschwind JF,Georgiades CS,Ko YH,Pedersen PL.Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma[J].Expert Rev Anticancer Ther,2004,4(3):449-457.
[39] Nakano A,Tsuji D,Miki H,Cui Q,El Sayed SM,Ikegame A,et al.Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells[J].PLoS One,2011,6(11):e27222.
[40] Hulleman E,Kazemier KM,Holleman A,Vander-Weele DJ,Rudin CM,Broekhuis MJ,et al.Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells[J]. Blood,2009,113(9):2014-2021.
[41] Zhou Y,Tozzi F,Chen J,F(xiàn)an F,Xia L,Wang J,et al.Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells[J]. Cancer Res,2012,72(1):304-314.
[42]Fantin VR1,St-Pierre J,Leder P.Attenuation of LDH-A expression uncovers a link between glycolysis,mitochondrial physiology,and tumor maintenance[J].Cancer Cell,2006,9(6):425-434.
[43] Miao P,Sheng S,Sun X,Liu J,Huang G. Lactate dehydrogenase A in cancer:a promising target for diagnosis and therapy[J].IUBMB Life,2013,65(11):904-910.
[44] Le A,Cooper CR,Gouw AM,Dinavahi R,Maitra A,Deck LM,et al.Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression[J].Proc Natl Acad Sci USA,2010, 107(5):2037-2042.
[45] Dai C,Whitesell L,Rogers AB,Lindquist S.Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis[J].Cell,2007,130(6):1005-1018.
[46] Khaleque MA,Bharti A,Sawyer D,Gong J,Benjamin IJ,Stevenson MA,et al.Induction of heat shock proteins by heregulin beta1 leads to protection from apoptosis and anchorage-independent growth[J].Oncogene,2005,24(43):6564-6573.
[47] LuCW,LinSC,ChienCW,LinSC,LeeCT,LinBW,et al.Overexpression of pyruvate dehydrogenase kinase 3 increases drug resistance and early recurrence in colon cancer[J].Am J Pathol,2011,179(3):1405-1414.
[48] Sullivan EJ,Kurtoglu M,Brenneman R,Liu H,Lampidis TJ.Targeting cisplatin-resistant human tumor cells with metabolic inhibitors[J].Cancer Chemother Pharmacol,2014,73(2):417-427.
[49] Lu CW,Lin SC,Chen KF,Lai YY,Tsai SJ. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-induciblefactor-1promotesmetabolic switch and drug resistance[J].J Biol Chem,2008,283(42):28106-28114.
[50]Ishiguro T,Ishiguro R,Ishiguro M,Iwai S.Cotreatmentofdichloroacetate,omeprazoleand tamoxifen exhibited synergistically antiproliferative effect on malignant tumors:in vivo experiments and a case report[J].Hepatogastroenterology,2012,59(116):994-996.
[51] Tong J,Xie G,He J,Li J,Pan F,Liang H. Synergistic antitumor effect of dichloroacetate in combination with 5-fluorouracil in colorectal cancer [J].J Biomed Biotechnol,2011,2011:740564.
[52] Cao W,Yacoub S,Shiverick KT,Namiki K,Sakai Y,Porvasnik S,et al.Dichloroacetate(DCA)sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation[J]. Prostate,2008,68(11):1223-1231.
[53] DeBerardinis RJ,Mancuso A,Daikhin E,Nissim I,Yudkoff M,Wehrli S,et al.Beyond aerobic glycolysis:transformed cells can engage in glutamine metabolismthatexceedstherequirementfor protein and nucleotide synthesis[J].Proc Natl Acad Sci USA,2007,104(49):19345-19350.
[54] Kamata S,Kishimoto T,Kobayashi S,Miyazaki M,Ishikura H.Possible involvement of persistent activity of the mammalian target of Rapamycin pathway in the cisplatin resistance of AFP-producinggastric cancer cells[J].Cancer Biol Ther,2007,6 (7):1036-1043.
[55] Seltzer MJ,Bennett BD,Joshi AD,Gao P,Thomas AG,F(xiàn)erraris DV,et al.Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1[J].Cancer Res,2010,70 (22):8981-8987.
[56]Chiarini F,Grimaldi C,Ricci F,Tazzari PL,Evangelisti C,Ognibene A,et al.Activity of the novel dual phosphatidylinositol 3-kinase/mammalian targetofrapamycininhibitorNVP-BEZ235 against T-cell acute lymphoblastic leukemia[J]. Cancer Res,2010,70(20):8097-8107.
[57] Durán RV,Oppliger W,Robitaille AM,Heiserich L, Skendaj R,Gottlieb E,et al.Glutaminolysis activates Rag-mTORC1 signaling[J].Mol Cell,2012,47(3):349-358.
[58] Zaytseva YY,Rychahou PG,Gulhati P,Elliott VA,Mustain WC,O′Connor K,et al.Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer[J]. Cancer Res,2012,72(6):1504-1517.
[59] Puig T,Aguilar H,Cufí S,Oliveras G,Turrado C,Ortega-Gutiérrez S,et al.A novel inhibitor of fatty acidsynthaseshowsactivityagainst HER2+breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines[J].Breast Cancer Res,2011,13(6):R131.
(本文編輯:喬虹)
Intervention with drug resistance related to metabolism of cancer cells:advances in research
YAN Chen1,YU De-cai2,JIANG Yong1
(1.Department of Hepatobiliary Surgery,the First People’s Hospital of Changzhou,Changzhou 213003,China;2.Hepatobiliary Surgery,Affiliated Drum Tower Hospital,Medical College,Nanjing University,Nanjing 210000,China)
The metabolic properties of cancer cells diverge significantly from those of normal cells. Energy production in cancer cells is abnormally dependent on aerobic glycolysis.In addition,cancer cells have other metabolic characteristics,such as increasing fatty acid synthesis and glutamine metabolism.Emerging evidences show that many key enzymes in dysregulated Warburg-like glucose metabolism,fatty acid synthesis and glutaminolysis are linked to drug resistance in cancer treatment. For example,lactate dehydrogenase A contributes to paclitaxel/trastuzuma resistance in breast cancer,fatty acid synthase is linked to docetaxel/trastuzumab/adriamycin resistance in breast cancer,and glutaminolysis is linked to cisplatin resistance in gastric cancer.Therefore,targeting cellular metabolism may improve the response to cancer therapeutics,and the combination of chemotherapeutic drugs with cellular metabolism inhibitors may overcome drug resistance in cancer therapy.This review discussed the relationship between dysregulated cellular metabolism and chemotherapy resistance,and the way in which targeting of metabolic enzymes can help overcome the resistance to cancer therapy or enhance the efficacy of common therapeutic agents.
cancer;cellular metabolism;drug resistance
The project supported by Program for the Talents in Science and Education of Jiangsu Province;National Natural Science Foundation of China(30972904/H1617);and the Major Science and Technology Projects of Health Department of Changzhou City(ZD201305)
JIANG Yong,Phn:13809079991,E-mail:yjiang8888@hotmail.com
R963,R979.1
A
1000-3002-(2015)06-0986-07
10.3867/j.issn.1000-3002.2015.06.017
江蘇省興衛(wèi)工程重點(diǎn)人才項目;國家自然科學(xué)基金(30972904/H1617);常州市衛(wèi)生局重大科技項目(ZD201305)
顏 晨,男,碩士研究生,主要從事肝癌代謝方面的研究。
江 勇,E-mail:yjiang8888@hotmail.com,Phn:13809079991
(2014-12-29接受日期:2015-08-25)