馮惠彬 孟繁聰 李勝榮 賈麗輝
FENG HuiBin1,2,MENG FanCong2**,LI ShengRong1 and JIA LiHui2
1. 中國(guó)地質(zhì)大學(xué),地質(zhì)過程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100083
2. 中國(guó)地質(zhì)科學(xué)院地質(zhì)研究所,大陸構(gòu)造與動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100037
1. State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China
2. State Key Laboratory for Continental Tectonics and Dynamics,Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China
2014-09-14 收稿,2014-12-11 改回.
圖1 東昆侖造山帶大地構(gòu)造位置圖(據(jù)姜春發(fā)等,2000 修改)Fig.1 Location of East Kunlun orogenic belt (modified after Jiang et al.,2000)
橄欖巖通常被認(rèn)為形成于上地幔(Stixrude and Lithgow-Bertilloni,2005),巖石中所包含的物理化學(xué)信息可以代表形成時(shí)地幔的特征(張煒斌等,2011)。鉻鐵礦作為副礦物存在于橄欖巖中,它相對(duì)于其它巖漿成因礦物更加穩(wěn)定,對(duì)形成環(huán)境的變化更加敏感(Irvine,1967;Evans and Frost,1975;Barnes and Roeder,2001),具有較大的組成范圍,所以鉻鐵礦形成時(shí)的物理化學(xué)條件(溫度、壓力、氧逸度和部分熔融程度等)可以為寄主巖石成因及地幔特征的判斷提供可靠依據(jù)(Irvine,1965,1967;Hill and Roeder,1974;Dick and Bullen,1984;Agata,1988;鄧萬明,1988;Jan and Windley,1990;Kamenetsky et al.,2001),但并不是所有鉻鐵礦都有指示意義,應(yīng)通過其巖相學(xué)和化學(xué)成分等特點(diǎn)區(qū)分出原生與次生鉻鐵礦,只有原生鉻鐵礦才具有巖石成因指示意義(Irvine,1965,1967;Dick and Bullen,1984;孔凡梅等,2011)。
判斷鉻鐵礦特征的參數(shù)主要包括:特征值Cr#(=Cr/(Cr+Al))、Mg#(= Mg/(Mg + Fe2+))、Fe3+#(= Fe3+/(Fe3++Al+ Cr))和Fe2+#(= Fe2+/(Fe2++ Mg))的分布范圍,Al2O3、Cr2O3、MgO、Fe2O3和TiO2等主要氧化物的含量,這些氧化物含量及變化與鉻鐵礦產(chǎn)生時(shí)所處構(gòu)造環(huán)境密切相關(guān),例如:鉻鐵礦中TiO2含量通常在島弧環(huán)境最低,在MORB 環(huán)境中為中等,而板內(nèi)環(huán)境中最高(Arai,1992)。此外,還可根據(jù)以上化學(xué)數(shù)據(jù)計(jì)算鉻鐵礦形成時(shí)條件(溫度、壓力、氧逸度和部分熔融程度等),再結(jié)合氧化物與特征值之間的變化關(guān)系,對(duì)鉻鐵礦形成環(huán)境特征進(jìn)行判斷。蛇綠巖作為侵位于造山帶中的古洋殼,標(biāo)志著古縫合帶的位置,因此蛇綠巖的確證對(duì)區(qū)域大地構(gòu)造劃分具有重大意義,利用鉻鐵礦成分來判斷其寄主巖體是否屬于蛇綠巖成員的方法也比較成熟(Kepezhinskas et al.,1993;Vuollo et al.,1995;Suita and Streider,1996;Zhou et al.,1998;蘭朝利等,2005)。
從發(fā)現(xiàn)和提出東昆侖清水泉出露的基性-超基性巖具有蛇綠巖特性(高延林等,1988)以來,已有很多學(xué)者對(duì)其進(jìn)行了詳細(xì)的分析,主要包括巖石礦物組合及野外產(chǎn)狀(高延林等,1988;朱云海等,1997,2000,2002)、巖石化學(xué)(高延林等,1988;朱云海等,1997,2000,2002;任軍虎等,2009)和輝長(zhǎng)巖,輝綠巖鋯石年齡(Yang et al.,1996;任軍虎等,2009)。以上學(xué)者所作論證均支持清水泉存在蛇綠巖這一觀點(diǎn),但還有幾位學(xué)者從缺乏深海沉積物,玄武巖具有大陸特性以及基性-超基性巖的成因多樣性等角度提出反對(duì)意見(潘裕生等,1996;張旗和周國(guó)慶,2001;龍曉平等,2004)。此外,關(guān)于清水泉“蛇綠巖”形成環(huán)境的觀點(diǎn)也不統(tǒng)一,主要包括臨近陸緣快速擴(kuò)張形成或古陸緣環(huán)境中發(fā)生邊緣海擴(kuò)張作用形成(高延林等,1988)、島弧環(huán)境(Yang et al.,1996)、洋中脊環(huán)境(朱云海等,1997)、大陸裂谷環(huán)境(潘裕生等,1996;張旗和周國(guó)慶,2001)和板內(nèi)大陸伸展環(huán)境(龍曉平等,2004)。因此關(guān)于清水泉超基性巖是否蛇綠巖以及形成環(huán)境等問題還存在爭(zhēng)議。
在前人工作的基礎(chǔ)上,本文通過對(duì)東昆侖清水泉超基性巖(蛇紋巖)中鉻鐵礦的形態(tài)學(xué)和礦物化學(xué)的研究區(qū)分出原生和蝕變鉻鐵礦,并利用原生鉻鐵礦化學(xué)成分來判斷其寄主巖石的蛇綠巖特性,估算產(chǎn)出條件并推斷源區(qū)構(gòu)造環(huán)境,為造山帶的演化研究提供依據(jù)。
昆北具有變質(zhì)程度達(dá)角閃巖相(局部達(dá)麻粒巖相)的結(jié)晶基底,由各類片巖、片麻巖、大理巖及少量石英巖組成,原巖是一套深海相砂泥質(zhì)碎屑巖和中-基性火山巖,上被新元古界冰溝群濱海-淺海相碎屑巖及碳酸鹽巖不整合覆蓋(李懷坤等,2006)。昆北地區(qū)最老巖系為中元古代金水口群,遭受早古生代角閃巖相至麻粒巖相變質(zhì)作用(李懷坤等,2006;陳能松等,1999,2006,2007);早古生代納赤臺(tái)群遭受綠片巖相變質(zhì)以及花崗巖侵入破壞(姜春發(fā)等,1992;許志琴等,2006);最晚為泥盆世契蓋蘇群(陳能松等,2006)。昆北還分布有早古生代花崗巖以及三疊紀(jì)島弧巖漿性質(zhì)花崗巖(許志琴等,2006),后者對(duì)前者進(jìn)行了強(qiáng)烈的改造。
圖2 清水泉地區(qū)地質(zhì)簡(jiǎn)圖(據(jù)龍曉平等,2004 修改)1-中元古界白沙河群;2-早石炭世哈拉郭勒組;3-早三疊世洪水川群;4-三疊系-侏羅系羊曲組;5-第四系;6-鎂鐵-超鎂鐵質(zhì)巖及采樣點(diǎn);7-印支期花崗閃長(zhǎng)巖體;8-斷層Fig.2 Geological map of the Qingshuiquan area (modified after Long et al.,2004)1-Mesoproterozoic Baishahe Group; 2-Early Carboniferous epoch Halaguole Formation;3-Early Triassic epoch Hongshuichuan Group;4-Triassic-Jurassic Yangqu Formation;5-Quaternary;6-mafic-ultramafic rock and samples location;7-Indosinian period granodiorite;8-fault
昆南屬于變質(zhì)程度較低(僅達(dá)低綠片巖相)的變質(zhì)基底,南部軟基底(姜春發(fā)等,1992)之上為一套產(chǎn)于被動(dòng)陸緣環(huán)境的早古生代深海碎屑巖和基性火山巖(李懷坤等,2006)。昆南最老巖系為元古代苦海群和萬寶溝群,分別經(jīng)歷了角閃巖相和綠片巖相變質(zhì)作用改造(姜春發(fā)等,1992;潘裕生等,1996);之后是早古生代的納赤臺(tái)群,僅經(jīng)歷低級(jí)變質(zhì)作用(姜春發(fā)等,1992);造山作用晚期,形成泥盆紀(jì)牦牛山組磨拉石建造(潘裕生等,1996;李榮社等,2007;許志琴等,2007)。昆南地體被早古生代花崗巖所侵入,并伴隨有大量的三疊紀(jì)碰撞型花崗巖的侵位(許志琴等,2006)。印支期花崗巖的侵位對(duì)前期構(gòu)造進(jìn)行了強(qiáng)烈的改造,所有老地層中均疊加有清楚的印支期構(gòu)造變形遺跡(高延林等,1988)。
清水泉超基性巖體位于都蘭縣香日德鎮(zhèn)東南約60km,地理坐標(biāo)為:E:97°30' ~99°00';N:35°30' ~35°50',海拔約3600m(圖2)。清水泉超基性巖體呈近北西西向延伸,圍巖是中元古代白沙河巖群(Pt2B),圍巖巖石組合為:斜長(zhǎng)角閃巖、淺粒巖、變粒巖、大理巖、麻粒巖和片麻巖等,其變質(zhì)程度為角閃巖相-麻粒巖相,呈東西向高角度構(gòu)造變形。超基性巖已蝕變?yōu)樯呒y巖,與淺色變粒巖和大理巖呈構(gòu)造接觸,并局部被輝長(zhǎng)巖和輝綠巖脈所穿切;變粒巖可分為淺色和深色變粒巖兩類,二者混雜出露,它們局部被花崗(斑)巖脈或輝綠巖脈穿插;大理巖局部與蛇紋巖呈構(gòu)造接觸,或與變粒巖交叉出現(xiàn),也見有大理巖以巖脈形式穿切片麻巖;斜長(zhǎng)角閃巖以透鏡狀存在于變粒巖中;麻粒巖近似于大型透鏡體包裹于兩側(cè)的斜長(zhǎng)角閃巖中,再向兩側(cè)為淺色變粒巖,片麻巖和麻粒巖等巖體出露緊湊局限,且接觸界線不清晰,局部很難區(qū)分,有輝長(zhǎng)巖和輝綠巖脈、花崗斑巖脈穿插于麻粒巖和斜長(zhǎng)角閃巖中,可能與麻粒巖的深熔作用有關(guān);輝長(zhǎng)巖和輝綠巖多以巖脈和巖墻的形式出現(xiàn),穿插蛇紋巖、大理巖、變粒巖等巖體;長(zhǎng)英質(zhì)脈和花崗斑巖脈則穿切淺色變粒巖、麻粒巖和斜長(zhǎng)角閃巖;此外,在輝長(zhǎng)巖中還見有透輝石巖塊,呈透鏡狀。總體來看,該區(qū)巖體出露較為混亂,穿插關(guān)系復(fù)雜,推測(cè)是由于受到多期巖漿活動(dòng)和復(fù)雜的構(gòu)造運(yùn)動(dòng)改造而成的。
本文主要針對(duì)蛇紋巖及其所含尖晶石族礦物進(jìn)行巖石結(jié)構(gòu)構(gòu)造,礦物組合,形態(tài)特征和礦物化學(xué)等方面工作,所測(cè)試的鉻鐵礦樣品均來自蛇紋巖中,共采集蛇紋巖樣品60 余件,從中挑選部分磨制探針薄片并進(jìn)行電子探針分析,此工作主要是在中國(guó)地質(zhì)科學(xué)院地質(zhì)研究所電子探針(EPMA)實(shí)驗(yàn)室完成的,實(shí)驗(yàn)儀器型號(hào)為JXA-8100,工作加速電壓為15kV,電流為2.00 ×10-8A,束斑為5μm。應(yīng)用AX 軟件和Geokit 軟件(路遠(yuǎn)發(fā),2004)等進(jìn)行數(shù)據(jù)處理,基于尖晶石化學(xué)計(jì)量法(AB2O4)的軟件程序計(jì)算全部陽離子數(shù)量,并將全鐵含量區(qū)分為Fe2+和Fe3+。本文所用礦物縮寫依據(jù)沈其韓(2009)。
清水泉超基性巖大多已蝕變?yōu)樯呒y巖,主要以巖塊產(chǎn)出(圖2),呈條帶狀構(gòu)造(圖3a,b),推測(cè)為受到區(qū)域變質(zhì)作用而成。蛇紋巖零散出露于清水泉河?xùn)|地區(qū),近于W-E 方向延伸,其圍巖主要是大理巖、淺色變粒巖和片麻巖,有輝長(zhǎng)巖/輝綠巖脈穿插于大理巖和蛇紋巖中。蛇紋巖為灰黑-灰綠色,風(fēng)化破碎嚴(yán)重,其中的尖晶石族礦物呈浸染狀(圖3c)和條帶狀(圖3d)出現(xiàn),條帶寬0.5 ~1.5cm,多不平直且延伸較短。在手標(biāo)本中無法區(qū)分鉻鐵礦和磁鐵礦,二者在蛇紋巖中所占比重之和<1%。
顯微觀察和電子探針結(jié)果顯示蛇紋巖中所包含的礦物主要有鉻鐵礦、磁鐵礦、蛇紋石、綠泥石和碳酸鹽類礦物(主要是菱鎂礦)等。蛇紋巖中鉻鐵礦含量<1%,粒徑為0.3 ~2mm,個(gè)別可達(dá)到3mm,單偏光下呈淺紅色、暗紅色、黑褐色等,部分鉻鐵礦具有明顯的環(huán)帶現(xiàn)象(圖4a,c,g),核部顏色較淺(淺紅色),顯示其富Al 貧Fe 的特性,而邊緣為黑-黑紅色,顯示其富Fe 的特性,此結(jié)構(gòu)表明原生鉻鐵礦因蝕變作用而發(fā)生成分變化,部分鉻鐵礦內(nèi)部還存在裂隙和包體(圖4a,c,e,h);磁鐵礦多呈細(xì)小的黑色顆粒存在于蛇紋石間隙以及鉻鐵礦內(nèi)部裂隙中(圖4b,e),含量<1%,還有部分磁鐵礦圍繞鉻鐵礦邊緣分布(圖4e,f);蛇紋石在蛇紋巖中所占比重達(dá)95%,蛇紋石種類未做精確測(cè)定,主要呈網(wǎng)狀結(jié)構(gòu)(0.4 ~0.8mm)(圖3e),中心充填有蛇紋石和碳酸鹽巖,由此推測(cè)原巖可能為殘碎斑狀結(jié)構(gòu),其原始礦物可能是具等粒狀或殘碎斑狀的橄欖石;綠泥石在正交鏡下具有異常干涉色(墨水藍(lán)色),含量較少且分布不均勻,多呈細(xì)長(zhǎng)條狀分布于蛇紋石以及條帶狀鉻鐵礦顆粒之間(圖3g,h);碳酸鹽類礦物主要呈灰-褐色不規(guī)則集合體分布于蛇紋石顆粒邊緣,部分充填于蛇紋石網(wǎng)狀結(jié)構(gòu)中心(圖3e),綠泥石與碳酸鹽類礦物總量約為2%。
從商業(yè)發(fā)展的角度來看,企業(yè)發(fā)展的根本是生產(chǎn)和銷售,唯利是圖是商業(yè)的本質(zhì)。但是作為國(guó)有企業(yè),肩負(fù)的不僅僅是利益的最大化,還需要對(duì)企業(yè)內(nèi)的員工進(jìn)行必不可少的思想政治教育,不少國(guó)有企業(yè)以商業(yè)利益為根本,在選人提拔、晉升、年終考核等標(biāo)準(zhǔn)制定上,絕大部分因素保證都是商業(yè)利益、為企業(yè)的貢獻(xiàn),并沒有把思想政治扎實(shí)過硬作為必選項(xiàng)和一票否決項(xiàng)列在最前沿。換言之,往往選拔晉升的干部隊(duì)伍本身就是思想政治意識(shí)不強(qiáng),認(rèn)為技術(shù)、能力、對(duì)企業(yè)的貢獻(xiàn)遠(yuǎn)比思想政治工作有效,可想而知,領(lǐng)導(dǎo)的意識(shí)形態(tài)直接影響員工的思政政治導(dǎo)向,忽視了思想政治教育在日常生活和工作中的指導(dǎo)性。
圖3 蛇紋巖和鉻鐵礦野外產(chǎn)狀及鏡下特征(a、b)條帶狀蛇紋巖;(c)浸染狀鉻鐵礦;(d)條帶狀鉻鐵礦;(e)蛇紋巖的網(wǎng)狀結(jié)構(gòu),其中主要充填碳酸鹽和蛇紋石(正交偏光);(f)蛇紋石中分布的碳酸鹽礦物(菱鎂礦)(單偏光);(g)條帶狀鉻鐵礦及顆粒間分布的綠泥石(單偏光);(h)鉻鐵礦及周圍綠泥石(正交偏光). Srp-蛇紋石;Chr-鉻鐵礦;Chl-綠泥石;Mgs-菱鎂礦Fig.3 The field photograph and microscopic characteristics of serpentinite and chromites(a,b)banded serpentinite;(c)disseminated chromite;(d)banded chromite;(e)meshwork structure of serpentinite,the meshwork is filled with carbonate and serpentine (CPL);(f)carbonate minerals (magnesite)in the serpentine (PPL);(g)banded chromite and chlorite in the gap(PPL);(h)chromite and chlorite (CPL). Srp-serpentine;Chr-chromite;Chl-chlorite;Mgs-magnesite
表1 代表性鋁鉻鐵礦電子探針分析結(jié)果(wt%)Table 1 Representative composition of Al-Chromites from Qingshuiquan serpentinite (wt%)
鉻鐵礦(FeCr2O4)屬于尖晶石族礦物((Mg,F(xiàn)e2+)(Cr,Al,F(xiàn)e3+)2O4),結(jié)構(gòu)中普遍存在Mg 與Fe2+之間,以及Cr、Al和Fe3+之間的類質(zhì)同象替代(Irvine,1965),因此鉻鐵礦的化學(xué)成分可以在一定的范圍內(nèi)發(fā)生變化。根據(jù)鉻鐵礦探針數(shù)據(jù)(表1、表2、表3)可清晰區(qū)分出核部與邊部,二者成分存在明顯差異,但各部分化學(xué)成分在同一顆粒中或不同顆粒間是均勻的。核部Cr2O3含量為36% ~44%,Al2O3含量為24% ~28%,F(xiàn)eO 含量為15% ~24%,而Fe2O3含量為0.6%~3%,由核部低Cr(<50%)低Al、Fe(<30%)的性質(zhì),將其命名為鋁鉻鐵礦;邊部Cr2O3含量為26% ~37%,Al2O3含量為0.38% ~0.9%,F(xiàn)eO 含量為23% ~30%,而Fe2O3含量為23% ~65%,由其高FeOT(54% ~89%)的特征可歸屬于高鐵鉻鐵礦。少量無環(huán)帶鉻鐵礦的Cr2O3含量為54% ~60%,Al2O3含量為10% ~14%,F(xiàn)eO 含量為9% ~20%,而Fe2O3含量為1% ~9%,由其高Cr2O3(>50%),且FeOT為18% ~20%的性質(zhì),將其命名為鉻鐵礦,根據(jù)鉻鐵礦分類圖(圖5;索科洛夫,1958)的判斷結(jié)果與上述分析一致。
由鉻鐵礦特征值分布范圍(表4)可以看出按照鋁鉻鐵礦-鉻鐵礦-高鐵鉻鐵礦的順序,Cr#明顯具有升高的趨勢(shì);Mg#含量在鉻鐵礦中的分布范圍相對(duì)較大,而高鐵鉻鐵礦中的Mg#含量卻急劇下降;TiO2含量也略有升高;YFe 值按照鋁鉻鐵礦-鉻鐵礦-高鐵鉻鐵礦的順序顯示明顯升高趨勢(shì);Fe2+#值在各部分中基本一致,在高鐵鉻鐵礦中急劇升高。
圖4 清水泉鉻鐵礦形態(tài)結(jié)構(gòu)特征(a)具有高鐵鉻鐵礦環(huán)帶的不規(guī)則狀鋁鉻鐵礦,且含有蛇紋石包體;(b)磁鐵礦分布于鉻鐵礦邊緣及蛇紋石間隙中;(c)具有環(huán)帶的不規(guī)則狀鉻鐵礦;(d)條帶狀鉻鐵礦及顆粒間分布的綠泥石;(e)無環(huán)帶的不規(guī)則鉻鐵礦;(f)自形鉻鐵礦;(g)具有高鐵鉻鐵礦環(huán)帶的不規(guī)則狀鋁鉻鐵礦,且高鐵鉻鐵礦中含有綠泥石包體;(h)自形的,含有Cpx 包體的鉻鐵礦,邊緣出現(xiàn)少量磁鐵礦. (a-f)為單偏光照片;(g、h)為背散射圖片.Al-Chr-鋁鉻鐵礦;Fe-Chr-高鐵鉻鐵礦;Cr-Mag-鉻磁鐵礦;Cpx-單斜輝石Fig.4 Photomicrographs and back-scattered electron image showing typical textures of chromites(a)irregular alumochromite with serpentine inclusion and surrounded by ferri-chromite;(b)magnetite surround the chromite and fill the gap of the serpentine;(c)zoned irregular chromite;(d)banded chromite and chlorite in the gap;(e)irregular chromite;(f)euhedral chromite;(g)irregular alumochromite is surrounded by ferri-chromite,and chlorite appear in the ferri-chromite as a inclusion;(h)euhedral chromite with clinopyroxene inclusion and surrounded by a spot of magnetite. (a-f)under plane-polarized light;(g,h)are backscattered electron image. Al-Chr-alumchromite;Fe-Chr-ferri-chromite;Cr-Mag-chromium magnetite;Cpx-clinopyroxene
表2 代表性鉻鐵礦電子探針分析結(jié)果(wt%)Table 2 Representative composition of chromites from Qingshuiquan serpentinite (wt%)
前人認(rèn)為蛇紋巖的原巖主要是方輝橄欖巖,研究區(qū)內(nèi)未見典型的地幔二輝橄欖巖(高延林等,1988;朱云海等,2002;龍曉平等,2004)。利用前人(龍曉平等,2004)及本文新增的4 個(gè)全巖數(shù)據(jù)進(jìn)行CIPW 重新計(jì)算(表5;Li et al.,2004),結(jié)果顯示其主要礦物為橄欖石(59% ~85%),紫蘇輝石(9% ~38%)和透輝石(<1.5%),結(jié)合本次所采樣品的分布位置及顯微結(jié)構(gòu)特征(網(wǎng)狀結(jié)構(gòu)),認(rèn)為本文分析的蛇紋巖原巖為方輝橄欖巖(圖6)。
鉻鐵礦的成因具有多樣性,而本文認(rèn)為清水泉鉻鐵礦屬于熔融殘留成因,理由如下:巖漿熔離作用多以堆晶結(jié)構(gòu)的出現(xiàn)為特征,其反映在鉻鐵礦的產(chǎn)出上,則多表現(xiàn)為層狀鉻鐵礦的出現(xiàn),而清水泉鉻鐵礦主要作為浸染狀的副礦物出現(xiàn),產(chǎn)出數(shù)量也很少,沒有表現(xiàn)出巖漿熔離的特征,因此排除巖漿熔離作用成因的可能;熔巖反應(yīng)產(chǎn)生鉻鐵礦的觀點(diǎn)對(duì)于清水泉鉻鐵礦也不適用:首先,野外觀察結(jié)果顯示清水泉方輝橄欖巖蛇紋石化嚴(yán)重,由于復(fù)雜的構(gòu)造地質(zhì)作用,導(dǎo)致其與圍巖呈構(gòu)造接觸關(guān)系,未見有熔巖反應(yīng)邊界的存在;其次,多數(shù)學(xué)者應(yīng)用熔巖反應(yīng)的觀點(diǎn)來討論SSZ 上地幔中形成的豆莢狀鉻鐵礦的相關(guān)問題,而清水泉鉻鐵礦作為浸染狀的副礦物存在,既不具有豆莢狀形態(tài)特征,也不具有成礦的可能,因此,本文將熔巖反應(yīng)形成鉻鐵礦的觀點(diǎn)排除。綜上所述,本文認(rèn)為應(yīng)用熔融殘留成因的觀點(diǎn)解釋清水泉鉻鐵礦的成因更加合理,應(yīng)用鉻鐵礦特性進(jìn)行的相關(guān)分析也是可信的。
表3 代表性高鐵鉻鐵礦與磁鐵礦電子探針分析結(jié)果(wt%)Table 3 Representative composition of ferri-chromites and magnetites from Qingshuiquan serpentinite (wt%)
表4 鉻鐵礦特征值分布范圍Table 4 The Eigen value range of chromites
由顯微觀察及化學(xué)成分分析認(rèn)為核部鋁鉻鐵礦代表原始鉻鐵礦殘留,而邊緣高鐵鉻鐵礦則是在原始鉻鐵礦遭受變質(zhì)作用之后形成的,其化學(xué)成分已經(jīng)發(fā)生了相應(yīng)的變化,不能代表原始的鉻鐵礦。探針數(shù)據(jù)顯示核部的鋁鉻鐵礦成分基本穩(wěn)定且較均勻,顆粒間無明顯變化,表明各顆粒核部處于平衡狀態(tài)(Barnes,2000),所以本文所做計(jì)算和分析都是以核部鋁鉻鐵礦數(shù)據(jù)為基礎(chǔ)的。
利用鉻鐵礦成分來判斷其寄主巖體是否屬于蛇綠巖成員(Kepezhinskas et al.,1993;Vuollo et al.,1995;Suita and Streider,1996;Zhou et al.,1998;蘭朝利等,2005)的主要依據(jù)包括:(1)鉻鐵礦具有低 TiO2含量(<0.3%)(Kepezhinskas et al.,1993;Vuollo et al.,1995;Suita and Streider,1996;蘭朝利等,2005);(2)結(jié)核狀和球狀構(gòu)造是蛇綠巖鉻鐵礦的特征性構(gòu)造(Dick and Bullen,1984;Leblanc and Nicolas,1992;吳峻等,2001;蘭朝利等,2005);(3)Cr-Al-Fe3++2Ti,Cr#-Fe2+/(Mg + Fe2+),F(xiàn)e3+-Cr-Al 等化學(xué)成分變化特征(Kepezhinskas et al.,1993;Suita and Streider,
1996;Barnes and Roeder,2001)。
表5 蛇紋巖全巖數(shù)據(jù)及CIPW 重新計(jì)算(wt%)Table 5 Whole rock data of serpentinites and recalculated normative values (wt%)
圖5 鉻鐵礦分類圖(據(jù)索科洛夫,1958)1-高鐵鉻鐵礦;2-富鐵鉻鐵礦;3-富鎂鋁鉻鐵礦;4-富鐵富鉻尖晶石;5-富鐵鋁富鉻尖晶石;6-富鐵鋁尖晶石;7-鉻尖晶石;8-富鋁鉻尖晶石;9-富鉻尖晶石;10-鋁鉻鐵礦;11-鉻鐵礦;12-高鐵富鉻尖晶石Fig.5 Classification of chromites (after Sokolov,1958)1-ferri-chromite; 2-ferro-chromite; 3-ferro-alumochromite; 4-ferrochromopicotite;5-ferro-alumopicotite;6-ferropicotite;7-picotite;8-alumopicotite;9-chromopicotite;10-alumo-chromite;11-chromite;12-ferri-chromopicotite
圖6 蛇紋巖原巖類型Ol-Opx-Cpx 圖解(據(jù)路鳳香等,2002)1-純橄欖巖;2-方輝橄欖巖;3-二輝橄欖巖;4-單輝橄欖巖;5-橄欖方輝輝石巖;6-橄欖二輝巖;7-橄欖單輝輝石巖;8-方輝輝石巖;9-二輝輝石巖;10-單斜輝石巖Fig.6 Ol-Opx-Cpx diagram of serpentinite from Qingshuiquan(after Lu et al.,2002)1-dunite; 2-harzburgite; 3-lherzolite; 4-wehrlite; 5-olivineorthopyroxenite;6-olivine-websterite; 7-olivine-clinopyroxenite; 8-orthopyroxenite;9-websterite;10-clinopyroxenite
圖7 鋁鉻鐵礦Cr#-Mg#圖解(據(jù)王希斌等,2009)OMP-中國(guó)蛇綠巖地幔橄欖巖鉻尖晶石成分區(qū);CMP-中國(guó)新生代火山巖中的地幔橄欖巖捕擄體中尖晶石成分區(qū);ABP-深海橄欖巖尖晶石成分區(qū)Fig.7 Cr#-Mg# diagram of alumchromite from Qingshuiquan(after Wang et al.,2009)OMP-composition field of spinels in mantle peridotite from ophiolites in China;CMP-composition field of spinels in continental mantle peridotite from xenoliths in volcanic of China;ABP-composition field of spinels from abyssal peridotites
由鋁鉻鐵礦特征來看,其TiO2含量很低,大多數(shù)TiO2<0.1%,符合蛇綠巖(<0.3%)的特征;在鋁鉻鐵礦Cr#-Mg#圖解(圖7)中,大多數(shù)鋁鉻鐵礦位于中國(guó)蛇綠巖地幔橄欖巖鉻尖晶石成分區(qū)域內(nèi);同樣,在Cr-Al-Fe3++2Ti(圖8)判別圖中明顯的低Ti、Fe3+含量和Cr#-Fe2+/(Mg +Fe2+)(圖9)判別圖中Cr#中等,F(xiàn)e2+#相對(duì)較小的結(jié)果(圖9;Barnes and Roeder,2001)顯示出鋁鉻鐵礦具有蛇綠巖型雜巖特征,明顯與層狀雜巖和阿拉斯加型雜巖相區(qū)別。由以上判斷結(jié)果推測(cè)所測(cè)鉻鐵礦的寄主蛇紋巖的原巖——方輝橄欖巖應(yīng)屬于蛇綠巖成員。
圖8 鋁鉻鐵礦Cr-Al-Fe3+ + 2Ti 判別圖(據(jù)Jan and Windley,1990;Kepezhinskas et al.,1993)Ophiolites-蛇綠巖型;SE Alaskan-type complexes-東南部阿拉斯加型雜巖;Stratiform complexes-層狀雜巖Fig. 8 Cr-Al-Fe3+ + 2Ti diagram of alumchromite from Qingshuiquan (after Jan and Windley,1990;Kepezhinskas et al.,1993)
圖9 鋁鉻鐵礦Cr#-Fe2+ /(Mg +Fe2+)判別圖(據(jù)Su et al.,2012)Ophiolite-蛇綠巖型;Alaskan-type complexes-阿拉斯加型雜巖Fig.9 Cr#-Fe2+ /(Mg + Fe2+ )diagram of alumchromite from Qingshuiquan (after Su et al.,2012)
鉻鐵礦的Cr#(=Cr/(Cr +Al))具有隨著地幔巖部分熔融程度的增大而增大的特性,可以使用地幔橄欖巖中鉻鐵礦的Cr#推測(cè)地幔巖部分熔融程度、源區(qū)的虧損程度以及結(jié)晶壓力等(Dick and Bullen,1984)。此外,鉻鐵礦的Mg#(=Mg/(Mg+Fe2+))也是其部分熔融程度大小的指示劑。在Cr#-Mg#構(gòu)造環(huán)境判別圖解(圖10)中可以看出鋁鉻鐵礦絕大部分位于弧前橄欖巖環(huán)境區(qū)域中,少量位于弧前環(huán)境與俯沖帶(SSZ)類蛇綠巖以及阿爾卑斯型地幔橄欖巖的重疊部位,此分布范圍處于深海橄欖巖與層狀侵入體區(qū)域之間。前人曾對(duì)清水泉方輝橄欖巖中尖晶石進(jìn)行電子探針測(cè)試,但測(cè)試數(shù)量較少(僅4 個(gè)),其結(jié)果顯示尖晶石Cr#平均值為55.7,Mg#平均值為55.3(朱云海等,2002),與本文所測(cè)結(jié)果(Cr#=47 ~56 和Mg#=45 ~62)基本一致,顯示出該區(qū)橄欖巖既不同于典型的大洋上地幔物質(zhì),也與標(biāo)準(zhǔn)的大陸上地幔成因有區(qū)別,與紐芬蘭島灣蛇綠巖,阿曼賽邁爾蛇綠巖相似(Dick and Bullen,1984;朱云海等,2002)。
圖10 鋁鉻鐵礦Cr#-Mg#形成環(huán)境判別圖(據(jù)Dick and Bullen,1984;朱云海等,2002;孔凡梅等,2011 修改)Fig.10 Cr#-Mg# discriminant diagram of alumchromite from Qingshuiquan (modified after Dick and Bullen,1984;Zhu et al.,2002;Kong et al.,2011)
在判別地幔虧損程度的Cr#-TiO2關(guān)系圖(圖11;Pal and Mitra,2004)中可以看出鋁鉻鐵礦大多位于虧損地幔橄欖巖區(qū)域內(nèi),少量位于高度虧損地幔橄欖巖內(nèi)部,由此可見其寄主巖石初始形成于虧損地幔環(huán)境,并向虧損程度增加的方向發(fā)展。此結(jié)果與Cr#-Mg#形成環(huán)境判別圖(圖10)中顯示的鉻鐵礦分布于阿爾卑斯型橄欖巖區(qū)域附近以及主要分布在Mg >Fe 區(qū)域內(nèi)(Mg#值較高)的結(jié)果是一致的。
鉻鐵礦壓力計(jì)(O’Neill,1981)總結(jié)出Fe3+和Cr3+的摩爾分?jǐn)?shù)之和與壓力之間存在的線性關(guān)系,其壓力計(jì)算公式是:
P 和P0的單位為108Pa,P0選取為18.7;和分別為Cr3+和Fe3+在鉻鐵礦中的摩爾分?jǐn)?shù)。選取43 個(gè)鋁鉻鐵礦數(shù)據(jù)進(jìn)行計(jì)算(表6),得出核部結(jié)晶壓力為2.8 ~3.0GPa,其平均值為2.9GPa,推測(cè)其形成深度約為88km。
許多學(xué)者都曾利用橄欖石和尖晶石的共生關(guān)系作為地質(zhì)溫 度 計(jì)(Irvine,1965;Fabriès,1979;Reodder et al.,1979),但所研究超基性巖蛇紋石化嚴(yán)重,未找到相應(yīng)新鮮的橄欖石作為研究對(duì)象,因此只能利用鉻鐵礦進(jìn)行計(jì)算(Fabriès,1979),所用公式如下:
通常認(rèn)為軟流圈溫度為1280 ~1350℃,壓力約為3.0GPa(McKenzie and Bickle,1988),與本文計(jì)算結(jié)果很接近,由此推測(cè)鉻鐵礦寄主巖石形成于軟流圈。
表6 鋁鉻鐵礦物理化學(xué)條件計(jì)算結(jié)果Table 6 Physical and chemical conditions of alumchromite from Qingshuiquan
圖11 鋁鉻鐵礦Cr#-TiO2 虧損程度判別圖(據(jù)Pal and Mitra,2004 修改)Fig. 11 Cr#-TiO2 discriminant diagram of depletion of alumchromite from Qingshuiquan (modified after Pal and Mitra,2004)
圖12 鋁鉻鐵礦Al2O3-TiO2 關(guān)系構(gòu)造環(huán)境判別圖(據(jù)Kamenetsky et al.,2001 修改)MORB-洋中脊玄武巖;OIB-洋島玄武巖;Arc high-Ti-高Ti 弧型;Arc low-Ti-低Ti 弧型;Spinels from modern back-arc basin-現(xiàn)代弧后盆地中尖晶石;Supra-subduction zone peridotite-俯沖帶橄欖巖;MORBtype peridotite-洋中脊型橄欖巖Fig. 12 Al2O3-TiO2 discriminant diagram of alumchromite from Qingshuiquan (modified after Kamenetsky et al.,2001)MORB-mid-ocean ridge basalts;OIB-ocean island basalts
在TiO2-Al2O3構(gòu)造環(huán)境判別關(guān)系圖(圖12;Kamenetsky et al.,2001)中,核部鋁鉻鐵礦分布于島弧環(huán)境之外,主要在俯沖帶橄欖巖(SSZP)和大洋中脊橄欖巖(MORP)的重疊區(qū)域,更加靠近SSZP 區(qū)域的中心部位。再結(jié)合Al2O3-Fe2+/Fe3+圖解(圖13)中顯示的結(jié)果,核部鋁鉻鐵礦絕大多數(shù)位于SSZ 橄欖巖區(qū)域范圍內(nèi)。此外,核部鋁鉻鐵礦的Fe3+/Fe2+范圍為(0 ~0.29)<0.5,指示著地幔橄欖巖、洋中脊玄武巖、與島弧有關(guān)的火山巖等巖石類型(郭榮華等,2012);鋁鉻鐵礦的TiO2含量為(0% ~0.09%)<0.2%,顯示出地幔橄欖巖(包括俯沖帶橄欖巖SSZP,洋中脊橄欖巖MORP),玻安巖,島弧拉斑玄武巖的特征;TiO2和Al2O3沒有顯示出負(fù)相關(guān)關(guān)系,與來自MORB 的鉻尖晶石特征不同(Blanco et al.,2009)。由以上分析結(jié)果推斷研究區(qū)鉻鐵礦的寄主橄欖巖形成于俯沖帶環(huán)境。
圖13 鋁鉻鐵礦Al2O3-Fe2+ /Fe3+ 圖解(據(jù)Khalil and El-Makky,2009)SSZ peridotite-俯沖帶橄欖巖;MORB-type peridotite-洋中脊型橄欖巖;Volcanic spinels-火山巖型尖晶石Fig.13 Al2O3-Fe2+ /Fe3+ discriminant diagram of alumchromite from Qingshuiquan (after Khalil and El-Makky,2009)MORB-type peridotite:mid-ocean ridge basalts-type peridotite;SSZ peridotite:Supra-subduction zone peridotite
綜上所述,本文認(rèn)為所研究鉻鐵礦的寄主橄欖巖起源于俯沖帶環(huán)境中弧前虧損軟流圈位置。清水泉超基性巖作為蛇綠巖成員分布于東昆中斷裂帶,為東昆侖板塊構(gòu)造體制的研究提供了可靠的證據(jù)。
清水泉超基性巖蛇紋石化作用強(qiáng)烈,借助副礦物鉻鐵礦對(duì)其進(jìn)行相關(guān)特征的判斷。鉻鐵礦的環(huán)帶以及核部鉻鐵礦成分為判斷寄主巖石的性質(zhì)提供了依據(jù)。
(1)具環(huán)帶結(jié)構(gòu)的鉻鐵礦從中心到邊緣對(duì)應(yīng)的礦物種類分別是鋁鉻鐵礦-高鐵鉻鐵礦-鉻磁鐵礦。核部鋁鉻鐵礦相對(duì)富Al 貧Fe,外層高鐵鉻鐵礦富Fe 貧Al,從中心到邊緣顯示出Cr#明顯升高的趨勢(shì),Mg#在鉻磁鐵礦中急劇下降,TiO2含量從中心到邊緣也略有升高,但是升高幅度不是很大。部分鉻鐵礦相對(duì)富Fe,貧Al 和Mg,形成單獨(dú)的完整顆粒,多呈條帶狀分布。
(2)根據(jù)核部鋁鉻鐵礦Cr2O3為36% ~44%,Al2O3為24% ~28%,TiO2含量很低(<0.1%),F(xiàn)eO 為15% ~24%,而Fe2O3含量為0.6% ~3.0%,Cr#為0.47 ~0.56,Mg#為0.45 ~0.62,而Fe2+#變化于0.38 ~0.55,以及Cr-Al-Fe3++2Ti,Cr#-Fe2+#,Cr#-Mg#等判別圖的結(jié)果,認(rèn)為鉻鐵礦的寄主巖石——方輝橄欖巖具有蛇綠巖雜巖特性,可與層狀雜巖和阿拉斯加型雜巖相區(qū)別,推斷屬于蛇綠巖成員。
(3)利用核部鋁鉻鐵礦進(jìn)行物理化學(xué)條件的計(jì)算得出鋁鉻鐵礦的結(jié)晶溫度為1375.2 ~1397.1℃,平均值為1387.1℃;鋁鉻鐵礦的結(jié)晶壓力為2.8 ~3.0GPa,其平均值為2.9GPa,形成深度約為88km,結(jié)合Cr#-TiO2虧損程度判別圖顯示結(jié)果,認(rèn)為鉻鐵礦的寄主巖石——方輝橄欖巖產(chǎn)于虧損軟流圈位置。
(4)根據(jù)鋁鉻鐵礦化學(xué)成分以及Cr#-Mg#分布特征,Cr#-TiO2虧損程度判別,Al2O3-TiO2構(gòu)造環(huán)境判別等相關(guān)驗(yàn)證結(jié)果,認(rèn)為鉻鐵礦寄主巖石——方輝橄欖巖起源于SSZ 中弧前環(huán)境。
致謝 中國(guó)地質(zhì)科學(xué)院地質(zhì)研究所戎合老師幫助完成了礦物成分電子探針測(cè)試;中國(guó)地質(zhì)大學(xué)(北京)及中國(guó)地質(zhì)科學(xué)院地質(zhì)研究所博士生李云帥協(xié)助完成相關(guān)數(shù)據(jù)處理工作;特別是幾位審稿人和俞良軍老師對(duì)文章提出了寶貴的修改意見;在此一并表示感謝!
Agata T. 1988. Chrome spinels from the ōura layered igneous complex,central Japan. Lithos,21(2):97 -108
Arai S. 1992. Chemistry of chromian spinel in volcanic rocks as potential guide to magma chemistry. Mineralogical Magazine,56:173 -184
Barnes SJ. 2000. Chromite in Komatiites,Ⅱ. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology,41(3):387 -409
Barnes SJ and Roeder PL. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology,42(12):2279 -2302
Blanco G,Rajesh HM,Germs GJB and Zimmermann U. 2009. Chemical composition and tectonic setting of chromian spinels from the Ediacaran-Early Paleozoic Nama Group,Namibia. The Journal of Geology,117(3):325 -341
Bridges JC,Prichard HM and Meireles CA. 1995. Podiform chromititebearing ultramafic rocks from the Braganca Massif, northern Portugal:Fragments of island arc mantle. Geological Magazine,132(1):39 -49
Chen NS,Zhu J,Wang GC,Hou GJ,Zhang KX and Zhu YH. 1999.Metamorphic petrological features of high-grade metamorphic microlithons in Qingshuiquan region,eastern section of Eastern Kunlun orogenic zone. Earth Science,24(2):116 - 120 (in Chinese with English abstract)
Chen NS,Li XY,Zhang KX,Wang GC,Zhu YH,Hou GJ and Bai YS.2006. Lithological characteristics of the Baishahe Formation to the south of Xiangride town,Eastern Kunlun Mountains and its age constrained from zircon Pb-Pb dating. Geological Science and Technology Information,25(6):1 - 7 (in Chinese with English abstract)
Chen NS,Sun M,Wang QY,Zhao GC,Chen Q and Su GM. 2007.Electron microprobe age of monazite from Mesozone of East Kunlun orogenic belt:Record of multiphase tectonic metamorphism event.Chinese Science Bulletin,52(11):1297 -1306 (in Chinese)
Chen NS,Sun M,Wang QY,Zhang KX,Wan YS and Chen HH. 2008.East Kunlun orogenic belt with zircon U-Pb dating and its implications for tectonic evolution. Science in China (Series D),38(6):657 -666 (in Chinese)
Deng WM. 1988. Chemical compositions of spinel group from metamorphic peridotites and cumulates in North Tibetan ophiolite.Scientia Geologica Sinica,(2):121 -127 (in Chinese with English abstract)
Dick HJB and Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology,86(1):54 -76
Evans BW and Frost BR. 1975. Chrome-spinel in progressive metamorphism:A preliminary analysis. Geochim. Cosmochim.Acta,39(6 -7):955 -972
Fabriès J. 1979. Spinel-Olivine geothermometry in peridotites from ultramafic complexes. Contributions to Mineralogy and Petrology,69(4):329 -336
Gao YL,Wu XN and Zuo GC. 1988. The characters and tectonic significance of ophiolite first discovered in the East Kunlun area.Bull. Xi’an Inst. Geol. Min. Res.,Chinese Acad. Geol. Sci.,(21):17 -28 (in Chinese with English abstract)
Guillot S,Hattori KH,Sigoyer JD,N?gler T and Auzende AL. 2001.Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth and Planetary Science Letters,193(1-2):115 -127
Guo RH,Hu XM and Wang JG. 2012. Chemical compositions and provenance significance of the detrital Cr-spinels from the Xigaze forearc basin,southern Tibet. Earth Science Frontiers,19(6):213-220 (in Chinese with English abstract)
Hill R and Roeder P. 1974. The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. The Journal of Geology,82(6):709 -729
Irvine TN. 1965. Chromian spinel as a petrogenetic indicator Part 1.Theory. Canadian Journal of Earth Sciences,2(6):648 -672
Irvine TN. 1967. Chromian spinel as a petrogenetic indicator Part 2.Petrologic applications. Canadian Journal of Earth Sciences,4(1):71 -103
Jan MQ and Windley BF. 1990. Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal complex,Northwest Pakistan. J.Petrology,31(3):667 -715
Jiang CF,Yang JS,F(xiàn)eng BG,Zhu ZZ,Zhao M,Chai YC,Shi XD,Wang HD and Hu JQ. 1992. Opening-Closing Tectonics of Kunlun Mountains. Beijing:Geological Publishing House,1 - 224 (in Chinese with English abstract)
Jiang CF,Wang ZQ and Li JY. 2000. Opening-Closing Tectonics of Central Orogenic Belt. Beijing:Geological Publishing House,108(in Chinese with English abstract)
Kamenetsky VS,Crawford AJ and Meffre S. 2001. Factors controlling chemistry of magmatic spinel:An empirical study of associated olivine,Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology,42(4):655 -671
Kepezhinskas PK,Taylor RN and Tanaka H. 1993. Geochemistry of plutonic spinels from the North Kamchatka arc:Comparisons with spinels from other tectonic settings. Mineralogical Magazine,57(4):575 -589
Khalil KI and El-Makky AM. 2009. Alteration mechanisms of chromianspinel during serpentinization at Wadi Sifein area,Eastern Desert,Egypt. Resource Geology,59(2):194 -211
Kong FM,Li XP,Li SJ and Wu S. 2011. Mineralogy of spinel from mafic-ultramafic rocks in Dongdegou,southwestern Tianshan and its geological significance. Acta Petrologica et Mineralogica,30(5):951 -960 (in Chinese with English abstract)
Lan CL,Li JL and He SL. 2005. Chromites evidence for ophiolite at the southwestern margin of Aqikekule Lake and its tectonic environmental discussions,Eastern Kunlun Mountain,Xinjiang.Geology and Prospecting,41(1):38 -42 (in Chinese with English abstract)
Leblanc M and Nicolas A. 1992. Ophiolitic chromitites. International Geology Review,34(7):653 -686
Li HK,Lu SN,Xiang ZQ,Zhou HY,Guo H,Song B,Zheng JK and Gu Y. 2006. SHRIMP U-Pb zircon age of the granulite from the Qingshuiquan area,Central Eastern Kunlun Suture Zone. Earth Science Frontiers,13(6):311 - 321 (in Chinese with English abstract)
Li RS,Ji WH,Zhao ZM,Chen SJ,Meng Y,Yu PS and Pan XP. 2007.Progress in the study of the Early Paleozoic Kunlun orogenic belt.Geological Bulletin of China,26(4):373 -382 (in Chinese with English abstract)
Li XP,Rahn M and Bucher K. 2004. Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution. Journal of Metamorphic Geology,22(3):159 -177
Long XP,Wang LS and Yu N. 2004. Geochemical characteristics of the Qingshuiquan mafic-ultramafic rocks, East Kunlun. Geological Bulletin of China,23(7):664 - 669 (in Chinese with English abstract)
Lu FX,Sang LK,Wu JH and Liao QA. 2002. Petrology. Beijing:Geological Publishing House,1 - 47 (in Chinese with English abstract)
Lu YF. 2004. GeoKit:A geochemical toolkit for Microsoft Excel.Geochimica,33(5):459 -464 (in Chinese with English abstract)
McKenzie D and Bickle MJ. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology,29(3):625 -679
Meng FC,Zhang JX and Cui MH. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun,western China and its tectonic significance. Gondwana Research,23(2):825 -836
O’Neill HSC. 1981. The transition between spinel lherzolite and garnet lherzolite,and its use as a Geobarometer. Contributions to Mineralogy and Petrology,77(2):185 -194
Pal T and Mitra S. 2004. P-T-fO2controls on a partly inverse chromite bearing ultramafic intrusive:An evaluation from the Sukinda Massif,India. Journal of Asian Earth Sciences,22(5):483 -493
Pan YS,Zhou WM,Xu RH,Wang DA,Zhang YQ,Xie YW,Chen TE and Luo H. 1996. Geological characteristics and evolution of Early Paleozoic Kunlun. Science in China (Series D),26(4):302 -307(in Chinese)
Ren JH,Liu YQ,F(xiàn)eng Q,Han WZ,Gao H and Zhou DW. 2009. LAICP-MS U-Pb zircon dating and geochemical characteristics of diabase-dykes from the Qingshuiquan area,eastern Kunlun orogenic belt. Acta Petrologica Sinica,25(5):1135 - 1145 (in Chinese with English abstract)
Reodder PL,Campbell IH and Jamieson HE. 1979. A re-evaluation of the olivine-spinel geothermometer. Contributions to Mineralogy and Petrology,68(3):325 -334
Shen QH. 2009. The recommendation of a systematic list of mineral abbreviations. Acta Petrologica et Mineralogica,28(5):495 -500(in Chinese with English abstract)
Sokolov GA. 1958. Chromite Deposits in Ural. In:Zhu FX,Li BL and Yuan QL (Trans.). Beijing:Geological Publishing House,1 -12(in Chinese with English abstract)
Stixrude L and Lithgow-Bertilloni C. 2005. Thermodynamics of mantle minerals-Ⅰ. Physical properties. Geophysical Journal International,162(2):610 -632
Su BX,Qin KZ,Sakyi PA,Malaviarachchi SPK,Liu PP,Tang DM,Xiao QH,Sun H,Ma YG and Mao Q. 2012. Occurrence of an Alaskan-type complex in the middle Tianshan massif,Central Asian Orogenic Belt: Inferences from petrological and mineralogical studies. International Geology Review,54(3):249 -269
Suita MTF and Streider AJ. 1996. Cr-spinels from Brazilian maficultramafic complexes: Metamorphic modifications. International Geology Review,38(3):245 -267
Vuollo J,Liipo J,Nykanen V,Piirainen T,Pekkarinen L,Tuokko I and Ekdahl E. 1995. An Early Proterozoic podiform chromitite in the Outokumpu ophiolite complex,F(xiàn)inland. Economic Geology,90(2):445 -452
Wang XB,Yang JS,Li TF,Chen SY and Ren YF. 2009. Metamorphic assemblage and protolith discrimination of meta-peridotite in the HPUHP metamorphic belt in the East Sea Area,eastern China:Evidence from the PP1 and PP3 Holes. Acta Geologica Sinica,83(7):946 -963 (in Chinese with English abstract)
Wu J,Lan CL,Li JL and Yu LJ. 2001. Determination of ophiolite at the western margin of Aqikekule Lake,East Kunlun of Xinjiang.Geological Science and Technology Information,20(3):6 -10 (in Chinese with English abstract)
Xu ZQ,Yang JS,Li HB and Yao JX. 2006. The Early Palaeozoic terrene framework and the formation of the High-Pressure (HP)and Ultra-High Pressure (UHP)metamorphic belts at the Central Orogenic Belt (COB). Acta Geologica Sinica,80(12):1793 -1806 (in Chinese with English abstract)
Xu ZQ,Yang JS,Li HB,Zhang JX and Wu CL. 2007. Orogenic Plateau:Terrane Amalgamation,Collision and Uplift in the Qinghai-Tibet Plateau. Beijing:Geological Publishing House,1 -458 (in Chinese with English abstract)
Yang JS,Robinson PT,Jiang CF and Xu ZQ. 1996. Ophiolites of the Kunlun Mountains, China and their tectonic implications.Tectonophysics,258(1 -4):215 -231
Zhang Q and Zhou GQ. 2001. Chinese Ophiolite. Beijing:Science Press(in Chinese)
Zhang WB,Zhang DY,Zhang ZC,Huang H and Zhao L. 2011.Mineralogy of chromites in Mandaleke ophiolite of South Tianshan Mountains and its geological implications. Acta Petrologica et Mineralogica,30(2):243 -258 (in Chinese with English abstract)
Zhou MF,Sun M,Keays RR and Kerrich RW. 1998. Controls on platinum-group elemental distributions of podiform chromitites:A case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta,62(4):677 -688
Zhu YH,Cheng NS,Wang GC,Zheng S and Bai YS. 1997. The chemical compositional characteristics and petrological significance of clinopyroxenes and amphiboles in ophiolite in the center of Eastern Kunlun orogenic belt. Earth Science,22 (4):364 - 368 (in Chinese with English abstract)
Zhu YH,Pan YM,Zhang KX,Chen NS,Wang GC and Hou GJ. 2000.Mineralogical characteristicsn and petrogenesis of ophiolites in East Kunlun orogenic belt,Qinghai Province. Acta Mineralogica Sinica,20(2):128 -142 (in Chinese with English abstract)
Zhu YH,Zhang KX,Wang GC,Bai YS,Chen NS and Hou GJ. 2002.The Ophiolite,Magmatic Rocks and Tectonic Magmatic Evolution of Composite Orogenic Belt of East Kunlun. Wuhan:China University of Geosciences Press,32 -33 (in Chinese with English abstract)
附中文參考文獻(xiàn)
陳能松,朱杰,王國(guó)燦,侯光久,張克信,朱云海,拜永山. 1999. 東昆侖造山帶東段清水泉高級(jí)變質(zhì)巖片的變質(zhì)巖石學(xué)研究. 地球科學(xué),24(2):116 -120
陳能松,李曉彥,張克信,王國(guó)燦,朱云海,侯光久,拜永山. 2006.東昆侖山香日德南部白沙河巖組的巖石組合特征和形成年代的鋯石Pb-Pb 定年啟示. 地質(zhì)科技情報(bào),25(6):1 -7
陳能松,孫敏,王勤燕,趙國(guó)春,陳強(qiáng),舒桂明. 2007. 東昆侖造山帶昆中帶的獨(dú)居石電子探針化學(xué)年齡:多期構(gòu)造變質(zhì)事件記錄. 科學(xué)通報(bào),52(11):1297 -1306
陳能松,孫敏,王勤燕,張克信,萬渝生,陳海紅. 2008. 東昆侖造山帶中帶的鋯石U-Pb 定年與構(gòu)造演化啟示. 中國(guó)科學(xué)(D 輯),38(6):657 -666
鄧萬明. 1988. 藏北蛇綠巖中尖晶石類礦物的化學(xué)成分. 地質(zhì)科學(xué),(2):121 -127
高延林,吳向農(nóng),左國(guó)朝. 1988. 東昆侖山清水泉蛇綠巖特征及其大地構(gòu)造意義. 中國(guó)地質(zhì)科學(xué)院西安地質(zhì)礦產(chǎn)研究所所刊,(21):17 -28
郭榮華,胡修棉,王建剛. 2012. 日喀則弧前盆地碎屑鉻尖晶石地球化學(xué)與物源判別. 地學(xué)前緣,19(6):213 -220
姜春發(fā),楊經(jīng)綏,馮秉貴,朱志直,趙民,柴耀楚,施希德,王懷達(dá),胡金慶. 1992. 昆侖開合構(gòu)造. 北京:地質(zhì)出版社,1 -224
姜春發(fā),王宗起,李錦軼. 2000. 中央造山帶開合構(gòu)造. 北京:地質(zhì)出版社,108
孔凡梅,李旭平,李守軍,吳蘇. 2011. 西南天山東德溝鎂鐵-超鎂鐵巖中尖晶石的礦物學(xué)特征及其地質(zhì)意義. 巖石礦物學(xué)雜志,30(5):951 -960
蘭朝利,李繼亮,何順利. 2005. 新疆東昆侖阿其克庫(kù)勒湖西南緣蛇綠巖-鉻鐵礦證據(jù)及其構(gòu)造環(huán)境探討. 地質(zhì)與勘探,41(1):38-42
李懷坤,陸松年,相振群,周紅英,郭虎,宋彪,鄭健康,顧瑛.2006. 東昆侖中部縫合帶清水泉麻粒巖鋯石SHRIMP U-Pb 年代學(xué)研究. 地學(xué)前緣,13(6):311 -321
李榮社,計(jì)文化,趙振明,陳守建,孟勇,于浦生,潘小平. 2007. 昆侖早古生代造山帶研究進(jìn)展. 地質(zhì)通報(bào),26(4):373 -382
龍曉平,王立社,余能. 2004. 東昆侖山清水泉鎂鐵質(zhì)-超鎂鐵質(zhì)巖的地球化學(xué)特征. 地質(zhì)通報(bào),23(7):664 -669
路鳳香,桑隆康,鄔金華,廖群安. 2002. 巖石學(xué). 北京:地質(zhì)出版社,1 -47
路遠(yuǎn)發(fā). 2004. GeoKit:一個(gè)用VBA 構(gòu)建的地球化學(xué)工具軟件包. 地球化學(xué),33(5):459 -464
潘裕生,周偉明,許榮華,王東安,張玉泉,謝應(yīng)雯,陳挺恩,羅輝.1996. 昆侖山早古生代地質(zhì)特征與演化. 中國(guó)科學(xué)(D 輯),26(4):302 -307
任軍虎,柳益群,馮喬,韓文中,高輝,周鼎武. 2009. 東昆侖清水泉輝綠巖脈地球化學(xué)及LA-ICP-MS 鋯石U-Pb 定年. 巖石學(xué)報(bào),25(5):1135 -1145
沈其韓. 2009. 推薦一個(gè)系統(tǒng)的礦物縮寫表. 巖石礦物學(xué)雜志,28(5):495 -500
索科洛夫. 1958. 烏拉爾鉻鐵礦. 見:朱福湘,李秉倫,袁啟林譯. 北京:地質(zhì)出版社,1 -12
王希斌,楊經(jīng)綏,李天福,陳松永,任玉峰. 2009. 東海地區(qū)高壓-超高壓變質(zhì)帶中變質(zhì)橄欖巖及其原巖和成因類型的判別——以PP1 孔和PP3 孔為例. 地質(zhì)學(xué)報(bào),83(7):946 -963
吳峻,蘭朝利,李繼亮,俞良軍. 2001. 新疆東昆侖阿其克庫(kù)勒湖西緣地區(qū)蛇綠巖的確證. 地質(zhì)科技情報(bào),20(3):6 -10
許志琴,楊經(jīng)綏,李海兵,姚建新. 2006. 中央造山帶早古生代地體構(gòu)架與高壓/超高壓變質(zhì)帶的形成. 地質(zhì)學(xué)報(bào),80(12):1793-1806
許志琴,楊經(jīng)綏,李海兵,張建新,吳才來. 2007. 造山的高原——青藏高原地體的拼合、碰撞造山及隆升機(jī)制. 北京:地質(zhì)出版社,1 -458
張旗,周國(guó)慶. 2001. 中國(guó)蛇綠巖. 北京:科學(xué)出版社
張煒斌,張東陽,張招崇,黃河,趙莉. 2011. 南天山滿大勒克蛇綠巖鉻鐵礦礦物學(xué)特征及其意義. 巖石礦物學(xué)雜志,30(2):243-258
朱云海,陳能松,王國(guó)燦,鄭曙,拜永山. 1997. 東昆中蛇綠巖中單斜輝石、角閃石礦物成分特征及巖石學(xué)意義. 地球科學(xué),22(4):364 -368
朱云海,Pan YM,張克信,陳能松,王國(guó)燦,侯光久. 2000. 東昆侖造山帶蛇綠巖礦物學(xué)特征及其巖石成因討論. 礦物學(xué)報(bào),20(2):128 -142
朱云海,張克信,王國(guó)燦,拜永山,陳能松,侯光久. 2002. 東昆侖復(fù)合造山帶蛇綠巖、巖漿巖及構(gòu)造巖漿演化. 武漢:中國(guó)地質(zhì)大學(xué)出版社,32 -33