郝建華, 金潔潔, 陳國奇, 王立新
1 常熟理工學(xué)院生物與食品工程學(xué)院, 常熟 215500 2 廣東省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所/廣東省植物保護(hù)新技術(shù)重點(diǎn)實(shí)驗(yàn)室, 廣州 510640
惡性入侵植物豚草的繁育系統(tǒng)特性
郝建華1,*, 金潔潔1, 陳國奇2, 王立新1
1 常熟理工學(xué)院生物與食品工程學(xué)院, 常熟 215500 2 廣東省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所/廣東省植物保護(hù)新技術(shù)重點(diǎn)實(shí)驗(yàn)室, 廣州 510640
豚草(AmbrosiaartemisiifoliaL.)是原產(chǎn)于北美的一年生惡性入侵植物,目前已廣泛分布在我國東北、華北、華中和華東等地,威脅農(nóng)業(yè)、生態(tài)和民眾健康。該種雌、雄頭狀花序同株,以種子繁殖,因而其有性繁殖特性對其擴(kuò)散和爆發(fā)具有重要影響。運(yùn)用套袋授粉和聯(lián)苯胺-過氧化氫法等實(shí)驗(yàn)方法,對入侵江蘇常熟的豚草種群的繁育系統(tǒng)特性進(jìn)行了研究。結(jié)果表明,豚草花粉活力在開花后第4天開始出現(xiàn),第8天到第10天花粉活力比較高;柱頭可授性在開花第2天開始出現(xiàn),第5天到第8天柱頭可授性較高;同植株上同一時期開花的雌花的柱頭可授性和雄花的花粉活力有5d左右的重疊期。不套袋處理(自然條件)和異株授粉處理下,豚草的結(jié)實(shí)率都比較高,分別達(dá)48.4%和44.4%,兩者間無顯著差異(P> 0.05);而同株授粉處理的結(jié)實(shí)率較低,僅3.4%,極顯著低于不套袋處理和異株授粉的結(jié)實(shí)率(P<0.01)但顯著大于0(P< 0.05)。分析表明,豚草屬于自交不親和種,但又可部分自交親和,不具有無融合生殖特性。因此,對在新分布區(qū)的零星豚草植株進(jìn)行及時防除,將取得事半功倍的效果。
豚草; 菊科; 繁育系統(tǒng); 外來入侵植物; 自交不親和性
豚草(Ambrosiaartemisiifolia)是原產(chǎn)于北美的一年生惡性雜草,該種在我國21個省、市、自治區(qū)的1038個縣分布,發(fā)生面積達(dá)0.0247 億hm2,在入侵地形成優(yōu)勢群落,急劇降低生物多樣性,導(dǎo)致的生態(tài)損失無法估算[1]。該種在歐洲、亞洲和大洋洲廣泛入侵,并對農(nóng)田造成了嚴(yán)重危害[2]。Fumanal 等[3]對法國豚草種群進(jìn)行了野外調(diào)查,結(jié)果表明該種的生態(tài)適應(yīng)幅極其廣泛,能在不同土壤類型、植被群落結(jié)構(gòu)組成和類型的生境下大量爆發(fā),并且該種對春季作物和各種半自然生境具有潛在的威脅。此外,豚草極易產(chǎn)生除草劑的抗性,除草劑抗性治理委員會(Herbicide Resistance Action Committee,HRAC)數(shù)據(jù)庫紀(jì)錄的抗除草劑豚草種群有30個,其明顯具有抗性的除草劑活性成份涉及30多種[4]。豚草以有性生殖產(chǎn)生的種子繁殖,據(jù)文獻(xiàn)報道,豚草的種子產(chǎn)量巨大,一株較小的豚草植株即能產(chǎn)生超過30000枚種子,而高大的植株甚至能產(chǎn)生62000枚種子[5]。豚草種子具有明顯的休眠性,部分種子在土壤中埋藏39a仍能萌發(fā)[5]。
豚草的繁育系統(tǒng)等有性繁殖特性與其種子的產(chǎn)量和質(zhì)量密切相關(guān),對其能否在新侵入地區(qū)成功定植和快速廣泛擴(kuò)散具有重要影響。前人的多項(xiàng)研究曾報道豚草能通過自交和異交產(chǎn)生種子[5-8]。然而Friedman 和Barrett[2]利用分子生物學(xué)方法和花粉-柱頭親和性反應(yīng)對豚草原產(chǎn)地種群的研究表明,豚草自交不親和。因此,還需要更多的研究實(shí)例,明確豚草的繁育系統(tǒng)特性及其與入侵性之間的關(guān)系。
本研究通過同質(zhì)園栽培和觀察實(shí)驗(yàn),對豚草入侵地種群(江蘇常熟)的花粉活力、柱頭可授性、自交親和性等繁育系統(tǒng)特性進(jìn)行了研究,為闡明其繁育系統(tǒng)特性與其入侵性之間的關(guān)系提供基礎(chǔ)資料,并為深入了解豚草在入侵地的擴(kuò)散規(guī)律和趨勢及制訂科學(xué)的防控措施提供科學(xué)依據(jù)。
1.1 實(shí)驗(yàn)材料
豚草為菊科豚草屬植物,其花序是菊科植物中高度特化的類型,傳粉類型已由菊科植物典型的蟲媒傳粉轉(zhuǎn)化成風(fēng)媒傳粉[9-10]。它們的雄花和雌花分別組成雄頭狀花序和雌頭狀花序。雄頭狀花序排列在莖和小枝末端,由10—100(-200)朵雄花組成,呈葇荑花序狀。當(dāng)花粉成熟時釋放大量風(fēng)媒花粉。雌頭狀花序發(fā)生在葉腋內(nèi),無柄,聚成簇狀。每一雌頭狀花序中僅包含一朵雌花,成熟后僅能產(chǎn)生一粒瘦果[5, 9]。
本研究的豚草種群為采自江蘇常熟的野外植株。2009年5月從常熟虞山移栽了40株豚草幼苗至常熟理工學(xué)院東湖校區(qū),置于花盆中進(jìn)行露天種植。除土壤過分干燥時澆水外,未進(jìn)行其它人工管理干預(yù),以盡量模擬其野外生活條件。
1.2 花粉活力的動態(tài)
在豚草開花盛期的2009年7月21日—8月5日期間,采用聯(lián)苯胺法測定雄花序的花粉活力[11]。具體步驟為:在10棵植株的各株上隨機(jī)標(biāo)記36個花藥開放前一天的雄花序(以總苞片張開作為開花的依據(jù));于開花后1—12d中每天10:00—11:00從每株各取3個花序,分別放入加有試劑Ⅰ(0.5%聯(lián)苯胺、0.5%甲萘酚和0.25%碳酸鈉各取10mL混合均勻)1mL和一滴0.3%過氧化氫溶液的離心管中帶回實(shí)驗(yàn)室;將整個花序放在潔凈的比色板上,用剪刀剪下花藥及其相連部分放回離心管中,用玻璃棒搗碎花藥,用旋渦混合器旋轉(zhuǎn)1—2 min;把旋轉(zhuǎn)好的溶液倒入比色板中,用吸管吸取混合液,分別滴在3個載玻片上;載玻片放在鋪有濕濾紙的培養(yǎng)皿中,皿外用遮光紙袋糊住,放在35 °C的培養(yǎng)箱中溫育30 min后,在顯微鏡下觀察;統(tǒng)計每個載玻片上的有活力花粉占總花粉數(shù)的比例,每樣本統(tǒng)計的總花粉粒數(shù)約為100粒。
1.3 柱頭可授性的動態(tài)
采用聯(lián)苯胺-過氧化氫法測定豚草雌花的柱頭可授性[12]。具體步驟為:在10棵植株的各株上隨機(jī)標(biāo)記36個開花前一天的雌花序(以總苞片張開作為開花的依據(jù);開花后每天10:00—11:00從每株上各取3個新鮮花序,將其浸入含有聯(lián)苯胺-過氧化氫的離心管中帶回實(shí)驗(yàn)室;將雌花放入含有反應(yīng)液的比色板凹穴中,在解剖鏡下統(tǒng)計柱頭可授性。以呈現(xiàn)藍(lán)色并有大量氣泡出現(xiàn)的柱頭作為有活力的柱頭,而無活力的柱頭不呈現(xiàn)藍(lán)色且無或有少量氣泡出現(xiàn)。
1.4 繁育系統(tǒng)的鑒定
于豚草開花盛期的7月16日—8月16日,在10個植株上隨機(jī)選55朵雌花序,分別進(jìn)行同株授粉、異株授粉、不授粉不套袋(自然條件)和套袋不授粉4種處理。同株授粉、異株授粉和套袋不授粉3種處理的雌花均在總苞片張開前進(jìn)行套袋;同株授粉和異株授粉兩種處理的授粉時間為開花后第4天,在授粉后再行套袋。當(dāng)瘦果成熟后,統(tǒng)計有飽滿種子的雌花序占所有雌花序的百分比。
此外,于授粉處理48 h后、從5個植株的4種處理中各取一朵雌花,立即放入FAA固定液中,帶回實(shí)驗(yàn)室。利用常規(guī)的苯胺藍(lán)熒光顯微鏡方法,用Nikon ECLIPSE 90i顯微鏡鏡中的熒光裝置,檢測不同授粉條件下的花粉-柱頭親和性反應(yīng),并用連接在顯微鏡上的DXM1200C型CCD進(jìn)行觀察。
圖1 豚草開花后有活力的花粉和柱頭所占比例Fig.1 Percentage of viable pollen and stigmas of Ambrosia artemisiifolia after flowered
1.5 數(shù)據(jù)統(tǒng)計分析
采用SPSS13.0統(tǒng)計軟件檢驗(yàn)變量之間是否存在差異,并用Excel軟件進(jìn)行繪圖。
2.1 花粉活力和柱頭可授性的動態(tài)
豚草開花第4天花粉開始有活力(圖1);開花第8天和第10天花粉活力比較高;開花第9天花粉活力最高,有活力花粉數(shù)可達(dá)56.80%;之后花粉活力逐漸下降,到開花第12天花粉活力為0。開花第2天柱頭就開始有活力(圖1);開花第5天、第6天和第7天柱頭可授性都比較高;開花第8天柱頭可授性最高,有活力柱頭可達(dá)55.56%;之后柱頭可授性逐漸下降,到開花第12天柱頭可授性為0。
圖2 豚草同株授粉(A)、異株授粉(B)、不套袋(C)和套袋不授粉(D)4種處理的結(jié)實(shí)率(平均值±標(biāo)準(zhǔn)差)Fig. 2 Mean (±SD) seed set of Ambrosia artemisiifolia for geitonogamy (A), xenogamous (B), open-pollinated (C) and bagged capitula (D). Significant differences (P < 0.05) in seed set between treatments are indicated by different letters above the bars for each species separately
2.2 繁育系統(tǒng)
同株授粉、異株授粉、不套袋和套袋不授粉4種處理的結(jié)實(shí)率的統(tǒng)計結(jié)果表明(圖2),異株授粉處理和不套袋處理(自然條件)下,豚草都可以正常結(jié)實(shí),且兩者結(jié)實(shí)率都比較高, 分別達(dá)44.4%和48.4%;同株授粉處理的結(jié)實(shí)率很低,僅3.4%;套袋不授粉處理的結(jié)實(shí)率為0。對處理所得數(shù)據(jù)進(jìn)行單因素方差分析,結(jié)果表明:異株授粉和不套袋處理(自然條件)之間無顯著差異,且都極顯著高于同株授粉(P<0.01);而同株授粉處理的結(jié)實(shí)率顯著大于0(P< 0.05)。
同株授粉、異株授粉、不套袋和套袋不授粉4種處理的雌花柱頭的熒光鏡檢結(jié)果表明,同株授粉處理的雌花柱頭上有花粉粒,但不萌發(fā);異株授粉處理的雌花柱頭上有花粉粒,且萌發(fā);不套袋處理的雌花柱頭上有花粉粒,也萌發(fā);但套袋不授粉處理的花序柱頭上無花粉粒,不萌發(fā)。
豚草具有極高的入侵性,在原產(chǎn)地以及歐洲,豚草在多種生境類型下泛濫成災(zāi),是當(dāng)?shù)剞r(nóng)田中危害最為嚴(yán)重的主要惡性雜草之一[3, 6, 11]。本文對其開花動態(tài)及繁育系統(tǒng)進(jìn)行了實(shí)驗(yàn)研究,為深入了解其交配系統(tǒng)特性等繁殖特性與入侵性的關(guān)系提供了基礎(chǔ)資料。
本文的研究結(jié)果和Friedman 與Barrett[2]的研究結(jié)果均表明,豚草的交配系統(tǒng)以自交不親和為主,豚草的種子主要是通過不同植株之間的異交產(chǎn)生的。本研究的結(jié)果還表明,同株豚草的花粉活力和柱頭可授性在第6天到第10天均在20%以上,有長達(dá)5d的自交結(jié)實(shí)的機(jī)會,但自交結(jié)實(shí)率僅有3.4%,不能進(jìn)行無融合生殖。
Hao等[13]的研究表明,入侵我國的大多數(shù)一年生或越年生菊科外來植物明顯傾向于自交親和,并且菊科入侵植物在中國的分布范圍與自交產(chǎn)生種子占全部種子的比例顯著正相關(guān)。在已報道過繁育系統(tǒng)的菊科外來入侵植物中,一些多年生植物具有自交不親和特性,如南美蟛蜞菊(Wedeliatrilobata)[14]、薇甘菊(Mikaniamicrantha)[15]、加拿大一枝黃花(Solidagocanadensis)[13, 16]和劍葉金雞菊(Coreopsislanceolata)[13,17]等。這些自交不親和的入侵種均既可通過地下莖進(jìn)行營養(yǎng)繁殖, 又可通過有性生殖產(chǎn)生大量種子,兩種繁殖方式的能力均很強(qiáng)。有性生殖主要負(fù)責(zé)這些入侵種的長距離擴(kuò)散和種群的初期建群,而無性繁殖則更多地負(fù)責(zé)局域種群的生存壯大。
豚草作為一年生外來入侵植物,主要通過有性生殖繁殖后代,它與其他一年生或越年生菊科外來入侵植物常具有自交親和性的繁育系統(tǒng)不同,通過自交不親性保持了較高的異交率。這可能與其高度特化的頭狀花序類型、特殊的風(fēng)媒傳粉方式、巨額的花粉量、較大的種子量和較長的種子休眠期有關(guān)[2]。豚草為雌雄同株植物,它的雌花和雄花分別著生在不同的頭狀花序中,其花序結(jié)構(gòu)與大多數(shù)菊科植物的頭狀花序的不同,這樣高度特化的單性花頭狀花序類型與其它由兩性花或雌花——兩性花組成的頭狀花序類型相比,更有利于異交的進(jìn)行。豚草的花和花序已由菊科植物典型的蟲媒傳粉演化為適于風(fēng)媒傳粉,其散粉過程既不同于其它菊科植物, 又有別于楊樹等典型的風(fēng)媒植物,是菊科植物中高度特化的傳粉類型[10]。豚草所具有自交不親和特性,使其交配方式以異交為主。異交有利于子代產(chǎn)生新的遺傳變異,避免自交衰退,從長遠(yuǎn)效應(yīng),有利于豚草的種群發(fā)展壯大。但對于新入侵的豚草新植株和小種群而言,不利于其繁殖保障的短期效應(yīng)。豚草在繁殖保障和避免自交衰退的權(quán)衡中,選擇了后者作為生存策略,有利于其在入侵地種群的長期生存和壯大。
外來種在新的分布區(qū)入侵和擴(kuò)散的首要環(huán)節(jié)便是成功定植和建群[18],而對于以種子繁殖的入侵植物而言,能否產(chǎn)生大量有活力的種子對外來種在新侵入地區(qū)成功定植和快速廣泛擴(kuò)散具有重要影響[19]。本文的研究結(jié)果表明,豚草主要通過異交產(chǎn)生大量有活力的種子,另一方面,豚草通過自交能產(chǎn)生少量種子(自交結(jié)實(shí)率達(dá)3.4%),因此,對在新分布區(qū)的零星豚草植株進(jìn)行及時防除,將取得事半功倍的效果。
[1] 周忠實(shí), 郭建英, 李保平, 孟玲, 傅建煒, 陳紅松, 馬明勇, 史夢竹, 李敏, 郭薇, 羅敏, 鄭興汶, 鄭海燕, 羅源華, 萬方浩. 豚草和空心蓮子草分布與區(qū)域減災(zāi)策略. 生物安全學(xué)報, 2011, 20(4): 263-266.
[2] Friedman J, Barrett S C H. High outcrossing in the annual colonizing speciesAmbrosiaartemisiifolia(Asteraceae). Annals of Botany, 2008, 101(9): 1303-1309.
[3] Fumanal B, Girod C, Fried G, Bretagnolle F, Chauvel B. Can the large ecological amplitude ofAmbrosiaartemisiifoliaexplain its invasive success in France? Weed Research, 2008, 48(4): 349-359.
[4] Heap, I. The international survey of herbicide resistant weeds. Online. Internet. Tuesday, September 16, 2014. Available from: http://www.weedscience.org/Summary/Species.aspx?WeedID=18
[5] Bassett I J, Crompton C W. The biology of Canadian weeds: 11.AmbrosiaartemisiifoliaL. andA.psilostachyaDC. Canadian Journal of Plant Science, 1975, 55(2): 463-476.
[6] Genton B J, Shykoff J A, Giraud T. High genetic diversity in French invasive populations of common ragweed,Ambrosiaartemisiifolia, as a result of multiple sources of introduction. Molecular Ecology, 2005, 14(14): 4275-4285.
[7] McKone M J, Tonkyn D W. Intrapopulation gender variation in common ragweed (Asteraceae,AmbrosiaartemisiifoliaL.), a monoecious, annual herb. Oecologia, 1986, 70(1): 63-67.
[8] Lundholm J T, Aarssen L W. Neighbor effects on gender variation inAmbrosiaartemisiifolia. Canadian Journal of Botany, 1994, 72(6): 794-800.
[9] 關(guān)廣清. 豚草花序及其演化. 沈陽農(nóng)業(yè)大學(xué)學(xué)報, 1992, 23(4): 329-334.
[10] 關(guān)廣清. 豚草花器結(jié)構(gòu)及排粉過程. 植物檢疫, 1993, 7(3): 167-170.
[11] King J R. The peroxidase reaction as an indicator of pollen viability. Stain Technology, 1960, 35(4): 225-227.
[12] Dafni A, Maués M M. A rapid and simple procedure to determine stigma receptivity. Sexual Plant Reproduction, 1998, 11(3): 177-180.
[13] Hao J H, Qiang S, Chrobock T, van Kleunen M, Liu Q Q. A test of baker′s law: breeding systems of invasive species of Asteraceae in China. Biological Invasions, 2011, 13(3): 571-580.
[14] 吳彥瓊, 胡玉佳, 陳江寧. 外來植物南美蟛蜞菊的繁殖特性. 中山大學(xué)學(xué)報: 自然科學(xué)版, 2005, 44(6): 93-96.
[15] Hong L, Shen H, Ye W H, Cao H L, Wang Z M. Self-incompatibility inMikaniamicranthain South China. Weed Research, 2007, 47(4): 280-283.
[16] 郝建華, 錢海軍, 姜雯, 沈宗根. 加拿大一枝黃花有性生殖特征研究. 生態(tài)環(huán)境學(xué)報, 2009, 18(6): 2278-2282.
[17] 曾建軍, 肖宜安, 孫敏. 入侵植物劍葉金雞菊的繁殖特征及其與入侵性之間的關(guān)系. 植物生態(tài)學(xué)報, 2010, 34(8): 966-972.
[18] Williamson M H, Fitter A. The characters of successful invaders. Biological Conservation, 1996, 78(1/2): 163-170.
[19] van Kleunen M, Manning J C, Pasqualetto V, Johnson S D. Phylogenetically independent associations between autonomous self-fertilization and plant invasiveness. American Naturalist, 2008, 171(2): 195-201.
Breeding system of a noxious invasive alien plant,AmbrosiaartemisiifoliaL.
HAO Jianhua1,*, JIN Jiejie1, CHEN Guoqi2, WANG Lixin1
1CollegeofBiologyandFoodEngineering,ChangshuInstituteofTechnology,Changshu215500,China2GuangdongProvincialKeyLaboratoryofHighTechnologyforPlantProtection,PlantProtectionResearchInstitute,GuangdongAcademyofAgriculturalSciences,Guangzhou510640,China
Ragweed (AmbrosiaartemisiifoliaL.), a member of the Asteraceae (Compositae), is an annual species native to North America. The species is a noxious invasive plant worldwide, with infestation by ragweed frequently posing challenges to protection and functioning of local ecosystems, crop production in agricultural areas, and public health. In North America, Europe, and Australia, ragweed is a major nuisance in arable areas and other habitats. At present, ragweed is relatively rare in agricultural areas of China compared with corresponding regions of other countries; nevertheless, the species is broadly distributed throughout many regions of China, including 21 of 34 provinces. Because ragweed is a monoecious annual that reproduces with high fecundity via seeds, its mating patterns may be closely related to its invasiveness and dissemination ability. In China, alien invasive plants in the family Asteraceae that are characterized by high fecundity tend to retain a high potential for self-compatibility, while many self-incompatible invasive alien plant species are perennials with high vegetative reproduction ability. Although ragweed does not reproduce vegetatively, its breeding system has not been fully elucidated. Some studies have indicated that ragweed can readily generate mature seeds autogamously and allogamously, whereas other experimental evidence implies that this species is self-incompatible. To shed further light on the breeding system of ragweed, we transplanted plants from an invasive ragweed population in Changshu, Jiangsu Province, China, and used them in a series of common garden experiments. We studied patterns of pollen viability and stigma receptivity. We also investigated the ragweed breeding system and apomixis by measuring seed sets of different individual plants subjected to four different treatments: self-pollination, cross-pollination, open-pollination, and bagging of female capitula. Viable ragweed pollen was first detected four days after flowering, with viability peaking eight to ten days post-anthesis. Viable stigmas were observed on the second day, with viable levels reaching a maximum five to eight days after flowering. The overlapping period of pollen viability and stigma receptivity was thus about five days. Seed set of ragweed individuals was highest under open-pollination (48.4%, on average) and cross-pollination (44.4%, on average) treatments, although the difference between these two treatments was not significant (P> 0.05). Seed set of self-pollinated individuals was much significantly lower (P< 0.01) than values obtained under open pollination and cross pollination, but the average value, 3.4%, was significantly higher than zero (P< 0.05). In addition, no seed set was observed from bagged female capitula. Taken together, our results suggest that ragweed is mainly self-incompatible, but possesses slight self-compatibility and no apomictic ability. Over the long run, self-incompatibility enhances ragweed diversity and adaptation to newly invaded areas; initially, however, this characteristic does not promote its spread, as it is obviously difficult for a few individual ragweed plants to form a large population via seeds relying solely on hybridization. Self-incompatibility may thus be one of the major reasons why ragweed seldom infests small croplands subjected to intensive weed management practices. Consequently, removal of sporadic individuals from new ragweed distributional areas should be made a priority to prevent serious invasion.
Ambrosiaartemisiifolia; asteraceae; breeding system; invasive alien plants; self-incompatibility
江蘇省自然科學(xué)基金面上項(xiàng)目(SBK201320980); 國家自然科學(xué)基金面上項(xiàng)目(31370548); 蘇州市科技計劃項(xiàng)目(SYN201304, YJG0911); 國家科技部國際合作與交流專項(xiàng): 中國-東盟重大農(nóng)業(yè)外來有害生物預(yù)警與防控平臺(2011DFB30040)
2013-06-10;
日期:2014-05-16
10.5846/stxb201306101590
*通訊作者Corresponding author.E-mail: jhhao@cslg.cn
郝建華, 金潔潔, 陳國奇, 王立新.惡性入侵植物豚草的繁育系統(tǒng)特性.生態(tài)學(xué)報,2015,35(8):2516-2520.
Hao J H, Jin J J, Chen G Q, Wang L X.Breeding system of a noxious invasive alien plant,AmbrosiaartemisiifoliaL..Acta Ecologica Sinica,2015,35(8):2516-2520.