国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

攀西地區(qū)二疊紀(jì)賦存鈮鉭礦的正長巖脈的成因探討*

2015-03-15 12:07王汾連趙太平王焰
巖石學(xué)報(bào) 2015年6期
關(guān)鍵詞:富礦攀西峨眉山

王汾連 趙太平 王焰

WANG FenLian1,2,ZHAO TaiPing3 and WANG Yan3

1. 國土資源部海底礦產(chǎn)資源重點(diǎn)實(shí)驗(yàn)室,廣州海洋地質(zhì)調(diào)查局,廣州 510075

2. 中山大學(xué)海洋學(xué)院,廣州 510006

3. 中國科學(xué)院廣州地球化學(xué)研究所礦物學(xué)與成礦學(xué)重點(diǎn)實(shí)驗(yàn)室,廣州 510640

1. MLR Key Laboratory of Marine Mineral Resources,Guangzhou Marine Geological Survey,Guangzhou 510075,China

2. School of Marine Sciences,Sun Yat-sen University,Guangzhou 510006,China

3. Laboratory of Mineralogy and Metallogeny,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China

2014-09-03 收稿,2014-12-29 改回.

~260Ma 地幔柱活動(dòng)形成的峨眉山大火成巖省(Chung and Jahn,1995;Xu et al.,2001;Zhou et al.,2002)主要由大陸溢流玄武巖及共生的鎂鐵-超鎂鐵質(zhì)巖體、花崗巖和正長巖組成。此外,該區(qū)沿著安寧河斷裂帶發(fā)育大量的正長巖脈,其中一部分巖脈富含鈮鉭等稀有金屬元素。鋯石LAICP-MS 法U-Pb 年代學(xué)表明這些正長巖脈形成于258 ~256Ma(王汾連等,2013),與峨眉山大火成巖省活動(dòng)時(shí)間相一致,但是對于其源區(qū)性質(zhì)以及它們與區(qū)內(nèi)大型花崗巖體和正長巖體的成因聯(lián)系并不清楚。如果正長巖脈的成因與峨眉山巖漿活動(dòng)有密切關(guān)系,那么對該區(qū)鈮鉭礦床勘查具有一定的指導(dǎo)意義。因此我們選取了爐庫和白草兩個(gè)礦區(qū)相關(guān)的正長巖脈及巖體進(jìn)行了詳細(xì)的野外考察和大量的巖石學(xué)及同位素地球化學(xué)分析。本文在作者及前人對于本區(qū)正長巖脈和長英質(zhì)巖體的巖石學(xué)和形成時(shí)代的基礎(chǔ)上,并結(jié)合主微量地球化學(xué)特征,主要根據(jù)爐庫和白草礦區(qū)富礦正長巖脈、無礦正長巖脈及相關(guān)正長巖體的Sr-Nd 同位素特征,探討本區(qū)富含鈮鉭等稀有金屬的正長巖脈的物質(zhì)來源及其與峨眉山大火成巖省的成因聯(lián)系。

1 地質(zhì)背景

攀西地區(qū)(攀枝花-西昌地區(qū))位于四川省西南部,自北起四川冕寧,南至德昌、米易和攀枝花,直至云南元謀,南北綿延300 多千米。在大地構(gòu)造上處于揚(yáng)子板塊西緣,峨眉山大火成巖省的內(nèi)部帶(圖1)。峨眉山大火成巖省覆蓋面積超過2.5 ×105km2,所形成的火山巖地層厚度從幾百米到5千米不等,主要分布在中國的西南部和越南的北部,包括出露廣闊的大陸溢流玄武巖以及在時(shí)空上關(guān)系密切的鎂鐵-超鎂鐵質(zhì)巖體和少量花崗巖體和正長巖體,被認(rèn)為與地幔柱活動(dòng)有關(guān)(Chung and John,1995;Shellnutt et al.,2009a,b;Xu et al.,2001;Zhou et al.,2002;Zhong et al.,2007)。

在峨眉山大火成巖省其它地區(qū)廣泛分布的二疊紀(jì)玄武巖在攀西地區(qū)則出露較少(主要分布在米易龍帚山一帶),但該區(qū)卻發(fā)育有眾多的中酸性侵入巖體,表現(xiàn)為南北向構(gòu)造-巖漿活動(dòng)帶(從柏林,1988;張?jiān)葡娴龋?988;四川省地質(zhì)礦產(chǎn)局,1991)。區(qū)內(nèi)斷裂以南北向安寧河斷裂帶為主,沿此斷裂帶由北至南,斷續(xù)發(fā)育幾個(gè)大型的層狀鎂鐵-超鎂鐵質(zhì)巖體,分別是太和、新街、紅格和攀枝花巖體。本區(qū)除了廣泛發(fā)育的鎂鐵-超鎂鐵質(zhì)巖體外,還伴隨有大量的花崗巖和少量正長巖。張?jiān)葡娴?1998)將攀西地區(qū)玄武巖、層狀侵入巖和長英質(zhì)巖體在時(shí)空上緊密伴生的關(guān)系總結(jié)為“三位一體”。長英質(zhì)巖體集中分布在50km 寬、200km 長的一個(gè)狹長帶上,從北往南主要的花崗質(zhì)巖體依次分布有太和花崗巖體、黃草正長巖體、茨達(dá)花崗巖體及矮郎河花崗巖體。在這些長英質(zhì)巖體附近發(fā)育有正長巖脈,其中部分正長巖脈富含鈮鉭等稀有金屬元素(賀金良,2004)。

爐庫和白草地區(qū)出露的正長巖脈中富含鈮鉭等稀有金屬元素,有些達(dá)到工業(yè)開采標(biāo)準(zhǔn)。這兩個(gè)地區(qū)的礦床均位于鹽邊縣境內(nèi),安寧河斷裂帶西側(cè)(圖1)。白草礦區(qū)位于爐庫礦區(qū)北東方向5km 左右,其西側(cè)為堿性正長巖體,東側(cè)為矮郎河花崗巖體。礦區(qū)內(nèi)正長巖脈侵入于二疊紀(jì)鎂鐵-超鎂鐵質(zhì)巖體中(圖2、圖3),距離正長巖體0.5 ~1km,大體上分為貧礦正長巖脈和富礦正長巖脈兩類。各類正長巖脈在垂直方向上則呈平行或窄束的放射狀排列,產(chǎn)出嚴(yán)格受斷裂控制。

2 巖相學(xué)特征

兩個(gè)礦區(qū)富礦正長巖脈主體呈灰色至灰白色,多為粗粒-偉晶不等粒結(jié)構(gòu)(圖4a)。主要組成礦物為鉀長石(30%~50%,主要是條紋長石和微斜長石,部分正長石),鈉長石(10% ~30%)和霓石(5% ~15%)、鈉鐵閃石(5% ~10%)及黑云母(1% ~2%)。燒綠石(主要賦存Nb2O5,少量Ta2O5)是主要賦礦礦物(圖4b),其次為褐釔鈮礦。副礦物包括鋯石、榍石和少量鈦鐵礦、磁鐵礦、螢石等。正長巖體和無礦正長巖脈多為細(xì)粒-中粒結(jié)構(gòu)(圖4c,d),礦物組成與含礦巖脈相似,但在含量上有差異。相比富礦正長巖脈,無礦正長巖脈含有更多的鉀長石(60% ~80%)、斜長石(5% ~10%)、黑云母(2%)和及較少的鈉長石(5%)和霓石(5%),而副礦物含量如榍石、鈦鐵礦等明顯高于富礦正長巖脈,燒綠石等礦石礦物極少。

3 分析方法和結(jié)果

3.1 分析方法

圖1 攀西地區(qū)玄武巖、輝長巖及長英質(zhì)巖體分布圖及部分賦存在正長巖脈中的鈮鉭礦床(據(jù)賀金良,2004;Pang et al.,2009)礦點(diǎn)7 和8 分別為白草和爐庫礦區(qū)Fig.1 Distribution of balast,gabbro and felsic intrusions and some Nb-Ta ore deposits hosted in syenitic dikes in Panxi area (after He,2004;Pang et al.,2009)The number 7 and 8 representative Baicao and Luku Nb-Ta deposit respectively

Sr-Nd 同位素分析測試在中國科學(xué)院廣州地球化學(xué)研究所同位素年代學(xué)與地球化學(xué)國家重點(diǎn)實(shí)驗(yàn)室的Micromass ISOPROBE 型多接收電感耦合等離子體質(zhì)譜儀上進(jìn)行。詳細(xì)的實(shí)驗(yàn)流程和分析方法見梁細(xì)榮等(2003)和韋剛健等(2002)。實(shí)驗(yàn)所用的Nd 標(biāo)樣為國際標(biāo)樣Shin-Etsu JNdi-1(Tanaka et al.,2000)。標(biāo)樣溶液均用體積比約為2% 的HNO3溶液稀釋,濃度為100 ~200ng/mL。樣品化學(xué)處理所用的HNO3試劑均經(jīng)二次蒸餾,水溶劑為電阻>18MΩ 的高純水。Nd-Ce 混合試樣由Nd-GIG 溶液與高純Ce 標(biāo)樣溶液混合而成,其Ce/Nd 質(zhì)量比分別為0.05、0.10、0.50、1.00 和1.50,溶液濃度為100 ~200ng/mL。Nd-Sm 混合試樣由Nd-GIG 溶液與高純Sm 溶液混合而成的,其Sm/Nd 質(zhì)量比分別為0.05、0.10、0.20、0.30、0.50 及0.70,溶液濃度為200ng/mL。關(guān)于同質(zhì)異位素干擾的校正,142Ce 對142Nd 的同質(zhì)異位素干擾是通過測量無干擾的140Ce 強(qiáng)度并使用142Ce/140Ce =0.125424 進(jìn)行校正。校正之前,142Ce/140Ce 比值的質(zhì)量分餾通過145Nd/146Nd=0.482639 進(jìn)行校正,146Nd/144Nd 比值以及其它非放射成因的Nd 同位素比值采用O’Nions et al.(1977)的推薦值,其中,146Nd/144Nd =0.72190。144Sm 對144Nd的同質(zhì)異位素干擾通過測量無干擾的144Sm 強(qiáng)度,并使用144Sm/147Sm =0.20504 進(jìn)行校正,144Sm/147Sm 比值的質(zhì)量分餾通過149Sm/147Sm = 0.92160 進(jìn)行校正。144Sm/147Sm 及149Sm/147Sm 比值采用Walder et al. (1993)和Wasserburg et al. (1981)的測量值。

圖2 攀西地區(qū)爐庫和白草鈮鉭礦區(qū)圖(據(jù)四川省地質(zhì)局403 地質(zhì)隊(duì),1965①四川省地質(zhì)局403 地質(zhì)隊(duì). 1965. 會(huì)理路枯燒綠石偉晶巖礦區(qū)詳細(xì)普查報(bào)告.內(nèi)部資料. 注:原地名為路枯,歸屬四川省會(huì)理縣,現(xiàn)改名為爐庫,歸屬四川省鹽邊縣;四川省地質(zhì)局西昌地質(zhì)隊(duì),1962②四川省地質(zhì)局西昌地質(zhì)隊(duì). 1962. 會(huì)理白草鈮鉭礦區(qū)詳細(xì)普查報(bào)告. 內(nèi)部資料. 白草現(xiàn)歸屬四川省鹽邊縣改編)Fig.2 Geolgoical maps of the Luku and Baicao Nb-Ta ore deposits in the Panxi district

圖3 攀西地區(qū)正長巖脈野外照片圖(a)富礦正長巖脈侵入至輝長巖體中;(b)貧礦正長巖脈呈平行狀侵入輝長巖體中Fig.3 Outcrop pictures showing the syenitic dikes (mineralized and barren syenitic dikes)intruding the gabbroic intrusion in sharp contact

3.2 分析結(jié)果

本文測得的爐庫和白草礦區(qū)富礦正長巖脈和貧礦正長巖脈及相關(guān)正長巖體的Sr 和Nd 同位素分析結(jié)果見表1??梢钥闯觯傮w上,兩礦區(qū)巖石的εNd(t)非常均一,正長巖體εNd(t)= -0.3 ~+0.4,貧礦正長巖脈的εNd(t)= -0.3 ~+0.7,富礦正長巖脈的εNd(t)= -0.2 ~+0.2。富礦正長巖脈和貧礦正長巖脈比正長巖體具有更高的143Nd/144Nd 初始比值(巖脈的143Nd/144Nd 初始比值0.512263 ~0.512316,多數(shù)大于0.512300,正長巖體的143Nd/144Nd 初始比值為0.512290 ~0.512326,多數(shù)小于0.512300)。fSm/Nd值均為較大的負(fù)值,變化于-0.52 ~-0.18 之間。兩礦區(qū)巖石初始86Sr/87Sr 值同位素表現(xiàn)出寬泛的范圍。正長巖體和貧礦正長巖脈的(86Sr/87Sr)i分別變化于0.7032 ~0.7090 和0.7044~0.7064,富礦巖脈的(86Sr/87Sr)i變化于0.7049 ~0.7091。在εNd(t)vs. (86Sr/87Sr)i圖解上(圖5),兩礦區(qū)巖石同位素?cái)?shù)據(jù)幾乎水平分布,且初始86Sr/87Sr 比值偏離地幔演化線。

表1 攀西地區(qū)爐庫和白草鈮鉭礦區(qū)含礦巖脈、無礦巖脈及正長巖體Sr-Nd 同位素組成(LK-爐庫礦區(qū);BC-白草礦區(qū))Table 1 Whole-rock Sr-Nd isotopes of the mineralized syenitic dikes,barren senitic dikes and syenitic plutons from Luku and Baicao deposits in the Panxi district

圖4 攀西地區(qū)爐庫和白草礦區(qū)富礦正長巖脈和貧礦正長巖脈礦物顯微照片(a、b)富礦正長巖脈,偉晶-粗粒結(jié)構(gòu),主要礦物為鉀長石、霓石、鈉閃石及礦石礦物燒綠石;(c、d)貧礦正長巖脈Fig.4 Photomicrographs of minerals from the mineralized (a,b)and barren syenitic dikes (c,d)in the Panxi district The mineralized syenitic dikes have pegmatic-coarse grains. Major minerals include K-feldspar,albite,aegirine and pyrochlore

圖5 攀西地區(qū)爐庫和白草鈮鉭礦區(qū)富礦正長巖脈、貧礦正長巖脈及正長巖體Sr-Nd 同位素組成地幔演化線來自于Zindler and Hart (1986);OIB 數(shù)據(jù)來自Sun and McDonough (1989);揚(yáng)子中/上地殼和下地殼數(shù)據(jù)來自Chen and Jahn (1998). 峨眉山玄武巖和鎂鐵質(zhì)侵入體來自于Xu et al.(2001),Zhong et al. (2003,2004),Xiao et al. (2004)(t =260Ma). 數(shù)字表示地殼和地幔物質(zhì)混染百分比. Northern Vietnam苦橄巖(母巖漿)的計(jì)算參數(shù)Nd (×10 -6),εNd(t),Sr (×10 -6)和(87Sr/86Sr)i分別為4.4,+7,102 和0.704;揚(yáng)子中/上地殼兩端元組分分別為20,-22,220,0.715 和20,-10,220,0.715Fig.5 The (87 Sr/86 Sr)i vs. εNd (t)of the mineralized,barren syenitic dikes and syenitic plutons in the Panxi districtMantle array are after Zindler and Hart (1986). Date sources:OIB from Sun and McDonough (1989),the Yangtze middle/upper and lower crust from Chen and Jahn (1998). Emeishan basalts and mafic intrusions from Xu et al. (2001),Zhong et al. (2003,2004),Xiao et al. (2004). The numbers indicate the percentages of participation of the crustal materials. The calculated parameters of Nd (×10 -6),εNd(t),Sr (×10 -6)and (87 Sr/86 Sr)i are 4.4,+7,102 and 0.704 from picrites in Northern Vietnam as parental magmas;20,-22,220,0.715 and 20,-10,220,0.715 as two components of the Yangtze middle/upper crust

4 討論與結(jié)論

4.1 物質(zhì)來源

由于地殼巖石比較富集輕稀土,Sm/Nd 值低于球粒隕石均一儲(chǔ)庫值,其εNd(t)<0,虧損地幔富集重稀土,Sm/Nd 值高于球粒隕石均一儲(chǔ)庫值,其εNd(t)>0。因此,如果某一火成巖體的εNd(t)<0,表明他們來源于地殼物質(zhì),或至少在他們形成的過程中與地殼物質(zhì)發(fā)生過相當(dāng)明顯的混染?;烊境潭仍矫黠@,巖石的εNd(t)值越為負(fù)值。相反,如果火成巖的εNd(t)>0,表明他們來源于幔源物質(zhì)。所以巖石的釹同位素組成可以用來推斷其物質(zhì)來源。爐庫和白草礦區(qū)富礦正長巖脈和貧礦正長巖脈及相關(guān)正長巖體具有相似的且均一的釹同位素組成,其中兩礦區(qū)富礦正長巖脈εNd(t)值為-0.2 ~+0.2,貧礦正長巖脈εNd(t)值為-0.3 ~+0.7,正長巖體εNd(t)值為-0.3 ~+0.4,各類巖石的Sr 同位素則表現(xiàn)出較大的變化范圍,富礦正長巖脈的(86Sr/87Sr)i變化于0.7049 ~0.7091,貧礦正長巖脈和正長巖體的(86Sr/87Sr)i分別變化于0.7044 ~0.7064 和0.7032 ~0.7090,但是絕大多數(shù)巖石樣品的(86Sr/87Sr)i<0.706,表明樣品即含有地幔來源組分,也含有地殼巖石組分,其物質(zhì)來源可能具有殼-?;煸吹奶攸c(diǎn)。一些樣品具有較高的(86Sr/87Sr)i值,也顯示出其可能遭受到地殼混染。如果巖石樣品遭受地殼混染,那么巖石樣品不僅區(qū)域上Sr 同位素組成(86Sr/87Sr)i會(huì)升高,Nd 同位素組成也會(huì)發(fā)生相應(yīng)的變化。事實(shí)上,在研究區(qū)無論是富礦正長巖脈還是貧礦正長巖脈及正長巖體的εNd(t)基本一致,表明其來自于Sm/Nd 值比較均一的源區(qū)。因此本區(qū)富礦正長巖脈較高的(86Sr/87Sr)i值可能是由于巖石遭受風(fēng)化所致。

區(qū)域上,本文兩礦區(qū)的富礦正長巖脈、貧礦正長巖脈及相關(guān)正長巖體與攀西地區(qū)紅格鎂鐵質(zhì)/超鎂鐵質(zhì)層狀侵入體一致(εNd(t)= - 2.7 ~ + 1.0,(86Sr/87Sr)i= 0.7058 ~0.7064,Zhong et al.,2003),且在(86Sr/87Sr)i-εNd(t)圖上(圖5),樣品數(shù)據(jù)點(diǎn)多數(shù)落于峨眉山玄武巖和鎂鐵質(zhì)侵入體Sr-Nd 同位素組成范圍內(nèi)。王汾連等(2013)認(rèn)為本區(qū)正長巖脈和巖體中鋯石εHf值多為0.1 ~9.5,僅在爐庫正長巖體中測得一粒鋯石的εHf(t)(t =255.6Ma)為-6 和白草礦區(qū)富礦正長巖脈中一粒鋯石的εHf(t)最低值為-0.2,說明該區(qū)正長巖脈和巖體的源區(qū)以幔源為主,且與峨眉山玄武巖及鎂鐵質(zhì)侵入體來自于相同的地幔源區(qū)。兩礦區(qū)正長巖脈和正長巖體的La/Nb 值多數(shù)小于1 亦說明受殼源混染的程度較低,所以該區(qū)正長巖脈為幔源巖石,可能有極少量地殼物質(zhì)加入。

4.2 巖石成因機(jī)制

爐庫和白草礦區(qū)富礦正長巖脈和正長巖體為過堿性的正長巖,貧礦正長巖脈為準(zhǔn)鋁質(zhì)正長巖(Wang et al.,2014)。前人對攀西地區(qū)廣泛發(fā)育的長英質(zhì)巖體(正長巖和花崗巖)做了大量詳細(xì)的研究工作。Shellnutt and Zhou(2007)、Shellnutt et al.(2008,2009b)認(rèn)為攀西地區(qū)過堿性花崗巖是峨眉山玄武質(zhì)巖漿結(jié)晶分異的產(chǎn)物,而準(zhǔn)鋁質(zhì)花崗巖為底侵的輝長質(zhì)巖體再次熔融的產(chǎn)物。爐庫和白草礦區(qū)的富礦正長巖脈及相關(guān)正長巖體為準(zhǔn)鋁-過堿性的巖石,其形成是否源自幔源的結(jié)晶分異,亦或是底侵的輝長質(zhì)巖體再次熔融的產(chǎn)物?或是還有其他的機(jī)制導(dǎo)致正長巖脈的形成?

表2 輝長巖體稀土元素部分熔融模擬計(jì)算結(jié)果Table 2 Partition coefficients and presumed source for rare earth element modeling

本區(qū)兩個(gè)礦床的貧礦正長巖脈具有明顯的Sr 正異常(Wang et al.,2014),這表明它不可能是峨眉山玄武巖結(jié)晶分異的產(chǎn)物。因?yàn)槎朊忌叫鋷r一般具有明顯的Sr 負(fù)異常(Xu et al.,2001;Xiao et al.,2003,2004),如果峨眉山玄武巖再經(jīng)過大量斜長石的結(jié)晶分異其所形成的長英質(zhì)巖體就會(huì)更缺失Sr 元素。前已敘述,富礦正長巖脈、貧礦正長巖脈和相關(guān)正長巖體在時(shí)空上緊密聯(lián)系,且?guī)r石學(xué)、元素地球化學(xué)和Sr-Nd 同位素特征的相似性都表明他們來自于相同的源區(qū),所以爐庫和白草兩礦區(qū)富礦正長巖脈同樣不可能是由峨眉山玄武質(zhì)巖漿結(jié)晶分異形成的。貧礦正長巖脈正的Sr異常暗示其源區(qū)應(yīng)該是富斜長石的,地震成像研究揭示在峨眉山大火成巖省內(nèi)帶的下地殼有一個(gè)P 波高速帶(7.1 ~7.8km/s,劉建華等,2000),前人解釋為可能是隨峨眉山地幔柱上升的地幔巖石在柱頭處部分熔融,熔融產(chǎn)物玄武質(zhì)巖漿再底侵于下地殼而形成(Xu et al.,2004;Xu and He,2007),對地震波速的巖石學(xué)限定,也說明底侵層由輝長巖和輝石巖組成(Zhu et al.,2003)。該底侵層的存在為本區(qū)正長巖體及巖脈的形成提供了前提條件。那么本區(qū)富礦正長巖脈及相關(guān)正長巖體是否為地幔柱巖漿活動(dòng)造成的底侵在下地殼底部的輝長質(zhì)巖石再次部分熔融形成的產(chǎn)物?

圖6 輝長巖體部分熔融結(jié)果無礦正長巖脈稀土數(shù)據(jù)來自Wang et al. (2014)Fig.6 REE modeling of partial melting of gabbros Parameters are from Table 2The REE data of barren syenitic dikes are from Wang et al. (2014)

攀西地區(qū)貓貓溝正長巖體與兩礦區(qū)貧礦正長巖脈形成時(shí)代相一致,且地球化學(xué)特征及巖相學(xué)特征相似。羅震宇等(2006)設(shè)定該區(qū)具有堆晶特征的輝長巖(LJ-12,礦物組成為斜長石65%,輝石18%,磁鐵礦12%,角閃石5%)為源巖,利用主量元素的最小方差質(zhì)量平衡計(jì)算結(jié)果認(rèn)為該輝長質(zhì)堆晶巖低程度部分熔融(~5%)可形成貓貓溝霞石正長巖體。那么,本區(qū)與鈮鉭有關(guān)的正長巖脈是否也是由該輝長質(zhì)堆晶熔融形成的呢?我們選擇了同樣的源巖利用稀土元素進(jìn)行部分熔融模擬計(jì)算發(fā)現(xiàn)其不能形成具有本區(qū)正長巖脈稀土元素特征的巖石。但是攀西地區(qū)同樣具有較高含量斜長石(40%)的輝長巖(LJ-7,其礦物組成為輝石25%,角閃石17%,磁鐵礦17%和副礦物;Zhou et al.,2005)經(jīng)過低程度部分熔融則可以形成本區(qū)貧礦正長巖脈(圖6)。該模擬計(jì)算所用的分配系數(shù)及熔融組分見表2。由于該區(qū)貧礦正長巖脈明顯富Sr 和Eu 異常,表明源區(qū)巖石斜長石殘留相較少,我們認(rèn)為輝長巖部分熔融后殘留相為50%角閃石,30%輝石和20%斜長石。因此本區(qū)貧礦正長巖脈可以由攀西地區(qū)底侵的輝長質(zhì)巖石經(jīng)過低程度部分熔融(5% ~10%)而形成。前已敘述,本區(qū)富礦正長巖脈和貧礦正長巖脈具有相同的物質(zhì)來源,其不同于貧礦正長巖脈的負(fù)Eu 異常是由于巖漿高度分異演化的結(jié)果(Wang et al.,2014),但其原始的物質(zhì)來源仍舊是底侵的輝長質(zhì)巖體低程度部分熔融形成的巖漿。

綜上所述,攀西地區(qū)賦存鈮鉭等稀有元素的正長巖脈與峨眉山大火成巖省具有成因聯(lián)系,~260Ma 大火成巖省巖漿活動(dòng)造成本區(qū)鈮鉭礦脈的發(fā)育,這為該地區(qū)鈮鉭礦床的勘查起到一定的指導(dǎo)意義。

Barth MG,F(xiàn)oley SF and Horn I. 2002. Partial melting in Archean subduction zones:Constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambr. Res.,113(3 -4):323 -340

Bureau of Geology and Mineral Resources of Sichuan Province. 1991.Regional Geology of Sichuan Province. Beijing: Geological Publishing House,31 -35 and 396 -403 (in Chinese)

Chen JF and Jahn BM. 1998. Crustal evolution of southeastern China:Nd and Sr isotopic evidence. Tectonophysics,284(1 - 2):101-133

Chung SL and Jahn BM. 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology,23(10):889 -892

Cong BL. 1988. The Forming and Evolution of Panxi Rift. Beijing:Science Press,1 -424 (in Chinese)

He JL. 2004. Ore-forming geological conditions and prospecting potential for Nb-Ta mineral deposits in Panzhihua-Xichang region,Sichuan.Acta Geologica Sichuan,24 (4):206 - 211 (in Chinese with English abstract)

Klein M,Stosch HG and Seck HA. 1997. Partitioning of high fieldstrength and rare-earth elements between amphibole and quartzdioritic to tonalitic melts:An experimental study. Chem. Geol.,138(3 -4):257 -271

Klein M,Stosch HG,Seck HA and Shimizu N. 2000. Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. Geochim.Cosmochim. Acta,64(1):99 -115

Liang XR,Wei GJ,Li XH and Liu Y. 2002. Precise measurement of143Nd/144Nd and Sm/Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometer (MC-ICPMS). Geochimica,32(1):91 -96 (in Chinese with English abstract)

Liu JH,Liu FT,He JK et al. 2001. Study of seismic tomography in Panxi paleo rift area of southwestern China. Science in China (Series D),44(3):277 -287

Luo ZY,Xu YG,He B,Shi YR and Huang XL. 2007. Geochronologic and petrochemical evidence for the genetic link between the Maomaogou nepheline syenites and the Emeishan large igneous province. Chinese Science Bulletin,52(7):949 -958

O’Nions,RK,Hamiltoln PJ and Evensen NM. 1977. Variations in143Nd/144Nd and87Sr/86Sr ratios in oceanic basalts. Earth and Planetary Science Letters,34(1):13 -22

Pang KN,Li CS,Zhou MF and Ripley EM. 2009. Mineral compositional constraints on petrogenesis and oxide ore genesis of the Late Permian Panzhihua layered gabbroic intrusion,SW China. Lithos,110(1 -4):199 -214

Rollinson HR. 1993. Using Geochemical Data: Evaluation,Presentation,Interpretation. Longman Scientific & Technical Essex,108 -111

Shellnutt JG and Zhou MF. 2007. Permian peralkaline,peraluminous and metaluminous A-type granites in the Panxi district,SW China:Their relationship to the Emeishan mantle plume. Chemical Geology,243(3 -4):286 -316

Shellnutt JG,Zhou MF,Yan DP and Wang Y. 2008. Longevity of the Permian Emeishan mantle plume(SW China):1Ma,8Ma or 18Ma?Geological Magazine,145:373 -388

Shellnutt JG,Wang CY,Zhou MF and Yang YH. 2009a. Zircon Lu-Hf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China):Constraints on the mantle source. Journal of Asian Earth Sciences,35(1):45 -55

Shellnutt JG,Zhou MF and Zellmer GF. 2009b. The role of Fe-Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap:An example from the Permian Baima complex,SW China. Chems. Geol.,259(3 -4):204 -217

Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders SD and Norry MJ (eds.). Magatism in the Ocean Basins. Geological Society,London,Special Publication,42(1):313 -345

Tanaka T,Togashi S,Kamioka H et al. 2000. JNdi-1:A neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology,168(3 -4):279 -281

Walder AJ, Platzner I and Freedman PA. 1993. Isotope ratio measurement of lead, neodymium and neodymium-samarium mixtures,Hafnium and Hafnium-Lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer. Journal of Analytical Atomic Spectrometry,8(1):19-23

Wang FL,Zhao TP,Chen W and Wang Y. 2013. Zircon U-Pb ages and Lu-Hf isotopic compositions of the Nb-Ta-Zr-bearing syenitic dikes in the Emeishan large igneous province. Acta Petrologica Sinica,29(10):3519 -3532 (in Chinese with English abstract)

Wang FL,Wang CY and Zhao TP. 2014. Boron isotopic constraints on the Nb and Ta mineralization of the syenitic dikes in the ~260Ma Emeishan large igneous province (SW China). Ore Geology Reviews,65:1110 -1126

Wasserburg GJ,Jacousen SB,DePaolo DJ,McCulloch MT and Wen T.1981. Precise determination of ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta,45(12):2311 -2323

Wei GJ,Liang XR,Li XH and Liu Y. 2002. Precise measurement of Sr isotopic composition of liquid and solid base using (LP)MCICPMS. Geochimica,31(3):295 -299 (in Chinese with English abstract)

Xiao L,Xu YG,Chung SL et al. 2003. Chemostratigraphic correlation of Upper Permian lavas from Yunnan province,China:Extent of the Emeishan large igneous province. Int. Geol. Rev.,45(8):753-766

Xiao L,Xu YG,Mei HJ,Zheng YF,He B and Pirajno F. 2004.Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province,SW China:Implications for plume-lithosphere interaction. Earth and Planetary Science Letters,228(3 -4):525 -546

Xiong XL. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology,34(11):945 -948

Xu YG,Chung SL,Jahn BM and Wu GY. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos,58(3 -4):145 -168

Xu YG,He B,Chung SL et al. 2004. Geologic,geochemical,and geophysical consequences of plume involvement in the Emeishan floodbasalt province. Geology,32(10):917 -920

Xu YG and He B. 2007. Thick and high velocity crust in Emeishan large igneous province,SW China:Evidence for crustal growth by magmatic underplating/intraplating. In:Foulger G and Jurdy D(eds.). The Origins of Melting Anomalies:Plates,Plumes,and Planetary Processes. Geological Society of America Special Publication,430:841 -858

Zhang YX,Luo YN and Yang CX. 1988. The Panxi Rift. Beijing:Geological Publishing House,1 -325 (in Chinese)

Zhong H,Yao Y,Hu SF,Zhou XH,Liu BG,Sun M,Zhou MF and Viljoen MJ. 2003. Trace-element and Sr-Nd isotopic geochemistry of the PGE-bearing Hongge layered intrusion,southwestern China. Int.Geol. Rev.,45(4):371 -382

Zhong H,Yao Y,Prevec SA,Wilson AH,Viljoen MJ,Viljoen RP,Liu BG and Luo YN. 2004. Trace-element and Sr-Nd isotopic geochemistry of the PGE-bearing Xinjie layered intrusion in SW China. Chem. Geol.,203(3 -4):237 -252

Zhong H,Zhu WG,Chu ZY,He DF and Song XY. 2007. Shrimp U-Pb zircon geochronology,geochemistry,and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province,SW China. Chemical Geology,236(1 -2):112 -133

Zhou MF,Yan DP,Kennedy AK,Li YQ and Ding J. 2002. SHRIMP UPb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block,South China. Earth and Planetary Science Letters,196(1 -2):51 -67

Zhou MF,Robinson PT,Lesher CM et al. 2005. Geochemistry,petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits,Sichuan Province,SW China. J. Petrol.,46(11):2253 -2280

Zhu D,Luo TY,Gao ZM et al. 2003. Differentiation of the Emeishan flood basalts at the base and throughout the crust of southwest China.Int. Geol. Rev.,45(5):471 -477

Zindler A and Hart SR. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences,14:493 -571

附中文參考文獻(xiàn)

從柏林. 1988. 攀西古裂谷的形成與演化. 北京:科學(xué)出版社,1-424

賀金良. 2004. 四川攀西地區(qū)鈮鉭礦床成礦地質(zhì)條件及找礦前景.四川地質(zhì)學(xué)報(bào),24(4):206 -211

梁細(xì)榮,韋剛健,李獻(xiàn)華,劉穎. 2003. 利用MC-ICPMS 精確測定143Nd/144Nd和Sm/Nd 比值. 地球化學(xué),32(1):91 -96

劉建華,劉福田,何建坤等. 2000. 攀西古裂谷的地震成像研究-殼幔構(gòu)造特征及其演化推斷. 中國科學(xué)(D 輯),30(1):9 -15

羅震宇,徐義剛,何斌,石玉若,黃小龍. 2006. 論攀西貓貓溝霞石正長巖與峨眉山大火成巖省的成因聯(lián)系:年代學(xué)和巖石地球化學(xué)證據(jù). 科學(xué)通報(bào),51(15):1802 -1810

四川省地質(zhì)礦產(chǎn)局. 1991.四川省區(qū)域地質(zhì)志. 北京:地質(zhì)出版社,1-730

王汾連,趙太平,陳偉,王焰. 2013. 峨眉山大火成巖省賦Nb-Ta-Zr礦化正長巖脈的形成時(shí)代和鋯石Hf 同位素組成. 巖石學(xué)報(bào),29(10):3519 -3532

韋剛健,梁細(xì)榮,李獻(xiàn)華,劉穎. 2002. (LP)MC-ICPMS 方法精確測定液體和固體樣品的Sr 同位素組成. 地球化學(xué),31(3):295-299

張?jiān)葡?,駱耀南,楊崇? 1988. 攀西裂谷. 北京:地質(zhì)出版社,1 -325

猜你喜歡
富礦攀西峨眉山
文化遺蹤——峨眉山—樂山大佛
攀西蠶區(qū)小蠶共育質(zhì)量的提升措施
撫順東露天礦提高油頁巖富礦回采率的技術(shù)研究
峨眉山下
淺談關(guān)于攀西地區(qū)美食旅游的發(fā)展趨勢及影響
以用戶驅(qū)動(dòng)的數(shù)據(jù)新聞產(chǎn)品打撈“汶川記憶”——淺談澎湃新聞如何挖掘“UGC”富礦
勇登峨眉山
四川攀西地區(qū)突尼斯軟籽石榴硬枝扦插育苗技術(shù)
文化遺產(chǎn)是“價(jià)值富礦”
攀西煙區(qū)津巴布韋烤煙新品種引種試驗(yàn)初報(bào)