鄧小芹 趙太平 彭頭平 高昕宇 包志偉
DENG XiaoQin1,2,ZHAO TaiPing1**,PENG TouPing3,GAO XinYu1 and BAO ZhiWei1
1. 中國(guó)科學(xué)院廣州地球化學(xué)研究所礦物學(xué)與成礦學(xué)重點(diǎn)實(shí)驗(yàn)室,廣州 510640
2. 中國(guó)科學(xué)院大學(xué),北京 100049
3. 中國(guó)科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣州 510640
1. Key Laboratory of Mineralogy and Metallogeny,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China
2. University of Chinese Academy of Sciences,Beijing 100049,China
3. State Key Laboratory of Isotope Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China
2014-09-20 收稿,2014-11-30 改回.
A 型花崗巖最初由Loiselle and Wones(1979)提出,代表非造山、堿性和無水的花崗巖,此后其定義范圍有所擴(kuò)大(Collins et al.,1982;Pearce et al.,1984;Whalen et al.,1987;Bonin,2007)。目前普遍認(rèn)為,該類花崗巖具有富堿,高Fe/(Fe+Mg)、Rb/Sr、HFSE,低Ca、Fe、Mg,強(qiáng)烈虧損Eu、Sr、Ba、P、Ti 的特點(diǎn)(Collins et al.,1982;King et al.,1997),且常與同時(shí)代的基性巖體共生(Haapala and R?m?,1992)。關(guān)于A 型花崗巖的成因焦點(diǎn)問題在于這類花崗巖是直接來自幔源玄武巖的分異,還是來自單一的地殼部分熔融、抑或是同時(shí)有地幔物質(zhì)的加入(Wu et al.,2002;Yang et al.,2006;Bonin,2007)。A 型花崗巖的產(chǎn)生通常與伸展的構(gòu)造背景有關(guān),如造山后或者非造山環(huán)境(Frost et al.,2007;Zhao and Zhou,2009)。因此,A 型花崗巖的研究對(duì)于區(qū)域地殼的演化和殼幔相互作用以及大地構(gòu)造演化具有非常重要的指示意義(Collins et al.,1982;Bonin,2007)。
圖1 華北克拉通地質(zhì)簡(jiǎn)圖(a,據(jù)Peng et al.,2005)、研究區(qū)在華北南緣的位置(b 據(jù)Hu et al.,2014)及麻坪地區(qū)地質(zhì)簡(jiǎn)圖(c,據(jù)地礦部陜西地勘局,1998①地礦部陜西地勘局. 1998. 1∶5 萬洛南縣區(qū)域地質(zhì)圖和地質(zhì)報(bào)告)Fig.1 Simplified geological map of the NCC (a,after Peng et al.,2005),the position of the study area in the southern margin of the NCC (b,modified after Hu et al.,2014)and simplified geological map of the Maping area (c)
華北克拉通是世界上最古老的克拉通之一(Zhai et al.,2011),其古元古代活動(dòng)帶的演化結(jié)束于1800Ma 前(翟明國(guó)等,2014),之后在1800 ~1600Ma 發(fā)育了一系列的巖漿巖,主要包括不整合覆蓋在太古宙和古元古代變質(zhì)基底上與裂谷有關(guān)的1.80 ~1.75Ga 熊耳群雙峰式火山巖(Zhao et al.,2002;趙太平等,2004)和1.68 ~1.62Ga 長(zhǎng)城系火山-沉積建造(李懷坤等,1995;Lu et al.,2008),以及與它們同期的基性巖墻群(彭澎等,2004,2011;Wang et al.,2004,2008;胡國(guó)輝等,2010)和1.72 ~1.60Ga 的斜長(zhǎng)巖-環(huán)斑花崗巖、堿性巖-堿性花崗巖等非造山巖漿活動(dòng)(楊進(jìn)輝等,2005;Zhang et al.,2007,2013;包志偉等,2009;Zhao et al.,2009;Zhao and Zhou,2009;Jiang et al.,2011;Wang et al.,2013)。在這一時(shí)期的A 型花崗巖也陸續(xù)被報(bào)道,例如寧夏涇源花崗斑巖(1803 ±15Ma;高山林等,2013)、長(zhǎng)哨營(yíng)-古北口正長(zhǎng)花崗巖(1753 ±23Ma 和1692 ±19Ma;Zhang et al.,2007)、密云環(huán)斑花崗巖(~1683Ma;R?m? et al.,1995;楊進(jìn)輝等,2005;高維等,2008;李懷坤等,2011)、溫泉花崗巖(~1697Ma;Jiang et al.,2011),以及~1.78Ga 嵩山地區(qū)的A 型花崗巖(Zhao and Zhou,2009;Zhang et al.,2013)和~1.60Ga 的龍王 花崗巖(陸松年等,2003;包志偉等,2009;Wang et al.,2012),它們主要沿著北緣的燕遼裂谷和南緣的熊耳裂谷分布。華北南緣的熊耳群和北緣的長(zhǎng)城系都屬于未變質(zhì)火山-沉積地層,不整合覆蓋在太古宇和古元古界變質(zhì)基底上(Zhai and Liu,2003),表現(xiàn)出裂谷系中發(fā)育A 型花崗巖的特點(diǎn)(Zhai and Liu,2003;Zhai and Santosh,2011;Zhai et al.,2011;翟明國(guó)等,2014)。
華北克拉通南緣分布一條堿性巖-堿性花崗巖帶,該巖帶西起陜西藍(lán)田張家坪地區(qū)經(jīng)洛南,河南盧氏、欒川,南召北部和方城等地,東到平頂山-舞陽地區(qū),長(zhǎng)度達(dá)400km(圖1b)。龍王 花崗巖體是該帶中規(guī)模最大的堿性花崗巖侵入體,而本文研究的麻坪花崗巖體則是與龍王 花崗巖體屬于同一堿性花崗巖帶上的產(chǎn)物。
麻坪巖體位于陜西省洛南縣麻坪鎮(zhèn),屬于華北克拉通南緣西南部(圖1a)。研究區(qū)內(nèi)出露的地層主要為中元古界官道口群的碳酸鹽巖和碎屑巖,由老到新依次為:高山河組、龍家園組、巡檢司組、杜關(guān)組和馮家灣組。
麻坪巖體主要沿著洛南縣麻坪鎮(zhèn)地區(qū)的四洼-師家溝分布,呈帶狀延展,走向北西西,與地層走向平行,帶長(zhǎng)約5km,寬500m(圖1c)。巖石類型有花崗斑巖、正長(zhǎng)斑巖、正長(zhǎng)花崗巖和霓輝正長(zhǎng)斑巖(地礦部陜西地勘局,1988;柳曉艷,2011),但是由于巖體多被第四系覆蓋且受地形所限,本文僅發(fā)現(xiàn)花崗斑巖,出露寬度約50m,侵位于官道口群龍家園組碳酸鹽巖中(圖1c)。
麻坪巖體花崗斑巖具斑狀結(jié)構(gòu),塊狀構(gòu)造,斑晶主要為鉀長(zhǎng)石和石英(圖2a-d)。鉀長(zhǎng)石斑晶多為肉紅色,呈板狀、長(zhǎng)柱狀,自形,顆粒較大(1 ~2cm),約占33%;石英斑晶多呈渾圓狀,粒徑0.25 ~2.2mm,約占10%。基質(zhì)也主要由鉀長(zhǎng)石和石英組成,呈淺綠色,含量約52%。鉀長(zhǎng)石和石英斑晶通常被熔蝕呈蠕蟲狀、港灣狀和渾圓狀,在邊部還可見窄的熔蝕反應(yīng)邊(圖2d),熔蝕現(xiàn)象指示麻坪花崗斑巖形成于淺成環(huán)境。斑晶周圍??梢娾涢L(zhǎng)石和石英形成的顯微文象結(jié)構(gòu),基質(zhì)呈顯微晶質(zhì)結(jié)構(gòu)和球粒結(jié)構(gòu)(圖2f),可能與近地表快速冷凝的條件下固結(jié)有關(guān)。此外,還有少量黑云母(2%)(圖2e),其蝕變較為強(qiáng)烈,部分完全蝕變?yōu)榻佋颇浮2糠肘涢L(zhǎng)石發(fā)生絹云母化(圖2e,f)、碳酸鹽化、泥化。副礦物有磁鐵礦、鋯石、電氣石等,含量約3%。
鋯石用常規(guī)方法分選,雙目鏡下挑純,選取晶形較好、具代表性的鋯石粘貼在環(huán)氧樹脂表面,拋光后將待測(cè)鋯石進(jìn)行陰極發(fā)光(CL)圖像分析。鋯石的制靶和CL 照相在中國(guó)科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。鋯石U-Pb 測(cè)年分析在合肥工業(yè)大學(xué)資源與環(huán)境工程學(xué)院完成,采用的儀器型號(hào)為Agilent 7500a,激光剝蝕系統(tǒng)為Coherent Inc 公司生產(chǎn)的ComPex102 ArF 準(zhǔn)分子激光剝蝕系統(tǒng)。分析時(shí)激光束斑直徑為32μm,激光脈沖重復(fù)頻率為6Hz。實(shí)驗(yàn)原理和詳細(xì)的測(cè)試方法見閆峻等(2012)。
鋯石U-Pb 年齡測(cè)定后,再在原位用LA-MC-ICP-MS 進(jìn)行Lu-Hf 同位素分析,測(cè)試在中國(guó)科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。Lu-Hf 同位素測(cè)試使用Thermo 公司制造的Neptune 型多接收電感耦合等離子體質(zhì)譜(LA-MC-ICP-MS),加載德國(guó)Lamda Physik 公司制造的Geolas 193nm 準(zhǔn)分子激光取樣系統(tǒng)。激光束直徑為32μm,剝蝕頻率為8Hz,能量密度為15 ~20J/cm2,剝蝕時(shí)間約60s。詳細(xì)的分析程序見Wu et al.(2006)。
全巖的主微量元素分別在中國(guó)科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室Rigaku ZSX 100e 型熒光光譜儀(XRF)、PE Elan 6000 型電感耦合等離子體-質(zhì)譜儀(ICP-MS)上完成。詳細(xì)分析見劉穎等(1996)。
圖2 麻坪花崗斑巖手標(biāo)本(a-c)及顯微(d-f)照片F(xiàn)ig.2 Hand specimens (a-c)and micrographs (d-f)of the Maping granite porphyry
本文對(duì)麻坪巖體中的2 個(gè)花崗斑巖樣品進(jìn)行了LAICPMS 鋯石U-Pb 定年,分別是13MP-6(N 34°09'22.77″,E 110°02'40.71″,圖1c)和13MP-9(N 34°09'04.77″,E 110°02'01.55″)。鋯石多為無色透明-半透明,呈長(zhǎng)柱狀或橢圓狀,自形程度較好,粒徑在70 ~200μm 之間,長(zhǎng)寬比值范圍為1∶1 ~2∶1,振蕩環(huán)帶結(jié)構(gòu)明顯(圖3)。鋯石的Th/U 比值為0.6 ~1.4,與典型的巖漿鋯石特征相似(Belousova et al.,2002)。LA-ICPMS 鋯石U-Pb 測(cè)年分析結(jié)果見表1。
其中,樣品13MP-6 進(jìn)行了28 個(gè)測(cè)點(diǎn)的分析,207Pb/206Pb年齡集中于1502 ~1702Ma,在諧和線圖上(圖4a),樣品的28 個(gè)測(cè)點(diǎn)均分布在諧和線上或其附近,交點(diǎn)年齡為1607 ±32Ma(MSWD=0.28),加權(quán)平均年齡為1600 ±24Ma(MSWD=0.65)。樣品13MP-9 進(jìn)行了22 個(gè)測(cè)點(diǎn)的分析,207Pb/206Pb年齡變化于1461 ~1694Ma 之間,各點(diǎn)均位于諧和線上或者靠近諧和線,給出的交點(diǎn)年齡為1597 ± 67Ma(MSWD =0.46),與加權(quán)平均年齡1583 ±28Ma 一致(圖4b)。兩者在誤差范圍內(nèi)一致,代表了巖體的形成時(shí)代(~1600Ma)。該年齡與柳曉艷(2011)獲得的1598 ±9Ma(SHRIMP 鋯石U-Pb年齡,樣品號(hào)07-5-1)正長(zhǎng)花崗巖的形成年齡也一致,明顯不同于前人獲得的容易受到后期熱擾動(dòng)的Rr-Sr 等時(shí)線年齡(約524Ma,地礦部陜西地勘局,1998)。
通過公式(8),(9)及全局最優(yōu)控制參數(shù)C*=1,2,...,10)計(jì)算ID(i=1,2,...,10,j=80)與SD(DEy(0)D(0))(y=1,2,...,10)。計(jì)算結(jié)果表8所示。
麻坪花崗斑巖的主-微量元素含量列于表2。所有樣品具有高硅(SiO2=70.51% ~75.69%)、富堿(K2O +Na2O =9.00% ~10.27%)、高K2O/Na2O 比值(>23)以及低MgO(0.24% ~0.58%)、CaO(0.06% ~0.12%)、P2O5(0.04% ~0.08%)和MnO(0.01%)的特征。在TAS 圖解中落于花崗巖區(qū)域(圖5a)。它們高的A/NK(>1.13)和A/CNK(>1.11)值,落在強(qiáng)過鋁質(zhì)花崗巖的區(qū)域(圖5b)。在Harker 圖解中,SiO2與Fe2O3T顯示明顯的負(fù)相關(guān)性,而與Al2O3、MgO 和TiO2呈現(xiàn)弱的負(fù)相關(guān)(圖6)。
圖3 麻坪巖體鋯石陰極發(fā)光圖像Fig.3 Zircon cathodoluminescence images from the Maping granite porphyry
圖4 麻坪花崗斑巖鋯石LA-ICP-MS U-Pb 諧和年齡圖Fig.4 U-Pb concordia diagrams of zircons from the Maping granite porphyry
圖5 麻坪花崗斑巖TAS 圖(a,據(jù)Wilson,1989)和ACNK-ANK 圖(b,據(jù)Maniar and Piccoli,1989)Fig.5 Classification plots of SiO2 vs. (Na2 O +K2 O)(a,after Wilson,1989)and A/CNK vs. A/NK (b,after Maniar and Piccoli,1989)for the Maping granite porphyry
花崗斑巖稀土元素總量(∑REE)較高,為465.3 ×10-6~848.7 ×10-6(表2)。在球粒隕石標(biāo)準(zhǔn)化稀土分布模式圖上,所有樣品顯示出相似的平滑右傾型特征,輕重稀土分異明顯((La/Yb)CN=13.2 ~17.68),具有弱的重稀土的虧損((Gd/Yb)CN=1.43 ~3.05)以及明顯的Eu 負(fù)異常(δEu =0.33 ~0.55),與正長(zhǎng)花崗巖的曲線特征一致(柳曉艷,2011),而整體位于龍王 花崗巖的稀土配分模式圖下方(圖7a)。在微量元素蛛網(wǎng)圖上,所有花崗斑巖樣品顯示出明顯的大離子親石元素(LILE)的富集以及Ba、Sr、Ti、Nb、Ta、Zr和Hf 等元素的虧損(圖7b)。
鋯石Lu-Hf 同位素組成列于表3。麻坪花崗斑巖的鋯石顯示變化范圍較大的176Hf/177Hf 初始比值(0.281334 ~0.281615),平均值為0.281537;對(duì)應(yīng)的εHf(t=1600Ma)值介于-16.7 ~-6.9,主要集中在-11.1 ~-6.9。二階段模式年齡(tCDM)主要集中于2767 ~3381Ma。在εHf(t)-t 圖中(圖8),樣品的原位Hf 同位素分析數(shù)據(jù)點(diǎn)均投影于球粒隕石Hf同位素演化線之下。
表1 麻坪巖體鋯石LA-ICP-MS 分析結(jié)果Table 1 LA-ICP-MS zircon U-Pb results for the Maping granite porphyry
表2 麻坪巖體主量(wt%)和微量元素(×10 -6)分析結(jié)果Table 2 Major (wt%)and trace element concentrations (×10 -6)of the Maping pluton
表3 麻坪巖體鋯石Hf 同位素組成Table 3 LA-MC-ICP-MS zircon Hf isotopic compositions of the Maping granite porphyry
圖6 麻坪花崗斑巖Harker 圖解Fig.6 Harker variation diagrams for the Maping granite porphyry
圖7 麻坪花崗斑巖球粒隕石標(biāo)準(zhǔn)化稀土元素配分圖(a)和原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(b)(標(biāo)準(zhǔn)化值得據(jù)Sun and McDonough,1989)Fig.7 Chondrite-normalized REE patterns (a)and primitive mantle-normalized spidergrams (b)of the Maping granite porphyry(normalized values after Sun and McDonough,1989)
在地球化學(xué)特征上,麻坪花崗斑巖具明顯高的Ga/Al 比值和Zr+Nb+Ce+Y 含量(圖9),與典型的A 型花崗巖的特征一致(Collins et al.,1982;Whalen et al.,1987;Frost and Frost,2011)。其較高的SiO2和K2O +Na2O、低CaO、MgO、P2O5、TiO2和MnO,以及富集K、Rb 等大離子親石元素和虧損Nb、Ta、Zr 和Hf 等高場(chǎng)強(qiáng)元素和Eu、Sr、Ti 等元素的特征也與A 型花崗巖相似。然而,它們較高的A/CNK 值(>1.11),顯示為強(qiáng)過鋁質(zhì)花崗巖的特征,類似S 型花崗巖(Martínez et al.,2014)。與典型的S 型花崗巖(一般具有高達(dá)14%的Al2O3和高含量的P2O5,還含鎂鐵質(zhì)巖漿巖包體(MMEs),King et al.,2001;Bonin,2004;Chen et al.,2014)相比,麻坪花崗斑巖的Al2O3(12% ~13.5%)和P2O5(<0.08%)均相對(duì)較低,并且結(jié)合野外地質(zhì)和巖相學(xué)觀察,未發(fā)現(xiàn)鎂鐵質(zhì)包體。更為重要的是,其高的鋯石飽和溫度(Watson and Harrison,1983)870 ~953℃(平均值為915℃),與A 型花崗巖形成溫度非常相似(King et al.,1997;Huang et al.,2011),而明顯高于S 型花崗巖的形成溫度(Cai et al.,2011;Martínez et al.,2014)。因此,這些花崗斑巖可歸結(jié)為過鋁質(zhì)A 型花崗巖。而事實(shí)上,該類A 型花崗巖在我國(guó)華北南緣的魯山地區(qū)(Zhou et al.,2014)、塔里木克拉通北緣的庫魯克塔格地區(qū)(Long et al.,2012)以及華南地區(qū)(Huang et al.,2011;Zhao et al.,2008)均有報(bào)道,說明具有過鋁質(zhì)特征的A 型花崗巖并不少見。
目前關(guān)于A 型花崗巖的成因主要有以下四種模型:①幔源堿性玄武巖的分異(Frost and Frost,1997;Mushkin et al.,2003);②繼I 型或者S 型巖漿分異抽取之后的富含F(xiàn)/Cl 的下地殼麻粒巖殘留體的部分熔融(Collins et al.,1982;Whalen et al.,1987;King et al.,1997,2001);③殼-幔物質(zhì)的混合作用(Kerr and Fryer,1993;Mingram et al.,2000;Yang et al.,2006);④結(jié)晶基底或者變質(zhì)沉積巖的部分熔融,并可能伴隨有基性巖漿的底侵作用(R?m? et al.,1995;Huang et al.,2011;Long et al.,2012;Zhou et al.,2014)。其爭(zhēng)議的焦點(diǎn)在于這類花崗巖是直接來自地幔玄武巖的分異,還是僅僅來自地殼、或者同時(shí)有地幔物質(zhì)的加入(Wu et al.,2002;Yang et al.,2006;Bonin,2007)。
圖8 麻坪花崗斑巖εHf(t)-t 圖解麻坪正長(zhǎng)花崗巖數(shù)據(jù)引自柳曉艷(2011),龍王 花崗巖數(shù)據(jù)引自包志偉等(2009)、Wang et al. (2012),密云環(huán)斑花崗巖數(shù)據(jù)引自楊進(jìn)輝等(2005),太華群數(shù)據(jù)引自Liu et al. (2009)、Huang et al. (2010,2012,2013)、Xu et al. (2009)、第五春榮等(2007,2010)、時(shí)毓等(2011)、Diwu et al. (2014)Fig. 8 εHf (t)versus t diagram of the Maping granite porphyryMaping syenogranite is from Liu (2011),Longwangzhuang granites are from Bao et al. (2009)and Wang et al. (2012),Miyun rapakivi granites are from Yang et al. (2005),Taihua group are form Liu et al. (2009),Huang et al. (2010,2012,2013),Xu et al. (2009),Shi et al. (2011)and Diwu et al. (2007,2010,2014)
麻坪A 型花崗巖具有明顯低的εHf(t)值和較大的二階段模式年齡(tCDM),表明這些A 型花崗巖來源于古老的地殼??紤]到麻坪A 型花崗巖具有高K、Si、K/Na 比值以及明顯的Sr 負(fù)異常的特征,與繼I 型或者S 型巖漿分異抽取之后的富含F(xiàn)/Cl 的下地殼麻粒巖殘留體的部分熔融形成的巖漿具有低K、Si、K/Na 比值以及無Sr 的負(fù)異常明顯不同(Creaser et al.,1991;Frost and Frost,1997),很顯然,具有該特征的下地殼殘留體的部分熔融很難形成麻坪A 型花崗巖。
在εHf(t)-t 圖解中(圖8),麻坪花崗斑巖有較低的εHf(t)值(-16.7 ~-6.9)=2767 ~3381Ma,說明源區(qū)物質(zhì)可能形成于2767 ~3381Ma。與華北克拉通其他地區(qū)同時(shí)期富集地幔來源的A 型花崗巖相比,如北緣的密云環(huán)斑花崗巖(~1683Ma,εHf(t)= -7.7 ~-3.2,=2.4 ~2.6Ga;R?m? et al.,1995;楊進(jìn)輝等,2005;高維等,2008)和南緣的龍王 花崗巖(~1602Ma,εHf(t)= -1.11 ~-5.26,=2.6 ~2.8Ga;包志偉等,2009;Wang et al.,2012),麻坪花崗斑巖具有明顯低的εHf(t)值(圖8)和大的tCDM值,說明麻坪花崗斑巖的源區(qū)與同期的密云環(huán)斑花崗巖和龍王 花崗巖的源區(qū)不完全相同。
根據(jù)已有的研究數(shù)據(jù)顯示,華北克拉通基底巖漿鋯石的年齡峰值主要集中于~2.5Ga 和2.8 ~2.7Ga,其中~2.5Ga巖漿活動(dòng)廣泛存在于整個(gè)華北克拉通,而大面積2.8 ~2.7Ga的巖石年齡記錄主要發(fā)現(xiàn)在河南魯山、山東西部和膠東地區(qū),代表了新太古代新生地殼的形成和少量古老地殼物質(zhì)的再造(Liu et al.,2009;第五春榮等,2010;Huang et al.,2010,2012;Zhang et al.,2013)。華北克拉通南緣?mèng)斏降貐^(qū)發(fā)育2.8 ~2.7Ga 的TTG 質(zhì)片麻巖和斜長(zhǎng)角閃巖,且在斜長(zhǎng)角閃巖中存在2.9Ga 甚至3.1Ga 的殘留鋯石(Liu et al.,2009;第五春榮等,2010),同時(shí)在熊耳山地區(qū)和藍(lán)田-小秦嶺地區(qū)分別發(fā)育有2.5 ~2.0Ga、2.5 ~1.9Ga 的太華群物質(zhì)(圖8;第五春榮等,2007;Xu et al.,2009;時(shí)毓等,2011;Huang et al.,2012,2013;Diwu et al.,2014),可能為麻坪花崗斑巖的形成提供了物質(zhì)基礎(chǔ)。此外,根據(jù)太華群變質(zhì)巖中鋯石Hf 同位素?cái)?shù)據(jù)(Liu et al.,2009;Huang et al.,2010,2012,2013;Xu et al.,2009;第五春榮等,2007,2010;時(shí)毓等,2011;Diwu et al.,2014),其εHf(t =1600Ma)的變化范圍為-30 ~-7.18,包含麻坪巖體的同位素?cái)?shù)據(jù)范圍,表明麻坪A 型花崗巖來自太華群的部分熔融(圖8)。
麻坪巖體相對(duì)較高的形成溫度(>870℃)表明其形成與玄武質(zhì)巖漿的底侵或者地幔柱活動(dòng)有關(guān)(Frost and Frost,1997;King et al.,1997)。此外,巖石中Al2O3、MgO、Fe2O3T和TiO2隨著SiO2含量的增加而減小(圖6),而K2O 隨之而增大(圖略),同時(shí)還有Eu、Sr 和Ti 負(fù)異常(圖7a,b),表明這些強(qiáng)過鋁質(zhì)巖漿在演化過程中經(jīng)歷了鉀長(zhǎng)石、斜長(zhǎng)石、鐵鈦氧化物等的分離結(jié)晶作用。因此,麻坪巖體是由太華群高溫條件下部分熔融形成的,這與Eby (1992)的A2型花崗巖一致(圖10),同時(shí)基性巖漿的底侵作用為之提供了相應(yīng)的熱源。
目前多數(shù)學(xué)者認(rèn)為,華北克拉通在~1.8Ga 完成了克拉通化,此后未再遭受大規(guī)模的變質(zhì)變形(Zhai and Liu,2003;Zhai and Santosh,2011;Zhai et al.,2011;翟明國(guó)等,2014)。但是對(duì)于之后廣泛發(fā)育的巖漿-沉積活動(dòng),包括多期次A 型花崗巖、堿性巖和基性巖墻(R?m? et al.,1995;趙太平等,2004;楊進(jìn)輝等,2005;任康緒等,2006;Zhang et al.,2007;高維等,2008;包志偉等,2009;Jiang et al.,2011;李懷坤等,2011;Wang et al.,2012,2013),以及熊耳群和長(zhǎng)城系火山-沉積建造(陸松年等,2003;李懷坤等,1995;Zhao et al.,2002;趙太平等,2004;Lu et al.,2008),其構(gòu)造背景一直存在爭(zhēng)議。其爭(zhēng)議的焦點(diǎn)在于是否是地幔柱(Zhai and Liu,2003)、碰撞后(Wang et al.,2004;Zhao and Zhou,2009;Zhang et al.,2013)或者大陸裂谷(Lu et al.,2002;Hou et al.,2008)作用的產(chǎn)物。
圖9 A 型花崗巖判別圖解(據(jù)Whalen et al.,1987)Fig.9 Discrimination diagrams of A-type granite (after Whalen et al.,1987)
圖10 麻坪巖體Rb/100-Y/(44 ×Tb)-Nb/(16 ×Ta)(a)和Y-Nb-3Ga(b)三角圖解A1型代表來源于幔源熔體的分離結(jié)晶;A2 型代表來源于地殼部分熔融(據(jù)Eby,1992)Fig.10 Triangular plots of Rb/100-Y/(44 ×Tb)-Nb/(16 ×Ta)(a)and Y-Nb-3Ga (b)of the Maping A-type granitesThe A1-field is interpreted to indicate derivation via fractional crystallization of mantle-derived melts,whereas the A2-field is interpreted to indicate derivation through partial melting of pre-existing crust (after Eby,1992)
圖11 麻坪花崗斑巖Ta-Yb(a,Pearce et al.,1984)和Rb-(Yb+Ta)(b,據(jù)Pearce,1986)構(gòu)造圖解龍王 花崗巖數(shù)據(jù)引自包志偉等(2009)和Wang et al.(2012).WPG-板內(nèi)花崗巖;ORG-洋脊花崗巖;VAG-火山弧花崗巖;syn -COLG and post-COLG-同碰撞/碰撞后花崗巖Fig.11 Discrimination diagrams of Ta-Yb (a,after Pearce et al.,1984)and Rb-(Yb+Ta)(b,after Pearce,1986)for tectonic settings of the Maping granitic porphyryField for Longwangzhuang granites is from Bao et al. (2009)and Wang et al. (2012). WPG:Within-Plate Granites;ORG:Ocean-Ridge Granites;VAG:Volcanic Arc Granites;syn-COLG and post-COLG:syn-and post-collisional Granites
雖然如此,華北克拉通~1.68Ga 斜長(zhǎng)巖-環(huán)斑花崗巖-正長(zhǎng)巖等非造山巖漿組合的出現(xiàn),表明此時(shí)的動(dòng)力學(xué)背景是非造山伸展環(huán)境(R?m? et al.,1995;楊進(jìn)輝等,2005;高維等,2008;包志偉等,2009)。此外,在華北克拉通南緣沿著陜西藍(lán)田張家坪A 型花崗巖體(~1.52Ga,數(shù)據(jù)未發(fā)表)經(jīng)洛南麻坪花崗斑巖(~1.6Ga,本文)到河南欒川龍王 花崗巖體(~1.6Ga;包志偉等,2009;Wang et al.,2012)分布著一條A 型花崗巖帶(圖1b),說明伸展背景下巖漿活動(dòng)的發(fā)育。同時(shí),構(gòu)造環(huán)境判別圖解也顯示,~1.6Ga 龍王 A 型花崗巖都落在了板內(nèi)的構(gòu)造背景(圖11)。雖然麻坪A 型花崗巖落入板內(nèi)和碰撞后環(huán)境的重疊區(qū)域,但是結(jié)合上述的區(qū)域地質(zhì)背景資料,我們認(rèn)為麻坪巖體仍形成于非造山的板內(nèi)伸展環(huán)境。由此看來,華北克拉通中元古代裂谷作用導(dǎo)致地幔減壓熔融形成基性巖漿,而基性巖漿的底侵作用提供了熱源致使地殼發(fā)生部分熔融從而形成麻坪A 型花崗質(zhì)巖漿。
目前普遍認(rèn)為Columbia 超大陸是由2.1 ~1.8Ga 全球性碰撞造山帶拼合了各相關(guān)的克拉通板塊而成的,最終的拼合時(shí)間為~1.8Ga(Wilde et al.,2002;Zhao et al.,2002,2009),其裂解發(fā)生在大約1.6Ga 或者稍微早一點(diǎn),而所有克拉通板塊中均發(fā)育的1.35 ~1.21Ga 基性巖墻群記錄了其裂解的最終時(shí)間(Zhao et al.,2002,2009;Hou et al.,2008)。華北克拉通的拼合與古元古代末期的“呂梁運(yùn)動(dòng)”有關(guān)(趙宗溥,1993;白瑾等,1993),區(qū)域結(jié)晶基底變質(zhì)年代學(xué)資料表明其時(shí)代上不晚于1.8Ga(Zhai and Liu,2003;Zhai and Santosh,2011;Zhai et al.,2011;翟明國(guó)等,2014),表明華北克拉通可能為Columbia 超大陸的一個(gè)組成部分。華北克拉通1.68 ~1.21Ga 發(fā)生裂解的巖漿活動(dòng)產(chǎn)物也較為明顯(R?m? et al.,1995;楊進(jìn)輝等,2005;任康緒等,2006;高維等,2008;包志偉等,2009;Zhang et al.,2007,2012;Jiang et al.,2011;李懷坤等,2011;Wang et al.,2012,2013;Peng et al.,2013)。麻坪A 型花崗巖形成于1600Ma,與Columbia 超大陸開始發(fā)生裂解的時(shí)間一致,可能代表Columbia 超大陸在華北克拉通開始裂解的時(shí)間。同時(shí),1600Ma A 型花崗巖與同期的基性巖墻群、雙峰式火山巖和堿性巖組合一起較好地指示陸殼減薄和破裂的地質(zhì)事件(Lu et al.,2002;陸松年等,2003),并為Columbia 超大陸的裂解提供新的證據(jù)(翟明國(guó)和彭澎,2007;Zhao and Zhou,2009)。
(1)華北克拉通南緣麻坪巖體花崗斑巖為過鋁質(zhì)A 型花崗巖。
(2)麻坪巖體的形成時(shí)代為1600Ma。
(3)麻坪花崗斑巖的巖石地球化學(xué)特征和鋯石Hf 同位素組成表明它們來自太華群高溫條件下部分熔融,且與基性巖漿底侵作用有關(guān)。
(4)麻坪巖體形成于板內(nèi)裂谷環(huán)境,其形成可能與Columbia 超大陸的裂解有關(guān)。
致謝 野外工作過程中得到了中國(guó)科學(xué)院地質(zhì)與地球物理研究所周艷艷博士、中國(guó)科學(xué)院廣州地球化學(xué)研究所孫乾迎碩士的幫助;審稿人張成立教授、趙新福教授提出許多寶貴意見。在此對(duì)他們表示衷心感謝!
Bai J,Huang GX,Dai FY and Wu CH. 1993. The Precambrian Crustal Evolution of China. Beijing:Geological Publishing House,199 -203 (in Chinese)
Bao ZW,Wang Q,Zi F,Tang GJ,Du FJ and Bai GD. 2009.Geochemistry of the Paleoproterozoic Longwangzhuang A-type granites on the southern margin of the North China Craton:Petrogenesis and tectonic implications. Geochimica,38(6):509 -522 (in Chinese with English abstract)
Belousova EA,Griffin WL,O’Reilly SY and Fisher NI. 2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology,143(5):602-622
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett.,148(1 -2):243 -258
Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting,mantle and crustal,sources?A review. Lithos,78(1 -2):1 -24
Bonin B. 2007. A-type granites and related rocks:Evolution of a concept,problems and prospects. Lithos,97(1 -2):1 -29
Cai KD,Sun M,Yuan C,Zhao GC,Xiao WJ,Long XP and Wu FY.2011. Geochronology,petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai,NW China. Lithos,127(1 -2):261 -281
Chen YX,Song SG,Niu YL and Wei CJ. 2014. Melting of continental crust during subduction initiation:A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochimica et Cosmochimica Acta,132:311 -336
Collins WJ,Beams SD,White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol.,80(2):189 -200
Creaser RA,Price RC and Wormald RJ. 1991. A-type granites revisited:Assessment of a residual-source model. Geology,19(2):163 -166
Diwu CR,Sun Y,Lin CL,Liu XM and Wang HL. 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan Province,China. Acta Petrologica Sinica,23(2):253 -262 (in Chinese with English abstract)
Diwu CR,Sun Y,Lin CL and Wang HL. 2010. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua Complex on the southern margin of the North China Craton. Chinese Sci. Bull.,55(23):2557 -2571
Diwu CR,Sun Y,Zhao Y and Lai SC. 2014. Early Paleoproterozoic(2.45 ~2.20Ga)magmatic activity during the period of global magmatic shutdown:Implications for the crustal evolution of the southern North China Craton. Precambrian Research,255:627-640
Eby GN. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology,20(7):641 -644
Frost CD and Frost BR. 1997. Reduced rapakivi-type granites:The tholeiite connection. Geology,25(7):647 -650
Frost CD,Ramo OT and Dall’Agnol R. 2007. IGCP project 510:A-type granites and related rocks through time. Lithos,97(1 - 2):Vii-Xiii
Frost CD and Frost BR. 2011. On ferroan (A-type)granitoids:Their compositional variability and modes of origin. Journal of Petrology,52(1):39 -53
Gao SL,Lin JY and Lu YJ. 2013. Formation epoch and its geological implications of Paleoproterozoic A-type granite in Shizuizi of Jingyuan County,Ningxia Province. Acta Petrologica Sinica,29(8):2676 -2684 (in Chinese with English abstract)
Gao W,Zhang CH,Gao LZ,Shi XY,Liu YM and Song B. 2008. Zircon SHRIMP U-Pb age of rapakivi granite in Miyun,Beijing,China,and its tectono-stratigraphic implications. Geological Bulletin of China,27(6):793 -798 (in Chinese with English abstract)
Griffin WL,Pearson NJ,Belousova E,Jackson SE,O’Reilly SY,Van Achterberg E and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta,64(1):133 -147
Haapala I and R?m? OT. 1992. Tectonic setting and origin of the Proterozoic rapakivi granites of the southeastern Fennoscandia.Trans. Roy. Soc. Edinburgh. Earth Sci.,83(1 -2):165 -171
Hou GT,Santosh M,Qian XL,Lister GS and Li JH. 2008.Configuration of the Late Paleoproterozoic supercontinent Columbia:Insights from radiating mafic dyke swarms. Gondwana Research,14(3):395 -409
Hu GH,Hu JL,Chen W and Zhao TP. 2010. Geochemistry and tectonic setting of the 1. 78Ga mafic dykes in the Mt. Zhongtiao and Mt.Song areas,the southern margin of the North China Craton. Acta Petrologica Sinica,26(5):1563 -1576 (in Chinese with English abstract)
Hu GH,Zhao TP and Zhou YY. 2014. Depositional age,provenance and tectonic setting of the Proterozoic Ruyang Group,southern margin of the North China Craton. Precambrian Research,246:296 -318
Huang HQ,Li XH,Li WX and Li ZX. 2011. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks,southern China. Geology,39(10):903 -906
Huang XL,Niu YL,Xu YG,Yang QJ and Zhong JW. 2010.Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton:Implications for Late Archean crustal accretion. Precambrian Research,182(1 -2):43-56
Huang XL,Wilde SA,Yang QJ and Zhong JW. 2012. Geochronology and petrogenesis of gray gneisses from the Taihua Complex at Xiong’er in the southern segment of the Trans-North China Orogen:Implications for tectonic transformation in the Early Paleoproterozoic.Lithos,134 -135:236 -252
Huang XL,Wilde SA and Zhong JW. 2013. Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean-Proterozoic boundary. Precambrian Research,233:337-357
Jiang N,Guo JH and Zhai MG. 2011. Nature and origin of the Wenquan granite:Implications for the provenance of Proterozoic A-type granites in the North China craton. Journal of Asian Earth Sciences,42(1 -2):76 -82
Kerr A and Fryer BJ. 1993. Nd isotopic evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador,Canada. Chem. Geol.,104:39 -60
King PL, White AJR, Chappell BW and Allen CM. 1997.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt,southeastern Australia. J. Petrol.,38(3):371-391
King PL,Chappell BW,Allen CM and White AJR. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences,48(4):501 -514
Li HK,Li HM and Lu SN. 1995. Grain zircon U-Pb ages for volcanic rocks from Tuanshanzi Formation of Changcheng system and their geological implications. Geochimica,24(1):43 -48 (in Chinese with English abstract)
Li HK,Su WB,Zhou HY,Geng JZ,Xiang ZQ,Cui YR,Liu WC and Lu SN. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670Ma:Constraints from zircon U-Pb LA-MC-ICPMS dating of a graniteporphyry dike in Miyun County,Beijing. Earth Science Frontiers,18(3):108 -120 (in Chinese with English abstract)
Liu DY,Wilde SA,Wan YS,Wang SY,Valley JW,Kita N,Dong CY,Xie HQ,Yang CX,Zhang YX and Gao LZ. 2009. Combined U-Pb,hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chemical Geology,261(1-2):140 -154
Liu XY. 2011. Chronological, petrological and geochemical characteristics of the Paleo-Mesoproterozoic alkali-rich intrusive rocks along the southern part of the North China Craton. Master Degree Thesis. Beijing:Chinese Academy of Geological Sciences (in Chinese with English summary)
Liu Y, Liu HC and Li XH. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS.Geochimica,25(6):552 -558 (in Chinese with English abstract)
Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs,11(7):468
Long XP,Sun M,Yuan C,Kr?ner A and Hu AQ. 2012. Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic granite in the northern Tarim Craton,NW China:Implications for the reconstruction of the Columbia supercontinent. Precambrian Research,222 -223:474 -487
Lu SN,Yang CL,Li HK and Li HM. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research,5(1):123 -131
Lu SN,Li HK,Li HM,Song B,Wang SY,Zhou HY and Chen ZH.2003. U-Pb isotopic ages and their significance of alkaline granite in the southern margin of the North China Craton. Geological Bulletin of China,22(10):762 -768 (in Chinese with English abstract)
Lu SN,Zhao GC,Wang HC and Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton:A review. Precambrian Research,160(1 -2):77 -93
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids.Geological Society of America Bulletin,101:635 - 643
Martínez EM,Villaseca C,Orejana D,Pérez-Soba C,Belousova E and Andersen T. 2014. Tracing magma sources of three different S-type peraluminous granitoid series by in situ U-Pb geochronology and Hf isotope zircon composition:The Variscan Montes de Toledo batholith(central Spain). Lithos,200 -201:273 -298
Miller CF,McDowell SM and Mapes RW. 2003. Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance. Geology,31(6):529 -532
Mingram B,Trumbull RB,Littman S and Gerstenberger H. 2000. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex,Namibia:Evidence for mixing of crust and mantle-derived components. Lithos,54(1 -2):1 -22
Montel JM and Vielzeuf D. 1997. Partial melting of metagreywackes,PartⅡ. Compositions of minerals and melts. Contributions to Mineralogy and Petrology,128(2 -3):176 -196
Mushkin A,Navon O,Halicz L,Hartmann G and Stein M. 2003. The petrogenesis of A-type magmas from the Amram Massif,southern Israel. J. Petrol.,44(5):815 -832
Pati?o Douce AE and Harris N. 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology,39(4):689 -710
Pearce JA, Harris NBW and Tindle AG. 1984. Trace-element discrimination diagrams for the tectonic interpretation of graniticrocks. Journal of Petrology,25(4):956 -983
Pearce JA. 1996. Sources and settings of granitic rocks. Episodes,19(4):120 -125
Peng P,Zhai MG,Zhang HF,Zhao TP and Ni ZY. 2004. Geochemistry and geological significance of the 1.8Ga mafic dyke swarms in the North China Craton:An example from the juncture of Shanxi,Hebei and Inner Mongolia. Acta Petrologica Sinica,20(3):439 -456 (in Chinese with English abstract)
Peng P,Zhai MG,Zhang HF and Guo JH. 2005. Geochronological constraints on the Paleoproterozoic evolution of the North China craton:SHRIMP zircon ages of different types of mafic dikes.International Geology Review,47(5):492 -508
Peng P,Liu F,Zhai MG and Guo JH. 2012. Age of the Miyun dyke swarm:Constraints on the maximum depositional age of the Changcheng System. Chinese Sci. Bull.,57(1):105 -110
Peng TP,Wilde SA,F(xiàn)an WM,Peng BX and Mao YS. 2013.Mesoproterozoic high Fe-Ti mafic magmatism in western Shandong,North China Craton:Petrogenesis and implications for the final breakup of the Columbia supercontinent. Precambrian Research,235:190 -207
R?m? OT,Haapala I,Vaasjoki M,Yu JH and Fu HQ. 1995. 1700Ma Shachang complex,Northeast China:Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology,23(9):815 -818
Ren KX,Yan GH,Cai JH,Mu BL,Li FT,Wang YB and Chu ZY.2006. Chronology and geological implication of the Paleo-Mesoproterozoic alkaline-rich intrusions belt from the northern part in the North China Craton. Acta Petrologica Sinica,22(2):377 -386(in Chinese with English abstract)
Shi Y,Yu JH,Xu XS,Tang HF,Qiu JS and Chen LH. 2011. U-Pb ages and Hf isotope compositions of zircons of Taihua Group in Xiaoqinling area,Shaanxi Province. Acta Petrologica Sinica,27(10):3095 -3108 (in Chinese with English abstract)
S?derlund U,Patchett PJ,Vervoort JD and Lsachsen CE. 2004. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci.Lett.,219(3 -4):311 -324
Sun SS and McDonough WF. 1989. Chemical and isotopic systematic of oceanic basalts:Implications for mantle composition and process.In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publication,42(1):313 -345
Sylvester PJ. 1998. Post-collisional strongly peraluminous granites.Lithos,45(1 -4):29 -44
Vervoort JD, Patchett PJ, Gehrels GE and Nutman AP. 1996.Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature,379(6566):624 -627
Wang XL,Jiang SY,Dai BZ and Kern J. 2012. Lithospheric thinning and reworking of Late Archean juvenile crust on the southern margin of the North China Craton:Evidence from the Longwangzhuang Paleoproterozoic A-type granites and their surrounding Cretaceous adakite-like granites. Geological Journal,48(5):498 -515
Wang YJ,F(xiàn)an WM,Zhang YH,Guo F,Zhang HF and Peng TP. 2004.Geochemical,40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800Ma event of the North China Craton. Precambrian Research,135(1 -2):55 -77
Wang YJ,Zhao GC,Cawood PA,F(xiàn)an WM,Peng TP and Sun LH.2008. Geochemistry of Paleoproterozoic (1770Ma)mafic dikes from the Trans-North China Orogen and tectonic implications. Journal of Asian Earth Sciences,33(1 -2):61 -77
Wang W,Liu SW,Bai X,Li QG,Yang PT,Zhao Y,Zhang SH and Guo RR. 2013. Geochemistry and zircon U-Pb-Hf isotopes of the Late Paleoproterozoic Jianping diorite-monzonite-syenite suite of the North China Craton:Implications for petrogenesis and geodynamic setting. Lithos,162 -163:175 -194
Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma type. Earth Planet. Sci. Lett.,64(2):295 -304
Whalen JB,Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis.Contrib. Miner. Petrol.,95(4):407 -419
Wilde SA,Zhao GC and Sun M. 2002. Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8Ga: Some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research,5(1):85 -94
Wilson M. 1989. Igneous Petrogenesis:A Global Tectonic Approach.Chapman & Hall,London,13 -34
Wu FY,Sun DY,Li H,Jahn BM and Wilde S. 2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis. Chemical Geology,187(1 -2):143 -173
Wu FY,Yang YH,Xie LW,Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology,234(1 -2):105 -126
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on the interpretation of U-Pb age. Chinese Science Bulletin,49(15):1554-1569
Xu XS,Griffin WL,Ma X,O’Reilly SY,He ZY and Zhang CL. 2009.The Taihua group on the southern margin of the North China craton:Further insights from U-Pb ages and Hf isotope compositions of zircons. Mineralogy and Petrology,97(1 -2):43 -59
Yan J,Peng G,Liu JM,Li QZ,Chen ZH,Shi L,Liu XQ and Jiang ZZ.2012. Petrogenesis of granites from Fanchang district,the Lower Yangtze:Zircon geochronology and Hf-O isotopes constrains. Acta Petrologica Sinica,28(10):3209 -3227 (in Chinese with English abstract)
Yang CX,Wang SY,Liu ZH, Lei ZH and Yang CQ. 2008.Mesoarchean-Neoarchean grey gneiss in the Lushan area,Henan Province. Geological Review,54(3):327 -334 (in Chinese with English abstract)
Yang JH,Wu FY,Liu XM and Xie LW. 2005. Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing,China. Acta Petrologica Sinica,21(6):1633-1644 (in Chinese with English abstract)
Yang JH,Wu FY,Chung SL,Wilde SA and Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, Northeast China:Geochemical and Sr-Nd-Hf isotopic evidence. Lithos,89(1 -2):89 -106
Zhai MG and Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China craton:A review. Precambrian Research,122(1 -4):183 -199
Zhai MG and Peng P. 2007. Paleoproterozoic event in the North China Craton. Acta Petrologica Sinica,23(11):2665 -2682 (in Chinese with English abstract)
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research,20(1):6 -25
Zhai MG,Santosh M and Zhang LC. 2011. Precambrian geology and tectonic evolution of the North China Craton. Gondwana Research,20(1):1 -5
Zhai MG,Hu B and Peng P. 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Science Frontiers,21(1):100 -119 (in Chinese with English abstract)
Zhang J,Zhang HF and Lu XX. 2013. Zircon U-Pb age and Lu-Hf isotope constraints on Precambrian evolution of continental crust in the Songshan area, the south-central North China Craton.Precambrian Research,226:1 -20
Zhang SH,Liu SW,Zhao Y,Yang JH,Song B and Liu XM. 2007. The 1.75 ~1.68Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton:Magmatism related to a Paleoproterozoic orogen. Precambrian Research,155(3 -4):287 -312
Zhang SH,Zhao Y and Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton:Implications for magmatism related to breakup of the Columbia supercontinent.Precambrian Research,222 -223:339 -367
Zhao GC,Cawood PA,Wilde SA and Sun M. 2002. Review of global 2.1 ~1.8Ga orogens:Implications for a pre-Rodinia supercontinent.Earth-Science Reviews,59(1 -4):125 -162
Zhao GC,He YH and Sun M. 2009. The Xiong’er volcanic belt at the southern margin of the North China Craton:Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research,16(2):170 -181
Zhao TP,Zhou MF,Zhai MG and Xia B. 2002. Paleoproterozoic riftrelated volcanism of the Xiong’er Group,North China Craton:Implications for the breakup of Columbia. International Geology Review,44(4):336 -351
Zhao TP,Chen FK,Zhai MG and Xia B. 2004. Single zircon U-Pb ages and their geological significance of the Damiao anorthosite complex,Hebei Province,China. Acta Petrologica Sinica,20(3):685 -690(in Chinese with English abstract)
Zhao TP and Zhou MF. 2009. Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton. Journal of Asian Earth Sciences,36(2 -3):183 -195
Zhao XF,Zhou MF,Li JW and Wu FY. 2008. Association of Neoproterozoic A-and I-type granites in South China:Implications for generation of A-type granites in a subduction-related environment. Chemical Geology,257(1 -2):1 -15
Zhao ZP. 1993. Precambrian Crustal Evolution of the Sino-Korean Paraplatform. Beijing:Science Press (in Chinese)
Zhou YY,Zhai MG,Zhao TP,Lan ZW and Sun QY. 2014.Geochronological and geochemical constraints on the petrogenesis of the Early Paleoproterozoic potassic granite in the Lushan area,southern margin of the North China Craton. Journal of Asian Earth Sciences,94:190 -204
附中文參考文獻(xiàn)
白瑾,黃學(xué)光,戴風(fēng)巖,吳昌華. 1993. 中國(guó)前寒武紀(jì)地殼演化. 北京:地質(zhì)出版社,199 -203
包志偉,王強(qiáng),資鋒,唐功建,杜鳳軍,白國(guó)典. 2009. 龍王 A 型花崗巖地球化學(xué)特征及其地球動(dòng)力學(xué)意義. 地球化學(xué),38(6):509 -522
第五春榮,孫勇,林慈鑾,柳小明,王洪亮. 2007. 豫西宜陽地區(qū)TTG 質(zhì)片麻巖鋯石U-Pb 定年和Hf 同位素地質(zhì)學(xué). 巖石學(xué)報(bào),23(2):253 -262
第五春榮,孫勇,林慈鑾,王洪亮. 2010. 河南魯山地區(qū)太華雜巖LA-(MC)-ICPMS 鋯石U-Pb 年代學(xué)及Hf 同位素組成. 科學(xué)通報(bào),55(21):2112 -2123
高山林,林晉炎,陸彥俊. 2013. 寧夏涇源石咀子古元古代A 型花崗巖的形成時(shí)代及其地質(zhì)意義. 巖石學(xué)報(bào),29(8):2676 -2684
高維,張傳恒,高林志,史曉穎,劉耀明,宋彪. 2008. 北京密云環(huán)斑花崗巖的鋯石SHRIMP U-Pb 年齡及其構(gòu)造意義. 地質(zhì)通報(bào),27(6):793 -798
胡國(guó)輝,胡俊良,陳偉,趙太平. 2010. 華北克拉通南緣中條山-嵩山地區(qū)1.78Ga 基性巖墻群的地球化學(xué)特征及構(gòu)造環(huán)境. 巖石學(xué)報(bào),26(5):1563 -1576
李懷坤,李惠民,陸松年. 1995. 長(zhǎng)城系團(tuán)山子組火山巖顆粒鋯石U-Pb 年齡及其地質(zhì)意義. 地球化學(xué),24(1):43 -48
李懷坤,蘇文博,周紅英,耿建珍,相振群,崔玉榮,劉文燦,陸松年. 2011. 華北克拉通北部長(zhǎng)城系底界年齡小于1670Ma:來自北京密云花崗斑巖巖脈鋯石LA-MC-ICPMS U-Pb 年齡的約束.地學(xué)前緣,18(3):108 -120
柳曉艷. 2011. 華北克拉通南緣古-中元古代堿性巖巖石地球化學(xué)與年代學(xué)研究及其地質(zhì)意義. 碩士學(xué)位論文. 北京:中國(guó)地質(zhì)科學(xué)院
劉穎,劉海臣,李獻(xiàn)華. 1996. 用ICP-MS 準(zhǔn)確測(cè)定巖石樣品中40 余種微量元素. 地球化學(xué),25(6):552 -558
陸松年,李懷坤,李惠民,宋彪,王世炎,周紅英,陳志宏. 2003. 華北克拉通南緣龍王 堿性花崗巖U-Pb 年齡及其地質(zhì)意義. 地質(zhì)通報(bào),22(10):762 -768
彭澎,翟明國(guó),張華峰,趙太平,倪志耀. 2004. 華北克拉通1.8Ga鎂鐵質(zhì)巖墻群的地球化學(xué)特征及其地質(zhì)意義:以晉冀蒙交界地區(qū)為例. 巖石學(xué)報(bào),20(3):439 -456
彭澎,劉富,翟明國(guó),郭敬輝. 2011. 密云巖墻群的時(shí)代及其對(duì)長(zhǎng)城系底界年齡的制約. 科學(xué)通報(bào),56(35):2975 -2980
任康緒,閻國(guó)翰,蔡劍輝,牟保磊,李鳳棠,王彥斌,儲(chǔ)著銀. 2006.華北克拉通北部地區(qū)古-中元古代富堿侵入巖年代學(xué)及意義. 巖石學(xué)報(bào),22(2):377 -386
時(shí)毓,于津海,徐夕生,唐紅峰,邱檢生,陳立輝. 2011. 陜西小秦嶺地區(qū)太華群的鋯石U-Pb 年齡和Hf 同位素組成. 巖石學(xué)報(bào),27(10):3095 -3108
閆峻,彭戈,劉建敏,李全忠,陳志洪,史磊,劉曉強(qiáng),姜子朝.2012. 下?lián)P子繁昌地區(qū)花崗巖成因:鋯石年代學(xué)和Hf-O 同位素制約. 巖石學(xué)報(bào),28(10):3209 -3227
楊長(zhǎng)秀,王世炎,劉振宏,雷正化,楊長(zhǎng)青. 2008. 河南魯山地區(qū)中-新太古代灰色片麻巖. 地質(zhì)論評(píng),54(3):327 -334
楊進(jìn)輝,吳福元,柳小明,謝烈文. 2005. 北京密云環(huán)斑花崗巖鋯石U-Pb 年齡和Hf 同位素及其地質(zhì)意義. 巖石學(xué)報(bào),21(6):1633-1644
翟明國(guó),彭澎. 2007. 華北克拉通古元古代構(gòu)造事件. 巖石學(xué)報(bào),23(11):2665 -2682
翟明國(guó),胡波,彭澎,趙太平. 2014. 華北中-新元古代的巖漿作用與多期裂谷事件. 地學(xué)前緣,21(1):100 -119
趙太平,陳福坤,翟明國(guó),夏斌. 2004. 河北大廟斜長(zhǎng)巖雜巖體鋯石U-Pb 年齡及其地質(zhì)意義. 巖石學(xué)報(bào),20(3):685 -690
趙宗溥. 1993. 中朝準(zhǔn)地臺(tái)前寒武紀(jì)地殼演化. 北京:科學(xué)出版社