楊向德,石元值,伊?xí)栽疲R立鋒*(.中國(guó)農(nóng)業(yè)科學(xué)院茶葉研究所/農(nóng)業(yè)部茶樹生物學(xué)與資源利用重點(diǎn)實(shí)驗(yàn)室,浙江 杭州 30008;2.中國(guó)農(nóng)業(yè)科學(xué)院研究生院,北京 0008)
茶園土壤酸化研究現(xiàn)狀和展望
楊向德1,2,石元值1,伊?xí)栽?,馬立鋒1*
(1.中國(guó)農(nóng)業(yè)科學(xué)院茶葉研究所/農(nóng)業(yè)部茶樹生物學(xué)與資源利用重點(diǎn)實(shí)驗(yàn)室,浙江 杭州 310008;2.中國(guó)農(nóng)業(yè)科學(xué)院研究生院,北京 100081)
酸性土壤是茶樹生長(zhǎng)所必須的條件之一,但并非土壤酸性越強(qiáng),越適宜茶樹生長(zhǎng),其最適宜pH值為5.0~5.5,而當(dāng)前茶園受到自身因素和人為因素的影響,茶園土壤酸化日趨嚴(yán)重。本文回顧了近幾十年來(lái)茶園土壤酸化現(xiàn)狀;分析了茶園土壤酸化的主要原因;闡述了土壤酸化對(duì)茶樹生長(zhǎng)的危害;最后對(duì)酸化茶園和新建茶園給出了具體的改良措施。通過(guò)分析總結(jié),得出了化學(xué)肥料尤其是氮肥的施用是造成茶園土壤酸化最主要的原因;土壤酸化將導(dǎo)致土壤肥力下降和一些重金屬元素含量的上升,影響茶葉的產(chǎn)量和品質(zhì);施有機(jī)物料是改良和控制土壤酸化的理想途徑。最后,作者就茶園土壤酸化的問(wèn)題提出了今后的研究方向。
茶園土壤;酸化現(xiàn)狀;酸化原因;酸化危害;改良措施
茶樹(Camellia sinensis L.)原產(chǎn)于我國(guó)西南地區(qū),長(zhǎng)期生長(zhǎng)在酸性土壤中,逐漸形成了喜酸的特性,但并非土壤酸性越強(qiáng),越適宜茶樹生長(zhǎng)。研究表明,茶樹適合生長(zhǎng)在pH4.0~6.5的土壤中,其中pH5.0~5.5最適宜,當(dāng)pH低于4.0時(shí)茶樹生長(zhǎng)受到限制,并且土壤的理化性狀也會(huì)發(fā)生惡化,影響茶葉產(chǎn)量和品質(zhì)[1-3]。當(dāng)前土壤酸化日趨嚴(yán)重,已成為世界性的問(wèn)題,引起了各國(guó)科技工作者的極大興趣。本文就茶園土壤酸化現(xiàn)狀、引起酸化的原因、土壤酸化導(dǎo)致的危害以及土壤改良措施等方面取得的研究進(jìn)展進(jìn)行了綜述。最后,作者就茶園土壤酸化提出了今后的研究方向,希望對(duì)茶葉工作者有所幫助。
土壤酸化是指土壤中 H+增加及鹽基離子減少的過(guò)程[4],其本質(zhì)是土壤中的 H+、Al3+被土壤吸附后,與其中的堿性鹽基離子(Ca2+、Mg2+、Na+、K+等)發(fā)生交換,最后使其淋失的過(guò)程。根據(jù) H+的形態(tài),土壤酸度可分為活性酸和潛性酸兩種。活性酸可用土壤溶液中的H+濃度直接反映,其強(qiáng)度用pH值來(lái)表示;潛性酸主要取決于交換態(tài)的 H+和Al3+,只有被交換到土壤溶液中時(shí),潛性酸才顯示出來(lái),通常鹽基不飽和的土壤才有潛性酸,且潛性酸的酸度比活性酸大。
早期于天仁[5]提出用石灰位來(lái)表示土壤的酸度,之后學(xué)者陸續(xù)提出新的土壤酸度評(píng)價(jià)方法,如Al飽和度(ASP)、鹽基飽和度(BS)、酸緩沖容量(pHBC)和酸化速率(AR)等[6-13]。
20世紀(jì)60年代,各國(guó)茶園土壤pH值大多在5.0~6.0之間,到70、80年代,各國(guó)茶園土壤就開始出現(xiàn)不同程度的酸化,尤其到了80年代中期,土壤pH值降到了4.0~5.0之間,其中日本茶園酸化最為嚴(yán)重[1-3]。我國(guó)茶園土壤在 80年代后期逐漸酸化,浙江等6省茶園土壤pH值在5.0以下的占70%左右(其中pH值低于4.0的占12.5%)[14],江蘇等3省茶園土壤pH值小于4.0的占13.7%[15]。20世紀(jì)90年代,我國(guó)茶園土壤的酸化速度加劇,江蘇等3省茶園土壤pH值小于4.0的占到了43.9%[15]。
進(jìn)入21世紀(jì),各國(guó)茶園土壤酸化問(wèn)題進(jìn)一步加劇。日本靜岡超過(guò)77%的茶園土壤pH值小于4.0,超過(guò) 60%的茶園土壤 pH小于 3.5,甚至達(dá)到了2.7[16],南印度阿薩姆地區(qū)茶園土壤pH下降明顯[17-18]。我國(guó)重慶市約80%的茶園處于非最佳的茶樹生長(zhǎng)土壤pH范圍[19],江蘇省典型茶園土壤pH值均低于茶樹生長(zhǎng)最適宜土壤pH條件[20],福建省茶園土壤pH值在4.5以下的茶園占86.9%(其中pH值低于4.0的占28%)[21],江西省茶園土壤pH值都在4.5以下,其中小于4.0的占 72.0%[22],貴州省茶園土壤普遍酸化[23]??梢?jiàn),我國(guó)茶園土壤酸化日益加重,土壤pH值適宜的茶園比例在不斷減少[24-26]。
土壤酸化最直接的原因是由 H+循環(huán)脫節(jié)所引起的,即由于不同因素導(dǎo)致產(chǎn)生 H+與消耗 H+不平衡所致[4]。在穩(wěn)定的生態(tài)系統(tǒng)中,H+產(chǎn)生的任何一個(gè)生物地球化學(xué)反應(yīng)都存在與之對(duì)應(yīng)可逆的 H+消耗反應(yīng),當(dāng)不可逆的質(zhì)子流輸入生態(tài)系統(tǒng)則引起土壤的酸化[27]。在土壤—植物—?jiǎng)游锵到y(tǒng)中,通過(guò)C、N、S的循環(huán)和轉(zhuǎn)移釋放質(zhì)子是導(dǎo)致土壤酸化的主要原因[28-29]。C循環(huán)通過(guò)生物量收獲、有機(jī)酸根的淋溶等途徑來(lái)移除土壤中的過(guò)量鹽基性離子[30-31]。植物生長(zhǎng)而產(chǎn)生的永久性酸,其產(chǎn)生速率受土壤養(yǎng)分狀態(tài)的限制,施肥提高了土壤養(yǎng)分狀態(tài),生物收獲量增加,因而施用化肥是通過(guò)提高生態(tài)系統(tǒng)C循環(huán)來(lái)加速土壤酸化進(jìn)程[32]。生態(tài)系統(tǒng)N循環(huán)通過(guò)NH4+的凈輸入和 NO3-的凈輸出來(lái)實(shí)現(xiàn)對(duì)土壤堿性物質(zhì)的移除[27,32-33]。大氣氮沉降和人為氮施肥超過(guò)生態(tài)系統(tǒng)(包括植物和土壤)的 N積累速率,將導(dǎo)致NO3-的凈輸出(通過(guò)土壤淋溶和地表徑流)增加,土壤酸化進(jìn)程被生態(tài)系統(tǒng)N循環(huán)加速[34]。自然條件下,土壤酸化速率非常緩慢。據(jù)研究[35],在自然環(huán)境下pH值下降一個(gè)單位平均需要100年左右,而人類活動(dòng)加速了土壤酸化的進(jìn)程,如酸沉降、生物量的移除和大量化學(xué)氮肥的施用[33,36]。研究表明,茶園土壤酸化主要由茶園內(nèi)源酸化因子和茶園外源酸化因子的進(jìn)入引起的。
3.1 內(nèi)源酸化因子的影響
當(dāng) Ca2+、Mg2+、Na+、K+等鹽基離子從土壤中淋失時(shí)會(huì)造成土壤的酸化。茶樹生長(zhǎng)過(guò)程中會(huì)吸收土壤中大量的鹽基離子,為了維持土壤電荷平衡,植株會(huì)向土壤中釋放H+,使土壤酸化[37-38]。茶樹是葉用作物,每輪采摘會(huì)帶走大量的鹽基離子,移走的生物量使鹽基飽和度下降,土壤中H+、Al3+濃度增加,進(jìn)而使土壤進(jìn)一步酸化[33]。固氮植物由于固氮作用吸收的陽(yáng)離子多于陰離子也會(huì)導(dǎo)致根系土壤的酸化[39-40],如果茶園間作固氮植物,也會(huì)引起茶園土壤酸化。
在酸性土壤中,Al以不穩(wěn)定的形態(tài)被茶樹吸收[41],茶樹體內(nèi)平均Al含量為1500 mg·kg-1,老葉中高達(dá)20000 mg·kg-1[42],隨著老葉的凋落和茶樹的修剪物還園,通過(guò)Al的生物地球化學(xué)循環(huán)加速了土壤的酸化[43]。由于茶樹的喜銨性和富鋁特性,其對(duì)銨和鋁離子的大量吸收導(dǎo)致根系釋放大量質(zhì)子可能對(duì)土壤酸化有重要貢獻(xiàn)[44-46]。
茶園土壤中含有多種有機(jī)酸,有機(jī)酸是茶園土壤物質(zhì)的重要組成部分[47],茶樹中有機(jī)酸的分泌也是導(dǎo)致茶園土壤酸化的一個(gè)重要因素。茶樹在生長(zhǎng)過(guò)程中會(huì)產(chǎn)生多酚類等有機(jī)化合物,以分泌物或凋落物的形式進(jìn)入土壤[48],凋落物中酚類物質(zhì)主要是以單寧酸為主的一類具有羥基芳香環(huán)及其他功能團(tuán)的化合物[49],蘇有健等[50]研究指出在低濃度范圍內(nèi),隨著單寧酸濃度的增加,土壤中活性Al含量增加,其原因是有機(jī)酸引起土壤酸化,從而活化了土壤中的Al。
3.2 茶園外源酸化因子的影響
與茶樹自身的物質(zhì)循環(huán)和根系分泌物對(duì)土壤酸化的作用相比,茶園土壤酸化受人類活動(dòng)影響更大。
3.2.1 化學(xué)肥料
土壤施用氮肥后,硝化作用釋放質(zhì)子是引起土壤酸化的主要機(jī)制[51-52],據(jù)分析每年向1 hm2土壤中施入500 kg的氮會(huì)產(chǎn)生32.5 kmol的H+[35],這是施氮肥對(duì)土壤酸化的直接作用[53]。
另外,氮肥的投入,增加了作物產(chǎn)量,將帶走更多的鹽基離子,留下更多的H+,加速了土壤酸化,這是施氮肥導(dǎo)致土壤酸化的間接原因[33]。
作為葉用作物的茶樹,對(duì)氮肥的需求比其他大多數(shù)作物要高很多,為保證茶葉高產(chǎn),向茶園中施入大量的氮肥?;瘜W(xué)肥料特別是氮肥的施用直接或間接地導(dǎo)致了土壤的酸化[54-58],由于NH4+的硝化作用釋放質(zhì)子加速了土壤酸化[51,59-60],不同的氮肥對(duì)土壤的酸化速率影響很大,硫酸銨對(duì)土壤的酸化作用強(qiáng)于尿素和硝酸銨鈣[54,61]。
3.2.2 酸沉降
酸沉降,包括濕沉降和干沉降,導(dǎo)致酸沉降的因素很多[62-63]。近年來(lái)大型畜禽養(yǎng)殖場(chǎng)產(chǎn)生的NH3隨降雨沉降對(duì)土壤酸化有影響[64-65],酸雨是導(dǎo)致土壤酸化的原因之一。酸雨中的H+與土壤膠體表面吸附的鹽基離子進(jìn)行交換,被交換下來(lái)的鹽基性離子隨滲漏水淋失,同時(shí)土粒表面的H+又會(huì)自發(fā)的與礦物晶格表面的Al發(fā)生反應(yīng),轉(zhuǎn)化成交換性Al。酸沉降導(dǎo)致土壤溶液中SO42-和NO3-濃度增加,也促進(jìn)了鹽基離子的淋失,加速了土壤酸化[51,66]。Wen等[67]通過(guò)酸雨模擬實(shí)驗(yàn)表明,酸雨對(duì)土壤 pH值的降低有很大的影響。Barak等[34]發(fā)現(xiàn)施用氮肥引起的酸化作用是酸沉降的25倍,但是在環(huán)境污染嚴(yán)重區(qū)域,酸沉降是導(dǎo)致土壤酸化不可忽略的一個(gè)影響因素,土壤 pH值與茶區(qū)附近工業(yè)分布的稠密程度有直接關(guān)系[68],茶園土壤pH值低于4.0時(shí),其相應(yīng)酸雨的頻率都在80%以上[69]。
3.2.3 強(qiáng)降雨和灌溉
從長(zhǎng)遠(yuǎn)效應(yīng)來(lái)說(shuō),降雨豐富和大量灌溉區(qū)域,土壤更容易酸化。土壤被雨水淋洗越快,酸化越嚴(yán)重。土壤中大量的鹽基離子(Ca2+、Mg2+、Na+、K+等)被酸性陽(yáng)離子(H+、Al3+等)取代,同時(shí)NO3-的淋失,使土壤顆粒表面吸附態(tài)H+迅速積累而顆粒表面吸附態(tài)Ca2+、Mg2+等陽(yáng)離子不斷減少[70]。
3.2.4 成土母質(zhì)
不同土壤由于成土母質(zhì)、質(zhì)地、有機(jī)質(zhì)含量、礦物組成和理化性質(zhì)的差異,其對(duì)酸的敏感性也不同,因此,導(dǎo)致土壤酸化的時(shí)間也不同。由花崗巖風(fēng)化形成的土壤較頁(yè)巖或石灰?guī)r形成的土壤更易使土壤酸化,不論是初級(jí)還是次級(jí)礦物,在風(fēng)化過(guò)程中產(chǎn)生的H2SiO3和H2SO4等致酸性物質(zhì)使土壤酸化[53],酸雨和高溫能促進(jìn)風(fēng)化作用,加速土壤酸化[71-74]。
土壤酸化限制了作物的生長(zhǎng),土壤中鋁含量的增加對(duì)植物根系的生長(zhǎng)和養(yǎng)分的吸收有很大的影響[75-76],茶園土壤酸化危害主要表現(xiàn)在以下幾個(gè)方面。
4.1 破壞土壤結(jié)構(gòu)
酸化土壤,一般缺乏良好的物理性質(zhì),隨著土壤酸度的增強(qiáng),其中的腐殖質(zhì)大多變?yōu)榭扇苄缘母菜幔兊靡子诹苁В?7]。土壤有效態(tài) Ca含量與土壤交換性Al呈顯著的負(fù)相關(guān)關(guān)系,酸性土壤Al的活化是導(dǎo)致土壤Ca含量降低的主要原因[78],而Ca是形成土壤結(jié)構(gòu)的主要鹽基成分,所以土壤低含量Ca造成土壤結(jié)構(gòu)解體而難以形成良好的黏粒結(jié)構(gòu),使土壤板結(jié)[77]。
4.2 影響營(yíng)養(yǎng)元素的吸收
土壤的酸化將直接對(duì)茶樹根系的生長(zhǎng)及其吸收功能產(chǎn)生影響。土壤 pH值過(guò)低,會(huì)使植物所需養(yǎng)分元素的生物有效性發(fā)生變化,從而導(dǎo)致植株某些營(yíng)養(yǎng)元素失調(diào)[79-80]。土壤酸化使土壤中的Ca、P等大量元素和Mo、B等微量元素的有效性降低,影響作物的吸收[78,81-82]。當(dāng)土壤pH在5.0~6.0時(shí),茶樹根系發(fā)達(dá),發(fā)芽早,新梢生長(zhǎng)快,而在pH<4.0時(shí)茶樹根尖生長(zhǎng)受抑制,對(duì)N、P、K的吸收量急劇下降,茶樹發(fā)芽遲緩[83]。
4.3 易產(chǎn)生風(fēng)險(xiǎn)元素的毒害作用
土壤中的一些重金屬元素隨 pH值的降低,其溶解性、移動(dòng)性、有效性增加[29],茶園土壤酸化易導(dǎo)致 Pb、Cu等重金屬元素在茶樹葉片中的累積增加,不僅影響茶葉質(zhì)量,同時(shí)對(duì)人體的健康產(chǎn)生危害[84, 85]。
土壤酸化使土壤中的Al3+、Mn2+濃度升高,對(duì)植物產(chǎn)生毒害作用[51],F(xiàn)是一種對(duì)人體生長(zhǎng)發(fā)育具有重要意義的元素,但是若攝入量過(guò)多,會(huì)對(duì)人體的健康造成一定的危害[86-88],宗良綱等[89]發(fā)現(xiàn)當(dāng)土壤pH<4.0時(shí),土壤中水溶性F含量迅速增加,增加茶樹對(duì)F的吸收。
4.4 影響微生物的活性
土壤中絕大多數(shù)微生物對(duì)酸敏感,所以在酸性條件下土壤中微生物的種類和數(shù)量均較少,而且活性很低,使一些重要的微生物酶失活,或者使細(xì)胞的蛋白質(zhì)變性,影響土壤養(yǎng)分的轉(zhuǎn)化[2,90]。
同時(shí)酸化土壤中高濃度的Al,也會(huì)毒害微生物,使微生物的活性喪失[91-92]。然而,土壤酸化也能使一些嗜酸反硝化細(xì)菌的活性增強(qiáng),增加土壤N2O的排放[93]。
酸化的本質(zhì)是釋放到土壤中的質(zhì)子使土壤酸化,因此,可通過(guò)產(chǎn)生質(zhì)子和消耗質(zhì)子之間的平衡關(guān)系來(lái)控制土壤的酸化過(guò)程[94]。
5.1 酸雨的控制
在地處酸雨地帶的茶園,種植矮牽?;梢晕沾髿庵械腟O2和NOx,減少酸雨的形成[95]。同時(shí),酸雨中含有的SO2和NOx可以通過(guò)脫S技術(shù)和對(duì)汽車排氣裝置進(jìn)行改進(jìn),減少SO2和NOx的排放[96]。
5.2 合理施用氮肥
茶園施肥方式極不合理,重化肥、輕有機(jī)肥現(xiàn)象嚴(yán)重,尤其是生理酸性肥料的施用,是造成土壤酸化的重要原因之一[36,55,97-98]。施用銨態(tài)氮肥加速了土壤酸化,且土壤酸度隨氮肥用量增加而增加[99-100],因此合理的投入氮肥既能保證作物的產(chǎn)量,又能降低土壤硝化作用,減少質(zhì)子供體,降低土壤的酸化作用[99]。
5.3 施用化學(xué)改良劑
5.3.1 白云石粉等
施用石灰等堿性物質(zhì)改良農(nóng)田土壤酸度是酸性土壤地區(qū)的一項(xiàng)傳統(tǒng)農(nóng)業(yè)措施[101],但用石灰來(lái)改良土壤的酸度成本較高,研究指出1 kg的銨態(tài)氮需要7.2 kg的CaCO3來(lái)中和,而且施用石灰雖然可以矯正土壤的 pH值,但對(duì)茶葉產(chǎn)量和品質(zhì)的提高不明顯,若施用不當(dāng),還會(huì)產(chǎn)生不利影響[33]。而采用白云石粉(CaCO3+MgCO3)效果較好,尤其對(duì)于長(zhǎng)期施氨態(tài)氮肥而引起缺鎂的茶園,施用白云石粉既改善了土壤的酸度,同時(shí)含有鈣鎂離子增加了土壤的陽(yáng)離子交換量[1-2]。
5.3.2 生理堿性肥料
對(duì)于強(qiáng)酸性的土壤可以施加生理堿性肥料來(lái)改善土壤的酸度,如鈣鎂磷肥、硝酸鉀和草木灰等,施入到土壤時(shí)作物吸收其中的陰離子多于陽(yáng)離子,使土壤中殘留了較多的 Ca2+、Mg2+、Na+、K+等,可以增加土壤的陽(yáng)離子交換量,提高土壤的酸緩沖容量(ANC),使土壤pH值升高[102-103]。
5.3.3 有機(jī)物料
一些農(nóng)作物秸稈等農(nóng)業(yè)有機(jī)廢棄物可以改良土壤酸度[104-107],有機(jī)質(zhì)能夠增加土壤的 pH值[104],通過(guò)有機(jī)氮的礦化和有機(jī)陰離子的脫羧作用(灰化堿的釋放),消耗質(zhì)子使pH升高[108-109];而硝化作用釋放質(zhì)子,使土壤pH降低,所以pH的變化主要取決于灰化堿的含量與土壤中氮素的轉(zhuǎn)化[37,110-111]。另外,有機(jī)物和土壤礦物對(duì)離子的吸附與解析對(duì)土壤pH的變化也起到一定作用[112]。此外,有機(jī)質(zhì)能夠與Al結(jié)合形成復(fù)合物降低了土壤中Al的飽和度,從而改善了土壤的酸度,減少了Al的毒害作用[113]。
生物炭能顯著改良茶園土壤的酸度[114-115],添加植物凋落物、殘留物和秸稈來(lái)改良土壤酸度,且效果顯著[37-38,116],但農(nóng)業(yè)廢棄物及其衍生物對(duì)酸性土壤的改良研究大多停留在室內(nèi)模擬階段,離田間實(shí)際應(yīng)用還有較大差距[51]。
土壤酸化是土壤退化的重要過(guò)程之一,多年來(lái),科學(xué)工作者在茶園土壤酸化領(lǐng)域已開展了大量的研究工作,但由于土壤自身的復(fù)雜性和茶園土壤環(huán)境的特殊性,對(duì)茶園土壤酸化的研究仍落后于其它作物,今后對(duì)茶園土壤酸化的研究可以從以下幾個(gè)方面考慮:
6.1 土壤酸化是一個(gè)復(fù)雜的過(guò)程,主要是由于產(chǎn)生和消耗H+不平衡所致。與其它旱地相比,茶園是一個(gè)非常獨(dú)特的生態(tài)系統(tǒng)。茶樹是葉用作物,需要向茶園投入大量的氮肥來(lái)保證產(chǎn)量。茶樹是多年生作物,每年進(jìn)行1~2次修剪,剪下的枝葉以及茶樹凋落物均歸還茶園,且茶樹葉片中富含Al、F和多酚類等物質(zhì),這些物質(zhì)進(jìn)入土壤更加復(fù)雜了茶園物質(zhì)的循環(huán)過(guò)程?;瘜W(xué)肥料和茶樹凋落物擁有各自的生物地球化學(xué)循環(huán)途徑,使進(jìn)入土壤的質(zhì)子源不同、產(chǎn)生的凈質(zhì)子數(shù)不同,驅(qū)動(dòng)土壤酸化貢獻(xiàn)率大小也不同,因此應(yīng)該進(jìn)一步探究化學(xué)肥料和茶樹凋落物對(duì)土壤質(zhì)子的輸入和輸出途徑,通過(guò)質(zhì)子負(fù)荷來(lái)核算他們對(duì)茶園土壤酸化的貢獻(xiàn)率問(wèn)題。
同時(shí)由于茶園土壤特殊的生產(chǎn)措施,如采茶季節(jié)對(duì)土壤不斷的踩踏使土壤容重、三相的組成及比例等物理性質(zhì)發(fā)生很大變化。大量氮肥的投入和茶樹凋落物還園使土壤的化學(xué)變化途徑變得復(fù)雜,土壤物理化學(xué)環(huán)境的改變,必然會(huì)引起土壤中微生物的數(shù)量與活性發(fā)生變化,這個(gè)循環(huán)過(guò)程隨著茶園內(nèi)部和外在的環(huán)境而改變。從茶園自身的特點(diǎn)出發(fā),綜合、平衡各種因素,最后要建立一套適合茶園自身特點(diǎn)的土壤酸化評(píng)價(jià)方法。
6.2 目前對(duì)酸性土壤的改良有無(wú)機(jī)改良劑和有機(jī)改良劑,但長(zhǎng)期施用無(wú)機(jī)改良劑的土壤,生物活性不高、底土改良不徹底、養(yǎng)分元素不均衡等土壤理化性質(zhì)惡化顯現(xiàn)。而農(nóng)作物秸稈等農(nóng)業(yè)有機(jī)廢棄物對(duì)土壤的酸度具有明顯的改良作用,這種改良作用不僅通過(guò)增加土壤有機(jī)質(zhì)來(lái)提高土壤CEC,而且植物物料或多或少含有一定量的堿性物質(zhì),能對(duì)土壤酸度起到直接的中和作用,提高土壤pH,并可在短期內(nèi)見(jiàn)效。也有不少研究通過(guò)一些生物措施來(lái)改良和修復(fù)酸性土壤,通過(guò)土壤動(dòng)物、植物和微生物對(duì)酸化土壤進(jìn)行修復(fù)。然而其效果的持續(xù)性、底土改良的難度大、作物品質(zhì)的不保證性等都存在一定的問(wèn)題,對(duì)今后研發(fā)酸性土壤改良劑或調(diào)理劑,需要綜合各個(gè)方面的因素,確保改良效果的持續(xù)性,不影響作物的品質(zhì)最好還能提高作物的品質(zhì),最重要的是能大規(guī)模的投入大田生產(chǎn)模式。
6.3 土壤酸化是一個(gè)長(zhǎng)期的過(guò)程,目前關(guān)于茶園研究大部分都是盆栽試驗(yàn),或者大田短期試驗(yàn),試驗(yàn)周期都較短,其產(chǎn)生的酸化機(jī)制有別于長(zhǎng)期效應(yīng),因此茶園土壤酸化研究應(yīng)該在長(zhǎng)期定位試驗(yàn)條件下展開。
[1] 吳洵.茶園土壤酸化及防治[J].茶葉通訊,1990,(4):21-23.
[2] 廖萬(wàn)有.我國(guó)茶園土壤的酸化及其防治[J].農(nóng)業(yè)環(huán)境保護(hù),1998,17(4):178-180.
[3] 吳洵,林智.茶樹喜酸及茶園土壤酸化問(wèn)題的研究結(jié)果及進(jìn)展[J].茶葉文摘,1991,5(1):1-7.
[4] 許中堅(jiān),劉廣深.人為因?yàn)檎T導(dǎo)下的紅壤酸化機(jī)制及其防治[J].農(nóng)業(yè)環(huán)境保護(hù),2002,21(2):175-178.
[5] 于天仁,陳志誠(chéng).土壤中發(fā)生的化學(xué)過(guò)程[M].北京:科學(xué)出版社,1990.
[6] Dinkelaker B, R?mheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinusalbus L.)[J]. Plant, Cell & Environment,1989,12(3):285-292.
[7] 戎秋濤,楊春茂,徐文彬.土壤酸化研究進(jìn)展[J].地球科學(xué)進(jìn)展,1996,11(4):396-401.
[8] 黃平,張佳寶,朱安寧,等.黃淮海平原典型潮土的酸堿緩沖性能[J].中國(guó)農(nóng)業(yè)科學(xué),2009,42(7):2392-2396.
[9] Sverdrup H, Warfvinge P, Nihlg?rd B. Assessment ofsoil acidification effects on forest growth in Sweden[J]. Water, Air, and Soil Pollution,1994,78(1-2):1-36.
[10] Bortoluzzi EC, Tessier D, Rheinheimer DS, et al. The cation exchange capacity of a sandy soil in southern Brazil: an estimation of permanent and pH-dependent charges[J]. European Journal of Soil Science,2006,57(3):356-364.
[11] Lu X, Mao Q, Gilliam FS,et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems[J]. Glob Chang Biol,2014,20(12):3790-3801.
[12] Lu X, Mao Q, Mo J, et al. Divergent Responses of Soil Buffering Capacity to Long-Term N Deposition in Three Typical Tropical Forests with Different Land-Use History[J]. Environmental science & technology,2015,49(7):4072-4080.
[13] Cai Z, Wang B, Xu M, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China[J]. Journal of Soils and Sediments,2015,15(2):260-270.
[14] 吳洵.紅壤茶園土壤活性鋁與酸度實(shí)質(zhì)[J].福建茶葉,1991,(1):25-27.
[15] 馬立鋒,石元值.蘇,浙,皖茶區(qū)茶園土壤pH狀況及近十年來(lái)的變化[J].土壤通報(bào),2000,31(5):205-207.
[16] Wang X, Kato T, Tokuda S. Environmental Problems Caused by Heavy Application of Nitrogen Fertilisers in Japanese Tea Fields[M]//Land Degradation. Springer Netherlands,2001:141-150.
[17] Baruah BK, Das B, Medhi C, et al. Fertility status of soil in the tea garden belts of golaghat district, Assam, India[J]. Journal of Chemistry,2012,2013:1-6.
[18] Dutta J, Bhuyan B, Misra A. A Case Studyon Soil Acidity and Metal[J]. Journal of Environmental Research and Development,2009,3(4):1108-1113
[19] 張祖光,吳云,謝德體.重慶茶園土壤酸化特征研究[J]西南農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,26(1):15-17.
[20] 羅敏.江蘇省茶園土壤酸化現(xiàn)狀及其影響因素研究[D].南京:南京農(nóng)業(yè)大學(xué),2006.
[21] 楊冬雪,鐘珍梅,陳劍俠,等.福建省茶園土壤養(yǎng)分狀況評(píng)價(jià)[J].海峽科學(xué),2011,(6):129-131.
[22] 楊普香,阮建云,伊?xí)栽?,?江西省茶葉主產(chǎn)縣茶園土壤養(yǎng)分現(xiàn)狀分析[J].江西農(nóng)業(yè)學(xué)報(bào),2013,25(9):66-70.
[23] 張小琴,陳娟,高秀兵,等.貴州重點(diǎn)茶區(qū)茶園土壤pH值和主要養(yǎng)分分析[J].西南農(nóng)業(yè)學(xué)報(bào),2015,28(1):286-291.
[24] 劉林敏,寧建美,李貴松,等.松陽(yáng)縣農(nóng)田茶園土壤養(yǎng)分調(diào)查分析[J].中國(guó)茶葉,2009,(5):30-31.
[25] 危天進(jìn).武平縣山地茶園土壤肥力狀況與培肥對(duì)策[J].福建熱作科技,2009,34(3):9-11.
[26] 黃運(yùn)湘,曾希柏,張楊珠,等.湖南省丘崗茶園土壤的酸化特征及其對(duì)土壤肥力的影響[J].土壤通報(bào),2010,41(3):633-638.
[27] Van Breemen N, Driscoll C, Mulder J. Acidic deposition and internal proton sources in acidification of soils and waters[J]. Nature,1984,307(5952):599-604.
[28] Robson A, Foy C. Soil Acidity and Plant Growth[J]. Soil Science,1990,150(6):903.
[29] Sumner M, Fey M, Noble A. Nutrient status and toxicity problems in acid soils[M]//Soil acidity. Springer Berlin Heidelberg,1991:149-182.
[30] Fujii K, Funakawa S, Hayakawa C, et al. Contribution of different proton sources to pedogenetic soil acidification in forested ecosystems in Japan[J]. Geoderma,2008,144(3):478-490.
[31] Posch M, Reinds GJ. A very simple dynamic soil acidification model for scenario analyses and target load calculations[J]. Environmental Modelling & Software,2009,24(3):329-340.
[32] Vieira F, Bayer C, Mielniczuk J, et al. Long-term acidification of a Brazilian Acrisol as affected by no till cropping systems and nitrogen fertiliser[J]. Soil Research,2008,46(1):17-26.
[33] Guo J, Liu X, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science,2010,327(5968):1008-1010.
[34] Barak P, Jobe BO, Krueger AR, et al. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin[J]. Plant and Soil,1997,197(1):61-69.
[35] HUANG P, ZHANG J-b, XIN X-l,et al. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain[J]. Journal of Integrative Agriculture,2015,14(1):148-157.
[36] Zhang H, Wang B, Xu M. Effects of Inorganic Fertilizer Inputs on Grain Yields and Soil Properties in a Long-Term Wheat-Corn Cropping System in South China[J]. Communications in Soil Science and Plant Analysis,2008,39(11-12):1583-1599.
[37] Yan F, Schubert S, Mengel K. Soil pH changes during legume growth and application of plant material[J]. Biology and Fertility of Soils,1996,23(3):236-242.
[38] Tang C, Unkovich M, Bowden J. Factors affecting soil acidification under legumes. III. Acid production by N2-fixing legumes as influenced by nitrate supply[J]. New Phytologist,1999,143(3):513-521.
[39] Amann M, Bertok I, Cofala J, et al. Cost-effective Control of Acidification and Ground-level Ozone[R]. Seventh Interim Report to the Commission DG-XI,1999.
[40] Murano K, Hatakeyama S, Mizoguchi T,et al. Gridded ammonia emission fluxes in Japan[J]. Water, Air,and Soil Pollution,1995,85(4):1915-1920.
[41] Dong D, Xie Z, Du Y. The bioavailability of Al in soils to tea plants[J]. Applied geochemistry,2001,16(11):1413-1418.
[42] 廖萬(wàn)有.茶生物圈中鋁的生物學(xué)效應(yīng)及其研究展望[J].福建茶葉,1995,(4):13-17.
[43] 丁瑞興,黃驍.茶園-土壤系統(tǒng)鋁和氟的生物地球化學(xué)循環(huán)及其對(duì)土壤酸化的影響[J].土壤學(xué)報(bào),1991,28(3):229-236.
[44] Wang Q, Xu R, Li X. Proton release from tea plant (Camellia sinensis L.) roots as affected by five cations in solu?tionculture[J]. Plant, Soil and Environment,2012,58(9):429-434.
[45] Wan Q, Xu R-k, Li X-h. Proton release from tea plant (Camellia sinensis L.) roots induced by Al (III)under hydroponic conditions[J]. Soil Research,2012,50(6):482-488.
[46] 萬(wàn)青,徐仁扣,黎星輝.氮素形態(tài)對(duì)茶樹根系釋放質(zhì)子的影響[J].土壤學(xué)報(bào),2013,50(4):84-89.
[47] Huang P. Soil Mineral-Organic Matter—MicroorganismInteractions: Fundamentals and Impacts[J]. Advances in agronomy,2004,(82):391-472.
[48] Binkley D, Giardina C. Why do tree species affect soils? The warp and woof of tree-soil interactions[J]. Biogeochemistry,1998,42(1-2):89-106.
[49] Waterman PG, Mole S. Analysis of phenolic plant metabolites[M]. Blackwell Scientific,1994.
[50] 蘇有健,廖萬(wàn)有,王燁軍,等.單寧酸對(duì)不同pH茶園土壤中活性鋁形態(tài)分布的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2014,22(001):22-30.
[51] 徐仁扣.土壤酸化及其調(diào)控研究進(jìn)展①[J].土壤,2015,47(2):238-244.
[52] Vries WD, Breeuwsma A. The relation between soil acidification and element cycling[J]. Water Air and Soil Pollution,1987,35(3):293-310.
[53] Chien SH, Gearhart MM, Collamer DJ. The effect of different ammonical nitrogen sources on soil acidification[J]. Soil Science,2008,173(8):544-551.
[54] Juo A, Dabiri A, Franzluebbers K. Acidification of a kaoliniticAlfisol under continuous cropping with nitrogen fertilization in West Africa[J]. Plant and Soil,1995,171(2):245-253.
[55] Matsuyama N, Saigusa M, Sakaiya E, et al. Acidification and soil productivity of allophanic Andosols affected by heavy application of fertilizers[J]. Soil Science & Plant Nutrition,2005,51(1):117-123.
[56] Abe SS, Hashi I, Masunaga T,et al. Soil profile alteration in a brown forest soil under high-input tea cultivation[J]. Plant production science,2006,9(4):457-461.
[57] Oh K, Kato T, Zhong-Pei L, et al. Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide[J]. Pedosphere,2006,16(6):770-777.
[58] Ruan J, Ma L, Shi Y. Aluminium in tea plantations:mobility in soils and plants, and the influence of nitrogen fertilization[J]. Environmental geochemistry and health,2006,28(6):519-528.
[59] Ruan J, Zhang F, Wong MH. Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensisL[J]. Plant and Soil,2000,223(1-2):65-73.
[60] Ruan J, Ma L, Shi Y,et al. Effects of litter incorporation and nitrogen fertilization on the contents of extractable aluminium in the rhizosphere soil of tea plant (Camalliasinensis(L.) O. Kuntze)[J]. Plant and soil,2004,263(1):283-296.
[61] Bouman O, Curtin D, Campbell C,et al. Soil acidification from long-term use of anhydrous ammonia and urea[J]. Soil Science Society of America Journal,1995,59(5):1488-1494.
[62] De Schrijver A, Nachtergale L, Roskams P,et al. Soil acidification along an ammonium deposition gradient in a Corsican Pine stand in northern Belgium[J]. Environmental Pollution,1998,102(1):427-431.
[63] PARNELL JR RA. Processes of soil acidification in tropical durandepts, Nicaragua[J]. Soil Science,1986,142(1):43-55.
[64] Formosa L, Singh B. Spatial variability of ammonium and nitrate in soils near a poultry farm[J]. Environmental Pollution,2002,120(3):659-669.
[65] Hoegberg P, Fan H, Quist M, et al. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest[J]. Global Change Biology,2006,12(3):489-499.
[66] 楊昂,孫波,趙其國(guó).中國(guó)酸雨的分布、成因及其對(duì)土壤環(huán)境的影響[J].土壤,1999,(1):14-19.
[67] Wen X-j, Duan C-q, Zhang D-c. Effect of simulated acid rain on soil acidification and rare earth elements leaching loss in soils of rare earth mining area in southern Jiangxi Province of China[J]. Environmental earth sciences,2013,69(3):843-853.
[68] 羅敏,宗良綱,陸麗君,等.江蘇省典型茶園土壤酸化及其對(duì)策分析[J].江蘇農(nóng)業(yè)科學(xué),2006,(2):139-142.
[69] 程正芳,宋木蘭,童云娟,等.蘇南低產(chǎn)茶園土壤障礙因素研究[J].茶葉,1994,20(1):18-22.
[70] 張倩,高明,徐暢,等.施氮對(duì)紫色土硝酸根和鹽基離子耦合遷移的影響[J].水土保持學(xué)報(bào),2013(1):111-115.
[71] April R, Newton R, Coles LT. Chemical weathering in two Adirondack watersheds: Past and present-day rates[J]. Geological Society of America Bulletin,1986,97(10):1232-1238.
[72] 金章東,李英,王蘇民.不同構(gòu)造帶硅酸鹽化學(xué)風(fēng)化率的制約:氣候還是構(gòu)造?[J].地質(zhì)論評(píng),2006,51(6):672-680.
[73] White AF, Blum AE. Effects of climate on chemical_ weathering in watersheds[J]. Geochimica et Cosmochimica Acta,1995,59(9):1729-1747.
[74] Guo Z, Biscaye P, Wei L, et al. Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China[J]. Geophysical Research Letters,2000,27(12):1751-1754.
[75] Bloom P. Bloom P. Handbook of soil science [M]. Boca Raton: CRC Press,2000:333-352.
[76] Marschner H. Functions of mineral nutrients:macronutrients[J]. Mineral nutrition of higher plants,1995,(2):379-396.
[77] 廖萬(wàn)有.我國(guó)茶園土壤物理性質(zhì)研究概況與展望[J].土壤,1997,29(3):121-124.
[78] Lawrence GB, David MB, Shortle WC. A new mechanism for calcium loss in forest-floor soils[J]. Nature,1995,378(6553):162-165.
[79] 趙靜,沈向,李欣,等.梨園土壤 pH 值與其有效養(yǎng)分相關(guān)性分析[J].北方園藝,2009,(11):5-8.
[80] 陳嬋嬋,肖斌,余有本,等.陜南茶園土壤有機(jī)質(zhì)和pH值空間變異及其與速效養(yǎng)分的相關(guān)性[J].西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2009,37(1):182-188.
[81] Zhao W, Cai Z-c, Xu Z-h. Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China?[J]. Plant and Soil,2007,297(1-2):213-221.
[82] Zhou J, Xia F, Liu X,et al. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China[J]. Journal of soils and sediments,2014,14(2):415-422.
[83] 林智,吳洵,俞永明.土壤 pH值對(duì)茶樹生長(zhǎng)及礦質(zhì)元素吸收的影響[J].茶葉科學(xué).1990,(2):27-32.
[84] Zhang M, Zhou C, Huang C. Relationship between extractable metals in acid soils and metals taken up by tea plants[J]. Communications in soil science and plant analysis,2006,37(3-4):347-361.
[85] Zhang M, Fang L. Tea Plantation-Induced Activation of Soil Heavy Metals[J]. Communications in soil science and plant analysis,2007,38(11-12):1467-1478.
[86] 李張偉,高潤(rùn)芝.5種茶類茶葉中氟含量及茶氟浸出規(guī)律的試驗(yàn)研究[J].江蘇農(nóng)業(yè)科學(xué),2011,(6):510-512.
[87] 白學(xué)信,楊興太,梁代華,等.興文縣燃煤污染型地氟病的預(yù)防對(duì)策及其效果觀察[J].預(yù)防醫(yī)學(xué)情報(bào)雜志,1986,2(1):30-32.
[88] 何鴻超,馬俊杰,劉誠(chéng),等.烏魯木齊縣高崖子牧場(chǎng)哈薩克居民飲茶型氟中毒調(diào)查報(bào)告[J].地方病通報(bào),1992,(1):95-96.
[89] 宗良綱,陸麗君,羅敏,等.茶園土壤酸化對(duì)氟的影響及茶葉氟安全限量的探討[J].安全與環(huán)境學(xué)報(bào),2006,6(1):100-103.
[90] 姚槐應(yīng).不同利用年限茶園土壤的化學(xué)及微生物生態(tài)特征研究[J].浙江農(nóng)業(yè)科學(xué),2002,(3):27-29.
[91] Driscoll CT, Driscoll KM, Mitchell MJ,et al. Effects of acidic deposition on forest and aquatic ecosystems in New York State[J]. Environmental Pollution,2003,123(3):327-336.
[92] Warby RA, Johnson CE, Driscoll CT. Continuing Acidification of Organic Soils across the Northeastern USA: 1984-200[J]. Soil Science Society of America Journal,2009,73(1):274-284.
[93] Huang Y, Long X-E, Chapman SJ,et al. Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil[J]. Environmental Science and Pollution Research,2015,22(6):4173-4182.
[94] FUJII K, FUNAKAWA S, KOSAKI T. Soil Acidification:Natural Processes and Human Impact[J]. 2012,(55):415-425.
[95] 謝志榮,魏在山,曾貴華,等.生物法同時(shí)脫硫脫硝試驗(yàn)研究[J].環(huán)境工程學(xué)報(bào),2009,3(9):1648-1652.
[96] Elkiey T, Ormrod D. Absorption of ozone, sulphur dioxide, and nitrogen dioxide by petunia plants[J]. Environmental and Experimental Botany,1981,21(1):63-70.
[97] Russell AE, Laird D, Mallarino AP. Nitrogen fertilization and cropping system impacts on soil quality in Midwestern Mollisols[J]. Soil Science Society of America Journal,2006,70(1):249-255.
[98] Xu R, Coventry D, Farhoodi A,et al. Soil acidification as influenced by crop rotations,stubble management, and application of nitrogenous fertiliser, Tarlee, South Australia[J]. Soil Research,2002,40(3):483-496.
[99] 王峰,陳玉真,尤志明,等.不同施氮量對(duì)兩種茶園土壤硝化作用和pH值的影響[J].茶葉科學(xué),2015,35(1):82-90.
[100] Schroder JL, Zhang H, Girma K, et al. Soil acidification from long-term use of nitrogen fertilizers on winter wheat[J]. Soil Science Society of America Journal,2011,75(3):957-964.
[101] Adams F. Soil acidity and liming [M]. Madison:ASA, CSSA, SSSA,1984:211-265..
[102] 陳建軍,陸泉宇,蔣毅敏,等.施用堿性肥料對(duì)酸性土壤改良效果初報(bào)[J].廣西農(nóng)學(xué)報(bào),2012,27(6):18-20.
[103] 樊小林,李進(jìn).堿性肥料調(diào)節(jié)香蕉園土壤酸度及防控香蕉枯萎病的效果[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014, 20(4):938-946.
[104] Noble AD, Zenneck I, Randall PJ. Leaf litter ash alkalinity and neutralisation of soil acidity[J]. Plant and Soil,1996,179(2):293.
[105] Pocknee S, Sumner ME. Cation and Nitrogen Contents of Organic Matter Determine Its Soil Liming Potential[J]. Soil Science Society of America Journal,1997,61(1):86.
[106] Yan F, Schubert S. Soil pH changes after application of plant shoot materials of faba bean and wheat[J]. Plant and Soil,2000,220(1):279.
[107] Wang YF, Tang CX, Wu JJ, et al. Impact of organic matter addition on pH change of paddy soils[J]. Journal of Soils and Sediments,2013,13(1):12-23.
[108] Butterly C, Baldock J, Tang C. The contribution of crop residues to changes in soil pH under field conditions[J]. Plant and soil,2013,366(1-2):185-198.
[109] Rukshana F, Butterly CR, Xu JM,et al. Organic anion-to-acid ratio influences pH change of soils differing in initial pH[J]. Journal of Soils and Sediments,2014,14(2):407-414.
[110] Marschner B, Noble AD. Chemical and biological processes leading to the neutralisation of acidity in soil incubated with litter materials[J]. Soil Biology and Biochemistry,2000,32(6):805-813.
[111] Xu R, Coventry D. Soil pH changes associated with lupin and wheat plant materials incorporated in a red-brown earth soil[J]. Plant and Soil,2003,250(1):113-119.
[112] Xu J, Tang C, Chen ZL. The role of plant residues in pH change of acid soils differing in initial pH[J]. Soil Biology and Biochemistry,2006,38(4):709-719.
[113] Naramabuye F, Haynes R. Short-term effects of three animal manures on soil pH and Al solubility[J]. Soil Research,2006,44(5):515-521.
[114] 吳志丹,尤志明,江福英,等.生物黑炭對(duì)酸化茶園土壤的改良效果[J].福建農(nóng)業(yè)學(xué)報(bào),2012,27(2):167-172.
[115] 李榮林,黃繼超,黃欣衛(wèi),等.生物炭對(duì)茶園土壤酸性和土壤元素有效性的調(diào)節(jié)作用[J].江蘇農(nóng)業(yè)科學(xué),2012,40(12):345-347.
[116] Bessho T, Bell LC. Soil solid and solution phase changes and mung bean response during amelioration of aluminium toxicity with organic matter[J]. Plant and Soil,1992,140(2):183-196.
Research Progress and Prospects on Soil Acidification at Tea Plantations
YANG Xiang-de1,2,SHI Yuan-zhi1,YI Xiao-yun1,MA Li-feng1*
(1. Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Tea Biology and Resource Utilization of Tea, Ministry of Agriculture, Hangzhou, Zhejiang 310008, China;
2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China)
Acidic soil is one of the essential requirements for tea growth. Soil pH between 5.0 and 5.5 is considered ideal for the plantations, and an acidity beyond the optimum level can be detrimental for the plant development. Globally, increasing soil acidity due to changes in the environment and human activities threatens the agriculture. This paper reviews the current status on soil acidification at domestic as well overseas tea plantations in the past decades; analyses the main culprits that caused the phenomenon;expounds the adverse effects on the plant growth; and summarizes potential approaches for improvements. A conclusion was drawn from the studies in regard to the direct relationship between soil acidification and continual application of chemical fertilizers. Nitrogen fertilization was seen as the most critical factor in the acidity increase, which resulted in a decline on soil fertility and rise of heavy metal contents at tea plantations with a long term impact on the quality as well as quantity of the tea they produced. Hence,application of organic fertilizers was highly recommended in order to alleviate the undesirable effect brought about by the chemical fertilization and to control the soil acidification. Direction for future research is discussed as a conclusion of this review.
tea plantation; soil; acidification; improvement measures
S606
A
2015-08-11初稿;2015-09-23修改稿
公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201303012);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-23);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(CAAS-ASTIP-2014-TRICAAS-0X);浙江省基金(LY13C150002);中國(guó)農(nóng)業(yè)科學(xué)院基本科研業(yè)務(wù)費(fèi)預(yù)算增量項(xiàng)目(2013ZL023)。
楊向德(1989-),男,碩士研究生,從事茶樹生理與營(yíng)養(yǎng)調(diào)控的研究。E-mail:565833509@qq.com
E-mail: malf@mail.tricaas.com