不同種類脂肪酸對(duì)巨噬細(xì)胞M1/M2極化的影響*
羅雯靜隋永恒連敏華靜#
上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院消化內(nèi)科上海市消化疾病研究所(200001)
*基金項(xiàng)目:國(guó)家自然科學(xué)基金(No. 81170374, No. 81470842)
背景:巨噬細(xì)胞表型和功能改變?cè)诜蔷凭灾拘愿尾?NAFLD)的發(fā)生、發(fā)展中具有重要作用。近年研究發(fā)現(xiàn)不同種類脂肪酸在NAFLD中發(fā)揮不同作用。目的:探討不同種類脂肪酸對(duì)巨噬細(xì)胞M1/M2極化的影響及其可能機(jī)制。方法:分別以脂多糖(LPS)、白細(xì)胞介素-4(IL-4)、飽和脂肪酸[棕櫚酸(PA)]、多不飽和脂肪酸[二十二碳六烯酸(DHA)]、LPS/IL-4聯(lián)合PA/DHA處理小鼠單核巨噬細(xì)胞RAW264.7細(xì)胞株,同時(shí)設(shè)立陰性對(duì)照組。采用real-time PCR檢測(cè)M1型巨噬細(xì)胞極化基因[誘生型一氧化氮合酶2(iNOS2)、腫瘤壞死因子-α(TNF-α)]和M2型巨噬細(xì)胞極化基因[精氨酸酶1(ARG1)、甘露糖受體C2(MRC2)]表達(dá);采用蛋白質(zhì)印跡法檢測(cè)過(guò)氧化物酶體增殖物激活受體γ(PPARγ)和磷酸化核因子-κBp65(pNF-κBp65)表達(dá)。結(jié)果:與陰性對(duì)照組比較,LPS組iNOS2、TNF-α表達(dá)顯著升高(P<0.01;P<0.05),IL-4組ARG1、MRC2表達(dá)顯著升高(P<0.01;P<0.05),PA組iNOS2、TNF-α、ARG1表達(dá)顯著升高(P<0.05;P<0.01;P<0.05),DHA組iNOS2表達(dá)顯著降低(P<0.01)。LPS+PA組和IL-4+PA組可進(jìn)一步影響TNF-α、ARG1表達(dá),但與LPS組、IL-4組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。與LPS組比較,LPS+DHA組iNOS2、TNF-α表達(dá)顯著降低(P<0.05;P<0.05);與IL-4組比較,IL-4+DHA組ARG1表達(dá)顯著降低(P<0.01)。與陰性對(duì)照組比較,PA組、DHA組PPARγ蛋白表達(dá)水平顯著升高,PA組pNF-κBp65蛋白表達(dá)水平顯著升高。結(jié)論:飽和脂肪酸能誘導(dǎo)巨噬細(xì)胞M1/M2混合型極化,而多不飽和脂肪酸則抑制巨噬細(xì)胞M1型極化。不同種類脂肪酸可能通過(guò)PPARγ/NF-κB相關(guān)信號(hào)通路參與巨噬細(xì)胞M1/M2極化的轉(zhuǎn)化。
關(guān)鍵詞脂肪酸類;巨噬細(xì)胞;過(guò)氧化物酶體增殖物激活受體;NF-κB;非酒精性脂肪性肝病
Non-Alcoholic Fatty Liver Disease
非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)是與胰島素抵抗密切相關(guān)的遺傳-環(huán)境-代謝應(yīng)激性臨床病理綜合征。近年研究發(fā)現(xiàn),不同種類脂肪酸在NAFLD中具有不同作用,飽和脂肪酸介導(dǎo)的肝內(nèi)炎癥-免疫紊亂在NAFLD的發(fā)生、發(fā)展中發(fā)揮重要作用[1],而多不飽和脂肪酸可減少肝內(nèi)脂肪沉積,對(duì)NAFLD具有一定治療效應(yīng)[2-3]。巨噬細(xì)胞是機(jī)體免疫防御的重要組成成分,具有高度的異質(zhì)性和可塑性,在體內(nèi)外不同微環(huán)境作用下可分化為M1型巨噬細(xì)胞即經(jīng)典活化的巨噬細(xì)胞(classically activated macrophages, CAM)和M2型巨噬細(xì)胞即替代活化的巨噬細(xì)胞(alternative activated macrophages, AAM)[4]。研究[5]指出,巨噬細(xì)胞表型和功能改變?cè)贜AFLD的發(fā)生、發(fā)展中具有重要作用。本研究旨在探討不同種類脂肪酸對(duì)巨噬細(xì)胞M1/M2極化的影響及其可能機(jī)制。
材料與方法
一、細(xì)胞株和主要試劑
小鼠單核巨噬細(xì)胞RAW264.7細(xì)胞株購(gòu)自中國(guó)科學(xué)院細(xì)胞庫(kù)。DMEM培養(yǎng)基、胎牛血清(FBS)購(gòu)自Gibco公司;脂多糖(lipopolysaccharide, LPS)、棕櫚酸(palmitic acid, PA)、二十二碳六烯酸(docosahexaenoic acid, DHA)購(gòu)自Sigma公司;白細(xì)胞介素-4(IL-4)購(gòu)自PeproTech公司;Trizol試劑、逆轉(zhuǎn)錄試劑盒、PCR試劑盒購(gòu)自Takara公司;PCR引物購(gòu)自生工生物工程(上海)股份有限公司;兔抗鼠過(guò)氧化物酶體增殖物激活受體γ(PPARγ)抗體、兔抗鼠磷酸化核因子-κBp65(pNF-κBp65)抗體購(gòu)自Cell Signaling Technology公司。
二、方法
1. 細(xì)胞培養(yǎng):RAW264.7細(xì)胞培養(yǎng)于含10% FBS的DMEM培養(yǎng)基中(37 ℃、5% CO2),培養(yǎng)至第3代后調(diào)整細(xì)胞濃度至1×105/mL,接種于6孔板和12孔板,培養(yǎng)24 h使細(xì)胞密度達(dá)到80%。
2. 細(xì)胞處理:RAW264.7細(xì)胞培養(yǎng)24 h后換液,分別以含LPS(100 ng/mL)、IL-4(5 ng/mL)、PA(0.5 mmol/L)、DHA(50 μmol/L)、LPS+PA(100 ng/mL+0.5 mmol/L)、LPS+DHA(100 ng/mL+50 μmol/L)、IL-4+PA(5 ng/mL+0.5 mmol/L)、IL-4+DHA(5 ng/mL+50 μmol/L)的DMEM培養(yǎng)基培養(yǎng),陰性對(duì)照組RAW264.7細(xì)胞以DMEM培養(yǎng)基培養(yǎng)。置于37 ℃、5% CO2培養(yǎng)箱內(nèi)分別培養(yǎng)6 h和24 h,洗去培養(yǎng)液,收集細(xì)胞待測(cè)。
3. Real-time PCR法:取上述各處理組培養(yǎng)6 h的細(xì)胞,以Trizol試劑提取總RNA,逆轉(zhuǎn)錄合成cDNA,行real-time PCR檢測(cè)M1型巨噬細(xì)胞極化基因表達(dá)水平,包括誘生型一氧化氮合酶2(inducible nitric oxide synthase 2, iNOS2)、腫瘤壞死因子-α(tumor necrosis factor-α , TNF-α);M2型巨噬細(xì)胞極化基因表達(dá)水平,包括精氨酸酶1(arginase 1, ARG1)、甘露糖受體C2(mannose receptor C type 2, MRC2)。iNOS2引物上游:5’-GTG TTC CAC CAG GAG ATG TTG-3’,下游:5’-CTC CTG CCC ACT GAG TTC GTC-3’;TNF-α引物上游:5’-TCT TCT CAT TCC TGC TTG TGG-3’,下游:5’-GGT CTG GGC CAT AGA ACT GA-3’; ARG1引物上游:5’-CTC CAA GCC AAA GTC CTT AGA G-3’,下游:5’-AGG AGC TGT CAT TAG GGA CAT C-3’;MRC2引物上游:5’-TAC AGC TCC ACG CTA TGG ATT-3’,下游:5’-CAC TCT CCC AGT TGA GGT ACT-3’;β-actin引物上游:5’-TGT TAC CAA CTG GGA CGA CA-3’,下游:5’-CTG GGT CAT CTT TTC ACG GT-3’。反應(yīng)條件:95 ℃預(yù)變性30 s;95 ℃變性5 s,60 ℃退火30 s,40個(gè)循環(huán)。以2-△△Ct法計(jì)算目的基因mRNA相對(duì)表達(dá)量。
4. 蛋白質(zhì)印跡法:取經(jīng)LPS、IL-4、PA、DHA處理24 h以及相同培養(yǎng)時(shí)間的陰性對(duì)照組細(xì)胞,以細(xì)胞裂解液抽提細(xì)胞總蛋白。取蛋白樣品行SDS-PAGE電泳,濕法電轉(zhuǎn)至PVDF膜,5%脫脂牛奶封閉2 h,分別加入兔抗鼠PPARγ抗體(1∶500)、兔抗鼠pNF-κBp65抗體(1∶500)、兔抗鼠GAPDH抗體(1∶10 000),4 ℃孵育過(guò)夜,室溫復(fù)溫30 min,以TBS-T清洗后,加入HRP偶聯(lián)的羊抗兔二抗(1∶10 000),室溫孵育1 h,以ECL發(fā)光劑顯色,置暗盒X線曝光,常規(guī)顯影、定影。
三、統(tǒng)計(jì)學(xué)分析
結(jié)果
一、脂肪酸對(duì)M1/M2型巨噬細(xì)胞極化基因表達(dá)的影響
Real-time PCR檢測(cè)結(jié)果顯示,與陰性對(duì)照組比較,LPS組iNOS2、TNF-α表達(dá)顯著升高(P<0.01;P<0.05),IL-4組ARG1、MRC2表達(dá)顯著升高(P<0.01;P<0.05),PA組iNOS2、TNF-α、ARG1表達(dá)顯著升高(P<0.05;P<0.01;P<0.05),DHA組iNOS2表達(dá)顯著降低(P<0.01)(圖1)。
二、脂肪酸聯(lián)合LPS/IL-4對(duì)M1/M2型巨噬細(xì)胞極化基因表達(dá)的影響
Real-time PCR檢測(cè)結(jié)果顯示,與LPS組、IL-4組比較,LPS+PA組和IL-4+PA組可進(jìn)一步影響TNF-α、ARG1表達(dá),但差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);與LPS組比較,LPS+DHA組iNOS2、TNF-α表達(dá)顯著降低(P<0.05;P<0.05);與IL-4組比較,IL-4+DHA組ARG1表達(dá)顯著降低(P<0.01)(圖2)。
三、脂肪酸對(duì)巨噬細(xì)胞PPARγ、pNF-κBp65蛋白表達(dá)的影響
蛋白質(zhì)印跡法檢測(cè)結(jié)果顯示,與陰性對(duì)照組比較,LPS組、PA組、DHA組PPARγ蛋白表達(dá)水平有所升高,尤以PA組、DHA組為著;LPS組、PA組pNF-κBp65蛋白表達(dá)水平有所升高,尤以PA組為著;IL-4組、DHA組pNF-κBp65蛋白表達(dá)水平無(wú)明顯變化(圖3)。
與陰性對(duì)照組比較,*P<0.05,**P<0.01
與LPS/IL-4組比較,*P<0.05,**P<0.01
圖3不同種類脂肪酸對(duì)巨噬細(xì)胞PPARγ、pNF-κBp65蛋白表達(dá)的影響(蛋白質(zhì)印跡法)
討論
巨噬細(xì)胞是機(jī)體免疫防御機(jī)制中的重要成分,在天然免疫和適應(yīng)性免疫中具有重要調(diào)節(jié)作用。巨噬細(xì)胞可針對(duì)不同刺激信號(hào)作出應(yīng)答,并分化成為具有不同功能的表型細(xì)胞即極化,其極化類型主要包括經(jīng)典活化的M1型和替代活化的M2型。M1型巨噬細(xì)胞由LPS、干擾素-γ(IFN-γ)、TNF等誘導(dǎo)活化,其活化標(biāo)志包括iNOS2、單核細(xì)胞趨化蛋白-1(MCP-1)、TNF-α、IL-6等,與炎癥反應(yīng)的啟動(dòng)和維持有關(guān);M2型巨噬細(xì)胞由IL-4、IL-13、IL-33、IL-21等誘導(dǎo)活化,其活化標(biāo)志包括ARG1、MRC2、IL-10、Pdcd1lg2、CD163等,與炎癥反應(yīng)緩解、組織重塑和免疫調(diào)節(jié)有關(guān)[4]。近年研究指出,肥胖動(dòng)物脂肪組織中M1型巨噬細(xì)胞浸潤(rùn)增加,與脂肪細(xì)胞功能障礙、胰島素抵抗密切相關(guān);而體瘦動(dòng)物脂肪組織中的巨噬細(xì)胞以M2型為主,且高脂飲食致其肥胖后可引起M2型巨噬細(xì)胞向M1型轉(zhuǎn)變[6-7]。此外,研究[8-9]顯示小鼠肝內(nèi)M1型巨噬細(xì)胞-Kupffer細(xì)胞極化可導(dǎo)致非酒精性脂肪性肝炎(NASH)程度加重,而消除Kupffer細(xì)胞則可預(yù)防肝臟脂肪變性和胰島素抵抗的進(jìn)展。上述結(jié)果提示,在肥胖、NAFLD的發(fā)生、發(fā)展過(guò)程中,脂肪組織、肝臟微環(huán)境的改變可能對(duì)巨噬細(xì)胞/Kupffer細(xì)胞極化產(chǎn)生重要影響。
不同種類的脂肪酸具有不同炎癥-免疫調(diào)節(jié)功能。本研究組既往研究[10]發(fā)現(xiàn),飽和脂肪酸與胰島素抵抗、NAFLD進(jìn)展相關(guān),而多不飽和脂肪酸則對(duì)機(jī)體具有保護(hù)作用。本研究在此基礎(chǔ)上進(jìn)一步探討不同種類脂肪酸對(duì)巨噬細(xì)胞極化的影響,結(jié)果顯示飽和脂肪酸PA可誘導(dǎo)巨噬細(xì)胞M1/M2混合型極化,以M1型極化為著,而多不飽和脂肪酸DHA則能顯著降低M1型巨噬細(xì)胞極化基因表達(dá),并抑制LPS誘導(dǎo)的M1型巨噬細(xì)胞極化。本研究組近期研究[11]發(fā)現(xiàn),體內(nèi)外高脂環(huán)境(飽和脂肪酸為主)可誘導(dǎo)Kupffer細(xì)胞活化。由此推測(cè),飽和脂肪酸可能通過(guò)誘導(dǎo)M1型巨噬細(xì)胞極化參與NAFLD的發(fā)生、發(fā)展,而多不飽和脂肪酸則通過(guò)抑制甚至逆轉(zhuǎn)M1型巨噬細(xì)胞極化阻止NAFLD進(jìn)展。
研究顯示,飽和脂肪酸可通過(guò)Toll樣受體4(TLR4)信號(hào)通路調(diào)節(jié)NF-κB等轉(zhuǎn)錄因子介導(dǎo)的炎癥反應(yīng)發(fā)生[12]。NF-κB是M1型巨噬細(xì)胞活化的關(guān)鍵轉(zhuǎn)錄因子,當(dāng)NF-κB的作用受到抑制時(shí),巨噬細(xì)胞可從M1型向M2型轉(zhuǎn)化[13]。PPARγ亦參與巨噬細(xì)胞極化,與M2型巨噬細(xì)胞的誘導(dǎo)和維持有關(guān)。Odegaard等[14]的研究發(fā)現(xiàn),PPARγ基因缺失小鼠的脂肪組織中缺乏M2型巨噬細(xì)胞,可致脂質(zhì)代謝異常和胰島素抵抗。PPARγ調(diào)節(jié)M2型巨噬細(xì)胞極化的機(jī)制尚未完全闡明。研究[15]指出,PPARγ可通過(guò)反向抑制作用干擾NF-κB信號(hào)通路,降低LPS誘導(dǎo)的巨噬細(xì)胞炎性信號(hào)途徑活化,這可能是其發(fā)揮抗炎和免疫調(diào)節(jié)作用的關(guān)鍵機(jī)制。本研究發(fā)現(xiàn),飽和脂肪酸PA可顯著上調(diào)PPARγ和pNF-κBp65蛋白表達(dá)水平,而多不飽和脂肪酸DHA可增加PPARγ蛋白表達(dá),對(duì)pNF-κBp65表達(dá)無(wú)影響。上述結(jié)果提示,飽和脂肪酸可能作為非微生物性危險(xiǎn)信號(hào)啟動(dòng)巨噬細(xì)胞NF-κB炎性信號(hào)途徑,并引起具有抗炎作用的PPARγ反饋性表達(dá)增加,因此巨噬細(xì)胞表現(xiàn)為M1/M2型混合型極化以抑制過(guò)度的炎癥反應(yīng),而多不飽和脂肪酸作為PPARγ的重要天然配體誘導(dǎo)PPARγ表達(dá)增加,盡管未見(jiàn)其能顯著誘導(dǎo)M2型巨噬細(xì)胞極化,但對(duì)M1型極化具有顯著抑制作用,可能與上調(diào)PPARγ表達(dá)以干擾或調(diào)節(jié)NF-κB信號(hào)通路有關(guān)。
綜上所述,不同種類飲食脂肪酸對(duì)巨噬細(xì)胞極化具有不同影響,飽和脂肪酸能誘導(dǎo)巨噬細(xì)胞M1/M2混合型極化,而多不飽和脂肪酸則抑制巨噬細(xì)胞M1型極化。不同種類脂肪酸可能通過(guò)PPARγ/NF-κB相關(guān)信號(hào)通路參與巨噬細(xì)胞M1/M2極化的轉(zhuǎn)化。
參考文獻(xiàn)
1 Maher JJ, Leon P, Ryan JC. Beyond insulin resistance: Innate immunity in nonalcoholic steatohepatitis[J]. Hepatology, 2008, 48 (2): 670-678.
2 Musso G, Gambino R, Cassader M, et al. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease[J]. Hepatology, 2010, 52 (1): 79-104.
3 Parker HM, Johnson NA, Burdon CA, et al. Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis[J]. J Hepatol, 2012, 56 (4): 944-951.
4 Biswas SK, Chittezhath M, Shalova IN, et al. Macrophage polarization and plasticity in health and disease[J]. Immunol Res, 2012, 53 (1-3): 11-24.
5 Sica A, Invernizzi P, Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology[J]. Hepatology, 2014, 59 (5): 2034-2042.
6 Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance[J]. Annu Rev Physiol, 2010, 72: 219-246.
7 Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization[J]. J Clin Invest, 2007, 117 (1): 175-184.
8 Maina V, Sutti S, Locatelli I, et al. Bias in macrophage activation pattern influences non-alcoholic steatohepatitis (NASH) in mice[J]. Clin Sci (Lond), 2012, 122 (11): 545-553.
9 Huang W, Metlakunta A, Dedousis N, et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance[J]. Diabetes, 2010, 59 (2): 347-357.
10Hua J, Ma X, Webb T, et al. Dietary fatty acids modulate antigen presentation to hepatic NKT cells in nonalcoholic fatty liver disease[J]. J Lipid Res, 2010, 51 (7): 1696-1703.
11Tang T, Sui Y, Lian M, et al. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death[J]. PLoS One, 2013, 8 (12): e81949.
12Tateya S, Kim F, Tamori Y. Recent advances in obesity-induced inflammation and insulin resistance[J]. Front Endocrinol (Lausanne), 2013, 4: 93.
13Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions[J]. Immunity, 2010, 32 (5): 593-604.
14Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance[J]. Nature, 2007, 447 (7148): 1116-1120.
15Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells[J]. Nat Rev Immunol, 2010, 10 (5): 365-376.
(2014-09-02收稿)
Effects of Different Fatty Acids on Macrophage M1/M2 Polarization
LUOWenjing,SUIYongheng,LIANMin,HUAJing.DivisionofGastroenterologyandHepatology,RenJiHospital,SchoolofMedicine,ShanghaiJiaoTongUniversity;ShanghaiInstituteofDigestiveDisease,Shanghai(200001)
Correspondence to: HUA Jing, Email: hua-jing88@hotmail.com
Background: The alterations of macrophage phenotype and function play an important role in the development of non-alcoholic fatty liver disease (NAFLD). Recent studies have shown that different types of fatty acids have different effects on NAFLD. Aims: To investigate the effects of different fatty acids on macrophage M1/M2 polarization and the possible mechanisms. Methods: Murine RAW264.7 macrophages were treated with lipopolysaccharide (LPS), interleukin-4 (IL-4), saturated fatty acid [palmitic acid (PA)], polyunsaturated fatty acid [docosahexaenoic acid (DHA)] as well as LPS/IL-4 combined with PA/DHA, respectively, and a negative control group was established. Expressions of M1 phenotype markers [inducible nitric oxide synthase 2 (iNOS2) and tumor necrosis factor-α (TNF-α)] and M2 phenotype markers [arginase 1 (ARG1) and mannose receptor C type 2 (MRC2)] were determined by real-time PCR. Expressions of peroxisome proliferator-activated receptor γ (PPARγ) and phosphorylated nuclear factor-κBp65 (pNF-κBp65) were determined by Western blotting. Results: Compared with negative control group, expressions of iNOS2 and TNF-α were significantly increased in LPS group (P<0.01;P<0.05), expressions of ARG1 and MRC2 were significantly increased in IL-4 group (P<0.01;P<0.05), expressions of iNOS2, TNF-α and ARG1 were significantly increased in PA group (P<0.05;P<0.01;P<0.05), however, expression of iNOS2 was significantly decreased in DHA group (P<0.01). LPS+PA and IL-4+PA could further affect expressions of TNF-α and ARG1, but no significant difference was seen between LPS+PA, IL-4+PA groups and LPS, IL-4 groups (P>0.05). Compared with LPS group, expressions of iNOS2 and TNF-α were significantly decreased in LPS+DHA group (P<0.05;P<0.05). Expression of ARG1 was significantly decreased in IL-4+DHA group when compared with IL-4 group (P<0.01). Compared with negative control group, expression of PPARγ was significantly increased in PA and DHA groups, and expression of pNF-κBp65 was significantly increased in PA group. Conclusions: Saturated fatty acid induces macrophage M1/M2 mixed polarization, while polyunsaturated fatty acid inhibits macrophage M1 polarization. Different types of fatty acids are involved in the transition of macrophage M1/M2 polarization which may mediate by PPARγ/NF-κB signaling pathways.
Key wordsFatty Acids;Macrophages;Peroxisome Proliferator-Activated Receptors;NF-kappa B;
通信作者#本文,Email: hua-jing88@hotmail.com
DOI:10.3969/j.issn.1008-7125.2015.01.007