許巖等
[摘要] 目的 觀察大鼠黑質(zhì)氧化損傷后內(nèi)源性硫化氫(hydrogen sulfide,H2S)的變化及其作用。 方法 將SD雄性大鼠單側(cè)黑質(zhì)內(nèi)微量注射6-羥基多巴胺(6-Hydroxydopamine,6-OHDA)作為黑質(zhì)氧化損傷模型;H2S供體硫氫化鈉(sodium hydrosulfide,NaHS)在6-OHDA損傷前連續(xù)腹腔注射3周作為預(yù)處理;實(shí)驗(yàn)分為對(duì)照組、6-OHDA損傷后7 d(D7組)、11 d(D11組)、17 d組(D17組)、NaHS預(yù)處理組(NaHS+6-OHDA處理),每組各8只;采用亞甲基藍(lán)分光光度計(jì)法檢測(cè)黑質(zhì)胱硫醚-β-合酶(cystathionine-β-synthase,CBS)活性及H2S的含量;免疫組織化學(xué)法檢測(cè)黑質(zhì)酪氨酸羥化酶(tyrosine hydroxylase,TH)陽(yáng)性細(xì)胞數(shù);紫外分光光度法測(cè)定黑質(zhì)谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GSH-Px)活性和丙二醛(malondialdehyde,MDA)水平。 結(jié)果 與對(duì)照組比較,6-OHDA損傷后7、11、17 d黑質(zhì)CBS酶活性分別下降為[(96.21±8.40)%,P > 0.05],[(86.48±9.85)%,P < 0.05]和[(75.16±7.45)%,P < 0.01];內(nèi)源性H2S含量分別減少為[(90.12±10.03)%,P < 0.05],[(82.58±9.52)%,P < 0.01]和[(78.16±11.55)%,P < 0.01]。TH陽(yáng)性細(xì)胞與對(duì)照組比較,在6-OHDA損傷后7 d即下降為[(84.32±6.06)%,P < 0.05],同時(shí)伴隨黑質(zhì)GSH-Px活性降低及MDA含量升高,差異有統(tǒng)計(jì)學(xué)意義(P < 0.05)。但早期給予NaHS預(yù)處理補(bǔ)充H2S之后,與單純6-OHDA損傷后7 d比較,TH陽(yáng)性細(xì)胞則增加為[(96.15±5.03)%,P < 0.05],且黑質(zhì)GSH-Px的活性升高,MDA的含量降低,差異有統(tǒng)計(jì)學(xué)意義(P < 0.05)。 結(jié)論 6-OHDA氧化損傷導(dǎo)致大鼠黑質(zhì)CBS酶活性及H2S含量下降,外源性H2S預(yù)處理可早期發(fā)揮抗黑質(zhì)氧化損傷的神經(jīng)元保護(hù)作用,這可能與其增加GSH-Px活性及減少M(fèi)DA含量有關(guān)。
[關(guān)鍵詞] 硫化氫;胱硫醚-β-合酶;帕金森??;氧化應(yīng)激;神經(jīng)保護(hù)
[中圖分類(lèi)號(hào)] R742.5 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2014)12(c)-0016-05
Changes and roles of endogenous hydrogen sulfide in the substantial nigra oxidative damage of rats
XU Yan1 MA Na2 LIU Bo3 WANG Jingying1 LIAO Wenhui3 WANG Sheng2 WANG Jinquan2 MENG Jinlan2
1.The Third Department of Surgery, Southern Medical University TCM-Integrated Hospital, Guangdong Province, Guangzhou 510315, China; 2.Department of Physiology, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou 510006, China; 3.Department of Pharmaceutical, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou 510080, China
[Abstract] Objective To observe the changes and roles of endogenous hydrogen sulfide in the substantia nigra oxidative damage of rats. Methods 6-hydroxydop- amine (6-OHDA) was microinjected in the unilateral substantia nigra of SD rats as the substantia nigra oxidative damage model; H2S donor, sodium hydrosulfide (NaHS) was injected intraperitoneally for three consecutive weeks as a pretreatment before 6-OHDA injury. The experiment were divided into the control group , 7 days (D7) group, 11 days (D11) group, 17 days (D17) group after 6-OHDA injury and NaHS preconditioning group (deafed with NaHS + 6-OHDA); with 8 rats in each group. Cystathionine-β-synthase (CBS) activity and H2S production in substantia nigra were detected by methylene blue spectrophot-ometric method. Immunohistochemistry was used to detect tyrosine hydroxylase (tyrosine hydroxylase, TH) positive cells of the substantia nigra; Glutathione peroxidase (GSH-Px) activity and malondialdehyde (MDA) level of the substantia nigra were measured by UV spectrophotometry. Results Compared with the control group, percentage of CBS activity was decreased respectively to[(96.21±8.40)%, P > 0.05], [(86.48±9.85)%, P < 0.05 ] and [(75.16±7.45)%, P < 0.01] for 7, 11 and 17 d after 6-OHDA injury; Percentage of endogenous H2S content decreased respectively to [(90.12±10.03)%, P < 0.05],[(82.58±9.52)%, P < 0.01] and [(78.16±11.55)%, P < 0.01] also. Compared with control group, percentage of TH positive cells was reduced to [(84.32±6.06)%, P < 0.05] at 7 d after 6-OHDA damage, accompanied by GSH-Px activity reducing and MDA content increasing, the difference was statistically significant (P < 0.05). But compared with 7 d after 6-OHDA injury, early supplementary H2S through NaHS pretreatment, percentage of TH positive cells were increased to [(96.15±5.03)%, P < 0.05], and GSH-Px activity was increased ,the content of MDA was decreased, the difference was statistically significant (P <0.05). Conclusion Substantia nigra oxidative damage after 6-OHDA injure leads to CBS activity and endogenous H2S content decreased, pretreatment with exogenous H2S early exert neurons protective effect of anti- oxidative damage in substantia nigra, which may be related to GSH-Px activity increasing and MDA content decreasing.
[Key words] Hydrogen sulfide; Cystathionine-β-synthase; Parkinson's disease; Oxidative stress; Neuroprotection
硫化氫(hydrogen sulfide,H2S)目前被公認(rèn)為是除NO和CO之外另一種新的氣體信號(hào)分子。體內(nèi)半胱氨酸等含硫氨基酸在5'-磷酸吡哆醛依賴(lài)酶胱硫醚-β-合酶(cystathi-onine-β-synthase,CBS)和胱硫醚-γ-裂解酶(cystathionine-γ-lyase,CSE)等的催化作用下生成內(nèi)源性H2S。在中樞神經(jīng)系統(tǒng)中CBS被認(rèn)為是腦內(nèi)源性H2S生成的主要酶,當(dāng)H2S生成濃度過(guò)高或過(guò)低時(shí)與神經(jīng)系統(tǒng)疾病如老年癡呆(Alzheimer's disease,AD)[1]、腦卒中[2]等的發(fā)生密切相關(guān)。Hu等[3]在6-羥基多巴胺(6-Hydroxydopamine,6-OHDA)制備的帕金森?。≒arkinson's disease,PD)模型鼠中檢測(cè)到黑質(zhì)內(nèi)源性H2S含量減少,酪氨酸羥化酶(tyrosine hydroxylase,TH)陽(yáng)性細(xì)胞數(shù)量及其蛋白表達(dá)明顯降低,提示內(nèi)源性H2S參與了PD的病理過(guò)程。但是,在PD進(jìn)展過(guò)程中內(nèi)源性H2S生成的動(dòng)態(tài)變化尚未明確。
PD是一種以黑質(zhì)紋狀體多巴胺神經(jīng)元進(jìn)行性損失為特征的神經(jīng)退行性疾病[4],其發(fā)病機(jī)制目前仍未完全清楚,但是氧化應(yīng)激在PD的發(fā)生中發(fā)揮了重要的作用[5]。研究已證明H2S可通過(guò)抗氧化應(yīng)激[6]、抗炎[7]及抗凋亡[8]等發(fā)揮神經(jīng)元保護(hù)作用,對(duì)神經(jīng)退行性疾病有潛在的治療價(jià)值。
6-OHDA主要通過(guò)誘導(dǎo)氧化應(yīng)激發(fā)揮DA神經(jīng)元特異性的毒性作用[9],是公認(rèn)制備PD動(dòng)物模型的神經(jīng)毒性藥物[10]。
本研究將應(yīng)用6-OHDA誘導(dǎo)的黑質(zhì)氧化損傷大鼠模型,研究在黑質(zhì)損傷早期及進(jìn)展過(guò)程中內(nèi)源性H2S生成相關(guān)指標(biāo)的動(dòng)態(tài)變化;并早期給予外源性H2S預(yù)處理,觀察其抗氧化應(yīng)激的PD預(yù)防作用。
1 材料與方法
1.1 動(dòng)物分組及給藥
成年雄性Sprague-Dawley鼠40只,體重230~280 g,室溫(20±2)℃,自由進(jìn)食、飲水。動(dòng)物于實(shí)驗(yàn)前適應(yīng)實(shí)驗(yàn)室環(huán)境1周。隨機(jī)分為以下5組,每組各8只:①6-OHDA損傷后7 d組(D7組):利用腦立體定位儀在右側(cè)中腦黑質(zhì)內(nèi)微量注入4 μL終濃度為2 μg/μL(用0.2 mg/mL維生素C注射液稀釋?zhuān)┑?-OHDA(黑質(zhì)立體定位坐標(biāo):前囟后5.3 mm,矢狀縫向右旁開(kāi)2.0 mm,自腦膜下深度為7.6 mm),該組動(dòng)物在6-OHDA注射后7 d處死取樣;②6-OHDA損傷后11 d組(D11組):方法同①,該組動(dòng)物在6-OHDA注射后11 d處死取樣;③6-OHDA損傷后17天組(D17組):方法同①,該組動(dòng)物在6-OHDA注射后17 d處死取樣;④對(duì)照組:利用腦立體定位儀在右側(cè)黑質(zhì)內(nèi)注入4 μL 0.2 mg/mL維生素C注射液;⑤NaHS預(yù)處理組:在6-OHDA損傷前3周連續(xù)每天腹腔注射N(xiāo)aHS[5.6 mg/(kg·d)],之后再注射6-OHDA,7 d后處死動(dòng)物取樣。
1.2 胱硫醚-β-合酶(CBS)活性的檢測(cè)
將組織勻漿加入預(yù)先配制好的反應(yīng)體系[100 mmol/L磷酸鉀緩沖液(pH=7.4)、10 mmol/L左旋-半胱氨酸、2 mmol/L 5'-磷酸吡哆醛]中。使組織勻漿占反應(yīng)體系的10%,移至反應(yīng)瓶,吸取1%醋酸鋅0.5 mL吸收液加入中央室。轉(zhuǎn)移錐形瓶至37℃水浴搖床中搖蕩反應(yīng)90 min后,在反應(yīng)體系中加入50%三氯醋酸0.5 mL終止反應(yīng)后繼續(xù)在37℃水浴反應(yīng)60 min。將中央室的內(nèi)容物轉(zhuǎn)移后加入7.2 mol/L含鹽酸對(duì)苯二胺的鹽酸溶液0.5 mL,加入1.2 mol/L含三氯化鐵的鹽酸溶液0.4 mL,于20 min后測(cè)670 nm波長(zhǎng)處的吸光度值(OD值)。實(shí)驗(yàn)組CBS酶活性以實(shí)驗(yàn)組OD值/對(duì)照組OD值×100%表示。
1.3 內(nèi)源性H2S含量的檢測(cè)
取組織勻漿310 μL,加入2%(W/V)醋酸鋅30 μL;20%(W/V)三氯醋酸60 μL;然后再加入20 mmol/L二甲基對(duì)苯二胺硫酸鹽(7.2 mol/L鹽酸)40 μL和30 mmol/L(1.2 mol/L 鹽酸)FeCl3 40 μL,迅速合上EP管振蕩數(shù)下后,轉(zhuǎn)移至37℃生化培養(yǎng)箱靜置10 min;高速離心12 000 r/min,10 min;分光光度計(jì)檢測(cè)670 nm處OD值。實(shí)驗(yàn)組H2S含量以實(shí)驗(yàn)組OD值/對(duì)照組OD值×100%表示。
1.4 TH陽(yáng)性細(xì)胞免疫組織化學(xué)染色
酪氨酸羥化酶(TH)是DA神經(jīng)元合成DA的限速酶,被廣泛運(yùn)用為DA神經(jīng)元的標(biāo)志物。切片脫蠟后,加入3%H2O2阻斷內(nèi)源性過(guò)氧化物酶的活性,高壓修復(fù),紫外線(xiàn)阻斷非特異性背景染色,1∶1000 TH一抗4℃冰箱孵育過(guò)夜,正常山羊血清封閉10 min,加入相應(yīng)二抗孵育10 min,DAB顯色液顯色。各步驟間均用0.01 mol/L PBS(pH=7.4)沖洗。之后流水沖洗,梯度酒精脫水,二甲苯置換酒精,封片。對(duì)每只動(dòng)物5片切片左右側(cè)黑質(zhì)(substantia nigra,SN)的細(xì)胞數(shù)目進(jìn)行計(jì)數(shù)。損傷側(cè)細(xì)胞殘存DA神經(jīng)元數(shù)目以損傷側(cè)TH陽(yáng)性細(xì)胞數(shù)目/未損傷側(cè)TH陽(yáng)性細(xì)胞數(shù)目(右側(cè)/左側(cè))×100表示。
1.5 黑質(zhì)谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GSH-Px)活性和丙二醛(malondialdehyde,MDA)含量檢測(cè)
將各組大鼠在用3%的戊巴比妥鈉(30 mg/kg)腹腔注射麻醉下迅速斷頭處死,冰浴中快速剝離大腦,參照Paxinos等的[11]鼠腦立體定位圖譜,準(zhǔn)確切取中腦黑質(zhì)腦組織。置于勻漿介質(zhì)中,用相應(yīng)的測(cè)試盒檢測(cè)黑質(zhì)GSH-Px活性及MDA含量。
1.6 統(tǒng)計(jì)學(xué)方法
采用統(tǒng)計(jì)軟件SPSS 11.0對(duì)數(shù)據(jù)進(jìn)行分析,正態(tài)分布計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,組間比較用One-way ANOVA 方法,以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 6-OHDA損傷對(duì)大鼠黑質(zhì)CBS酶活性的影響
黑質(zhì)CBS酶活性動(dòng)態(tài)變化結(jié)果顯示:6-OHDA損傷后隨時(shí)間的推移,黑質(zhì)CBS酶活性逐漸下降。與對(duì)照組比較,損傷后第7天黑質(zhì)CBS酶有所下降[(96.21±8.40)%],但差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05);損傷后第11天黑質(zhì)CBS酶活性[(86.48±9.85)%]較對(duì)照組下降明顯,差異有統(tǒng)計(jì)學(xué)意義(P < 0.05);損傷后第17天CBS酶活性下[(75.16±7.45)%]降更加明顯,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。見(jiàn)圖1。
與對(duì)照組比較,*P < 0.05,**P < 0.01
圖1 6-羥基多巴胺損傷黑質(zhì)內(nèi)源性胱硫醚-β-合酶活性的變化
2.2 6-OHDA損傷對(duì)大鼠黑質(zhì)內(nèi)源性H2S生成的影響
采用亞甲基藍(lán)分光光度計(jì)法檢測(cè)在6-OHDA損傷時(shí)黑質(zhì)內(nèi)源性H2S生成的動(dòng)態(tài)變化結(jié)果顯示:與對(duì)照組相比,6-OHDA損傷后第7天黑質(zhì)內(nèi)源性H2S的含量[(90.12±10.03)%]即出現(xiàn)明顯下降,差異有統(tǒng)計(jì)學(xué)意義(P < 0.05),在損傷后的第11天[(82.58±9.52)%]和第17天[(78.16±11.55)%]黑質(zhì)內(nèi)源性H2S的生成繼續(xù)減少,差異均有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。見(jiàn)圖2。
與對(duì)照組比較,*P < 0.05,**P < 0.01
圖2 6-羥基多巴胺損傷黑質(zhì)內(nèi)源性硫化氫含量的變化
2.3 外源性H2S對(duì)大鼠黑質(zhì)TH陽(yáng)性細(xì)胞數(shù)量的影響
TH陽(yáng)性細(xì)胞免疫組織化學(xué)染色結(jié)果顯示:與對(duì)照組[(99.84±4.74)%]比較,6-OHDA單側(cè)損傷黑質(zhì)后7 d(D7組)TH陽(yáng)性細(xì)胞數(shù)即有明顯下降[(84.32±6.06)%],差異有統(tǒng)計(jì)學(xué)意義(P < 0.05);但當(dāng)在6-OHDA損傷前給予NaHS預(yù)處理[NaHS預(yù)處理組,(96.15±5.03)%],與D7組比較,黑質(zhì)TH陽(yáng)性細(xì)胞數(shù)明顯回升,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.05)。
2.4 外源性H2S對(duì)大鼠黑質(zhì)GSH-Px活性及MDA含量的影響
通過(guò)檢測(cè)黑質(zhì)GSH-Px活性及MDA含量進(jìn)一步觀察了H2S抗6-OHDA誘導(dǎo)氧化應(yīng)激損傷的黑質(zhì)DA神經(jīng)元保護(hù)作用。結(jié)果顯示:與對(duì)照組相比6-OHDA損傷組黑質(zhì)GSH-Px活性明顯下降及MDA含量明顯增加(P < 0.05);而給予NaHS預(yù)處理明顯增加了GSH-Px的活性,減少了MDA的生成。見(jiàn)表1。
表1 外源性硫化氫對(duì)大鼠黑質(zhì)GSH-Px活性
及MDA含量的影響(x±s)
注:與對(duì)照組比較,*P < 0.05;與D7組比較,#P < 0.05;GSH-Px:谷胱甘肽過(guò)氧化物酶;MDA:丙二醛;NaHS:硫氫化鈉
3 討論
研究已證實(shí)H2S代謝異常參與了AD[12]、Down's綜合癥[13]、中風(fēng)[14]等中樞神經(jīng)系統(tǒng)疾病的發(fā)生。Hu等[3]研究觀察到,6-OHDA損傷第4周,大鼠出現(xiàn)明顯PD癥狀時(shí)黑質(zhì)內(nèi)源性H2S含量較對(duì)照組減少約25%,差異有顯著性。然而有證據(jù)表明,鼠、猴表現(xiàn)出PD癥狀時(shí),黑質(zhì)DA能神經(jīng)元缺失已達(dá)60%~70%[15]。運(yùn)動(dòng)障礙癥狀懷疑或確定為PD時(shí),人的黑質(zhì)致密帶DA缺失已達(dá)50%~60%[16]。那么,在6-OHDA損傷黑質(zhì)DA能神經(jīng)元早期內(nèi)源性H2S生成的變化究竟如何,尚未明確。
為了觀察內(nèi)源性H2S在PD發(fā)生早期的變化,本實(shí)驗(yàn)首先觀察了6-OHDA損傷過(guò)程中大鼠黑質(zhì)內(nèi)源性CBS酶活性的動(dòng)態(tài)變化。結(jié)果顯示,6-OHDA損傷后第7天CBS酶活性開(kāi)始下降,但并不顯著;而損傷后第11、17天CBS酶活性則明顯下降。同時(shí)檢測(cè)內(nèi)源性H2S含量結(jié)果顯示,6-OHDA損傷后早期(第7天)H2S含量即開(kāi)始下降,約比對(duì)照組減少10%左右,差異有顯著性;隨損傷時(shí)間延長(zhǎng)H2S含量在逐漸下降。6-OHDA損傷后早期(第7天),黑質(zhì)TH陽(yáng)性細(xì)胞數(shù)量也出現(xiàn)約16%的減少;與此同時(shí)黑質(zhì)GSH-Px活性下降及MDA含量的增加,而 GSH-Px的活性降低,MDA水平增高可誘導(dǎo)細(xì)胞膜脂質(zhì)類(lèi)過(guò)氧化損害,抗氧化防御機(jī)制受損導(dǎo)致細(xì)胞損傷。該實(shí)驗(yàn)結(jié)果提示內(nèi)源性H2S參與了黑質(zhì)的氧化損傷過(guò)程。
為了進(jìn)一步觀察內(nèi)源性H2S在PD中的作用,本實(shí)驗(yàn)在6-OHDA損傷前應(yīng)用H2S供體NaHS[5.6mg/(kg·day)]腹腔注射連續(xù)3周作為預(yù)處理。結(jié)果顯示,NaHS逆轉(zhuǎn)了因6-OHDA損傷早期導(dǎo)致的黑質(zhì)TH陽(yáng)性細(xì)胞數(shù)量地減少,發(fā)揮了DA能神經(jīng)元的保護(hù)作用。Hu等[3]也證實(shí)給予外源性NaHS補(bǔ)充H2S可以拮抗6-OHDA誘導(dǎo)地神經(jīng)損傷,增加黑質(zhì)TH陽(yáng)性細(xì)胞數(shù)量及蛋白表達(dá),支持本實(shí)驗(yàn)結(jié)果。但本實(shí)驗(yàn)與Hu等[3]實(shí)驗(yàn)最大的不同在于本實(shí)驗(yàn)觀察6-OHDA損傷早期內(nèi)源性H2S的變化及外源性H2S的預(yù)防作用;而Hu等[3]實(shí)驗(yàn)觀察的則是6-OHDA損傷中晚期H2S的變化及外源性H2S的治療作用。
氧化應(yīng)激在PD的病理中發(fā)揮了重要的作用[4,17]。研究證實(shí)H2S是細(xì)胞重要的抗氧化劑[18-19]。為了進(jìn)一步觀察H2S預(yù)處理是否可以通過(guò)抑制6-OHDA誘導(dǎo)的氧化應(yīng)激發(fā)揮早期DA能神經(jīng)元的保護(hù)作用,本研究在6-OHDA損傷前應(yīng)用NaHS預(yù)處理。結(jié)果顯示,給予NaHS明顯增加了GSH-Px的活性,降低了MDA的水平。提示,H2S可以通過(guò)抗氧化應(yīng)激發(fā)揮黑質(zhì)DA能神經(jīng)元的保護(hù)作用。研究表明在神經(jīng)系統(tǒng)中,H2S可以通過(guò)加強(qiáng)谷氨酸的攝取保護(hù)星形膠質(zhì)細(xì)胞拮抗H2O2誘導(dǎo)的神經(jīng)損傷[20];可以增加還原性GSH的生成發(fā)揮神經(jīng)元保護(hù)作用[21];本實(shí)驗(yàn)室既往也證實(shí)H2S可以通過(guò)減少活性氧生成、提高線(xiàn)粒體膜電位發(fā)揮抗氧化應(yīng)激的神經(jīng)細(xì)胞保護(hù)作用[22],均支持本實(shí)驗(yàn)結(jié)果。
綜上所述,6-OHDA誘導(dǎo)的黑質(zhì)氧化應(yīng)激損傷致使內(nèi)源性H2S含量減少及其生成酶CBS活性下降,而外源性H2S可以通過(guò)增加GSH-Px活性,減少M(fèi)DA含量早期發(fā)揮抗黑質(zhì)氧化損傷的DA能神經(jīng)元保護(hù)作用。本實(shí)驗(yàn)為進(jìn)一步明確PD的發(fā)病機(jī)制及H2S的PD預(yù)防作用提供了重要的科學(xué)依據(jù)。
[參考文獻(xiàn)]
[1] Morrison LD,Smith DD,Kish SJ. Brain S-adenosylmethionine levels are severely decreased in Alzheimer's disease [J]. J Neurochem,1996,67(3):1328-1331.
[2] Wong PT,Qu K,Chimon GN,et al. High plasma cyst(e)ine level may indicate poor clinical outcome in patients with acute stroke: possible involvement of hydrogen sulfide [J]. J Neuropathol Exp Neurol,2006,65(2):109-115.
[3] Hu LF,Lu M,Tiong CX,et al. Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models [J]. Aging Cell,2010,9(2):135-146.
[4] Moore DJ,West AB,Dawson VL ,et al. Molecular pathophysiology of Parkinson's disease [J]. Annu Rev Neurosci,2005,28:57-87.
[5] Yoo MS,Chun HS,Son JJ,et al. Oxidative stress regulated genes in nigral dopaminergic neuronal cells: correlation with the known pathology in Parkinson's disease[J]. Brain Res Mol Brain Res,2003,110(1):76-84.
[6] Kimura Y,Kimura H. Hydrogen sulfide protects neurons from oxidative stress [J]. Faseb J,2004,18(10):1165-1167.
[7] Kamat PK,Kalani A,Givvimani S,et al. Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice [J]. Neuroscience,2013,252: 302-319.
[8] Luo Y,Yang X,Zhao S,et al. Hydrogen sulfide prevents OGD/R-induced apoptosis via improving mitochondrial dysfunction and suppressing an ROS-mediated caspase-3 pathway in cortical neurons[J]. Neurochem Int,2013,63(8):826-831.
[9] Tolwani RJ,Jakowec MW,Petzinger GM,et al. Experimental models of Parkinson's disease: insights from many models [J]. Lab Anim Sci,1999,49(4):363-371.
[10] Bove J,Prou D,Perier C ,et al. Toxin-induced models of Parkinson's disease [J]. NeuroRx,2005,2(3):484-494.
[11] Paxinos G,Watson C. The rat brain in stereotaxic coordinate,compact[M]. The 3rd. San Diego:San Diego Academic Press,1996:356.
[12] Eto K,Asada T,Arima K,et al. Brain hydrogen sulfide is severely decreased in Alzheimer's disease[J]. Biochem Biophys Res Commun,2002,293(5):1485-1488.
[13] Kamoun P,Belardinelli MC,Chabli A,et al. Endogenous hydrogen sulfide overproduction in Down syndrome [J]. Am J Med Genet A,2003,116A(3):310-311.
[14] Qu K,Chen CP,Halliwell B,et al. Hydrogen sulfide is a mediator of cerebral ischemic damage [J]. Stroke,2006,37(3):889-893.
[15] Di Monte DA,McCormack A,Petzinger G,et al. Relationship among nigrostriatal denervation,parkinsonism,and dyskinesias in the MPTP primate model [J]. Mov Disord,2000,15(3):459-466.
[16] Diguet E,Gross CE,Bezard E,et al. Neuroprotective agents for clinical trials in Parkinson's disease: a systematic assessment [J]. Neurology,2004,62(1):158-159.
[17] Wang XL,Xing GH,Hong B,et al. Gastrodin prevents motor deficits and oxidative stress in he MPTP mouse model of Parkinson's disease: Involvement of ERK1/2-Nrf2 signaling pathway [J]. Life Sci,2014,114(2):77-85.
[18] Liu YY,Nagpure BV,Wong PT,et al. Hydrogen sulfide protects SH-SY5Y neuronal cells against d-galactose induced cell injury by suppression of advanced glycation end products formation and oxidative stress [J]. Neurochem Int,2013,62(5):603-609.
[19] Kimura Y, Mikami Y, Osumi K,et al. S Polysulfides are possible H2S-derived signaling molecules in rat brain. [J]. FASEB J,2013,27(6):2451-2457.
[20] Lu M,Hu LF,Hu G,et al. Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake [J]. Free Radic Biol Med,2008, 45(12):1705-1713.
[21] Kimura Y,Kimura H. Hydrogen sulfide protects neurons from oxidative stress [J]. FASEB J ,2004,18(10):1165-1167.
[22] Meng JL,Mei WY,Dong YF,et al. Heat shock protein 90 mediates cytoprotection of hydrogen sulfide against chemical hypoxia-induced injury in PC12 cells[J]. Clin Exp Pharmacol Physiol,2011,38(1):42-49.
(收稿日期:2014-09-16 本文編輯:蘇 暢)
中國(guó)醫(yī)藥導(dǎo)報(bào)2014年36期