黃旦翔,夏 萌,彭雄偉,黎太浩,程曉紅
(云南大學(xué)化學(xué)科學(xué)與工程學(xué)院,云南昆明 650091)
·專論與綜述·
苯并噻二唑共軛有機(jī)分子合成研究進(jìn)展
黃旦翔,夏 萌,彭雄偉,黎太浩,程曉紅
(云南大學(xué)化學(xué)科學(xué)與工程學(xué)院,云南昆明 650091)
2,1,3-苯并噻二唑(BTD)共軛有機(jī)分子具有優(yōu)異的光電特性,廣泛應(yīng)用于有機(jī)發(fā)光二極管、太陽能電池、液晶、熒光探針、光電管等方面。綜述了以金屬催化的偶聯(lián)反應(yīng)為關(guān)鍵步驟的2,1,3-苯并噻二唑(BTD)共軛有機(jī)分子的合成方法,包括Suzuki偶聯(lián)反應(yīng),Stille偶合反應(yīng),Heck偶聯(lián)反應(yīng),Sonogashir偶聯(lián)反應(yīng),Nigishi偶聯(lián)反應(yīng),Ullmann偶聯(lián)反應(yīng)等。
2,1,3-苯并噻二唑;偶聯(lián)反應(yīng);合成
2,1,3-苯并噻二唑(BTD)具有較強(qiáng)的電子親和勢、共平面性和對化合物能隙較好的調(diào)節(jié)性,被廣泛用于構(gòu)建共軛有機(jī)分子,在有機(jī)發(fā)光二極管、太陽能電池、液晶、熒光探針、離子識(shí)別材料等領(lǐng)域有著廣泛的應(yīng)用[1-3],對這類共軛有機(jī)分子的合成方法的研究將對基于BTD新型光電材料的研發(fā)意義重大。文獻(xiàn)[1]已經(jīng)介紹了這類化合物在液晶材料研究方面的最新進(jìn)展,本文重點(diǎn)對2,1,3-苯并噻二唑(BTD)共軛有機(jī)分子的合成研究進(jìn)展作綜述性的介紹。
4,7-二溴-2,1,3-苯并噻二唑(2)是用來制備苯并噻二唑(BTD)共軛有機(jī)分子的關(guān)鍵中間體之一[4],這一中間體可以從鄰苯二胺及二氯亞砜出發(fā),在堿性條件下先生成苯并噻二唑(1),1再經(jīng)溴代得到2(見圖1)[4-6]。當(dāng)然,5,6位,4,5位-二溴-2,1,3-苯并噻二唑及單溴代的-2,1,3-苯并噻二唑也是制備2,1,3-苯并噻二唑(BTD)共軛有機(jī)分子的中間體。
圖1 4,7-二溴-2,1,3-苯并噻二唑的合成Fig.1 The synthesis of 4,7-dib romo-2,1,3-benzothiadiazole
圖2 用于合成BTD共軛有機(jī)分子的偶合反應(yīng)Fig.2 Coupling reactions used for the synthesis of BTD conjugated compounds
通過過渡金屬催化的偶合反應(yīng),如4,7-二溴-2,1,3-苯并噻二唑2與芳香硼酸間的Suzuki偶合反應(yīng),與三丁基錫化合物間的Stille偶合反應(yīng),與苯乙烯間的Heck反應(yīng),與芳香端炔間的Sonogashira反應(yīng),與芳香鹵代物間的Nigishi反應(yīng),與氮雜環(huán)間的Ullmann反應(yīng)等等,可以實(shí)現(xiàn)在2,1,3-苯并噻二唑(2)的4,7位以碳碳單鍵,碳碳雙鍵,碳碳三鍵,雜碳鍵為連接單元的共軛延長,獲取共軛有機(jī)分子,見圖2。
2.1 Suzuki偶合反應(yīng)
Suzuki偶聯(lián)反應(yīng)是構(gòu)造2,1,3-苯并噻二唑共軛有機(jī)分子的最常見的方法,國內(nèi)外多個(gè)小組都展開過這方面的研究。圖3中列了通過該反應(yīng)為關(guān)鍵步驟得到的一系列2,1,3-苯并噻二唑共軛有機(jī)分子3-11。合成這些化合物的Suzuki反應(yīng)條件及其應(yīng)用見表1。由表1可見,化合物3[7]、4、5[8]、6[9]、7[10]、8[11]、9[12]都是以Pd[PPh3]4做催化劑,Na2CO3為堿來制備;而Neto[13]報(bào)道的化合物10則采用了NCP-Pd做催化劑,CsF為堿性制備而得,CsF的堿性較Na2CO3強(qiáng),所以說,堿性環(huán)境對于不同的Suzuki反應(yīng)有較大的影響。Operamolla等采用Pd(OAc)2與S-Phos為催化劑,體積比為10∶1的四氫呋喃:水的異構(gòu)介質(zhì)為溶劑,通過Suzuki偶聯(lián)反應(yīng)得到聚合物11。因此Suzuki反應(yīng)是構(gòu)筑2,1,3-苯并噻二唑共軛有機(jī)分子最常見的途徑。
圖3 化合物3~11Fig.3 Com pounds of 3-11
表1 制備化合物3-11的Suzuki反應(yīng)條件及其應(yīng)用Tab.1 Suzuki reaction conditions and the applications of compounds 3-11
2.2 Stille偶聯(lián)反應(yīng)
通過Stille偶聯(lián)反應(yīng)同樣可以構(gòu)筑2,1,3-苯并噻二唑共軛有機(jī)分子,圖4中化合物12-22均是以Stille偶聯(lián)反應(yīng)為關(guān)鍵步驟合成而得。制備這些化合物的Stille反應(yīng)條件及其應(yīng)用列于表2中。13[15]、14[16]、15[17]、16[18]、17[19]的Stille偶聯(lián)反應(yīng)采用了甲苯為溶劑,Pd[PPh3]4為催化劑。Stille偶聯(lián)反應(yīng)除了采用甲苯為溶劑外,還可采用其他的溶劑,如化合物18[20]用了DMF,化合物20[12]用到了四氫呋喃,化合物21[21]用到了氯苯,化合物22[22]用到了鄰二甲苯做溶劑;催化劑也可采用其他的,如化合物12[23],20用到了Pd[PPh3]2Cl2,化合物19[24]用到了原位Pd[As-Ph3]4,化合物22用到了Pd2(dba)3。反應(yīng)條件可以不斷完善,如化合物21,22還使用了微波來完成反應(yīng),大大縮短了反應(yīng)時(shí)間。
圖4 化合物12~22Fig.4 The compounds of 12-22
表2 化合物12-22的Stille偶聯(lián)反應(yīng)條件及其應(yīng)用Tab.2 The Stille coupling reaction conditions and the applications of compounds12-22
2.3 Heck偶聯(lián)反應(yīng)
Heck偶聯(lián)反應(yīng)也能構(gòu)造2,1,3-苯并噻二唑共軛有機(jī)分子,圖5中,化合物23-26均是采用Heck偶聯(lián)反應(yīng)為關(guān)鍵步驟合成。Heck反應(yīng)的反應(yīng)條件及產(chǎn)物的應(yīng)用總結(jié)于表3中。Heck偶聯(lián)反應(yīng)的溶劑都均采用DMF,催化劑為Pd[OAc]2,但是合成23[25]和26[26]的Heck偶聯(lián)反應(yīng)的鈀配體采用P(o-tolyl)3,NEt3為堿;24[27]和25[28]的Heck偶聯(lián)反應(yīng)的鈀配體采用NaOAc,堿性環(huán)境采用TBAB營造。在合成化合物25之前,李永舫等還用同樣的條件[29]合成了有3條手臂的化合物。
表3 化合物23-26的Heck反應(yīng)條件及其應(yīng)用Tab.3 The Heck coupling reaction conditions and the applications of compounds 23-26
圖5 化合物23~26Fig.5 Compounds of 23-26
2.4 Sonogashira偶聯(lián)反應(yīng)
圖5中列了Sonogashira偶聯(lián)反應(yīng)來構(gòu)造2,1,3-苯并噻二唑共軛有機(jī)分子27~32。Sonogashira偶聯(lián)反應(yīng)的反應(yīng)條件及產(chǎn)物的應(yīng)用列于表4中。由表可見,Sonogashira反應(yīng)的一般條件為:三乙胺為溶劑,Pd[PPh3]2Cl2和CuI為催化劑[30]。制備化合物27[31]時(shí),催化劑變成CuBr;制備化合物28[32]時(shí)將溶劑換成三甲胺;制備化合物29[33]時(shí)將溶劑換成甲苯和i-Pr2NH的混合溶劑,催化劑Pd[PPh3]2Cl2換成Pd[PPh3]4;制備化合物31[34]時(shí)將催化劑Pd[PPh3]2Cl2換成Pd2(dba)3。制備化合物31時(shí),還將溶劑換成i-Pr2NH后,發(fā)現(xiàn)產(chǎn)率略增但需要更多反應(yīng)時(shí)間。此外,末端炔烴易快速分解,需要很快用于下一步的CuAAc點(diǎn)擊反應(yīng)形成化合物32。化合物32就是疊氮化糖與BTD-炔,用二價(jià)銅催化,在Na-抗壞血酸鹽和TBAF的存在下,高產(chǎn)率得到的點(diǎn)擊產(chǎn)物。
表4 化合物27~31的Sonogashira反應(yīng)條件及其應(yīng)用Tab.4 Sonogashira coupling reaction conditions and the applications of compounds27-31
圖6 化合物27~32Fig.6 Compounds of 27-32
2.5 Nigishi反應(yīng)
Bijleveld等[35]用Nigishi反應(yīng)合成了雙苯并噻二唑衍生物35?;衔?5的進(jìn)一步反應(yīng)得到的聚合物可以應(yīng)用于制備太陽能電池,能量轉(zhuǎn)換效率達(dá)到了2.5%。
圖7 化合物35的合成Fig.7 Synthesis of compound 35
圖8 化合物36~43Fig.8 Compounds of 36-43
2.6 其他反應(yīng)類型
還可以采用其他一些偶聯(lián)反應(yīng)來構(gòu)建2,1,3-苯并噻二唑共軛有機(jī)分子,圖8中列出了一些產(chǎn)物例子36~43。反應(yīng)類型及反應(yīng)條件及合成產(chǎn)物的的應(yīng)用見表5。采用Ullmann反應(yīng)合成化合物36[36]時(shí),也有單邊取代的副產(chǎn)物存在,改變2和咔唑單元的比例對于單,雙取代產(chǎn)物的產(chǎn)率無明顯影響?;衔?8、39、40[37]都是同一個(gè)Mcmurry反應(yīng)的產(chǎn)物,產(chǎn)率非常低?;衔?[38]和42[39]均采用honer-wittig反應(yīng)制備,但是堿性環(huán)境不一樣,化合物41用的堿是NaH,化合物42用的堿是t-BuOK?;衔?7[40]是用親核取代反應(yīng),而化合物43[41]使用親核加成反應(yīng)。
表5 化合物36-43的反應(yīng)類型,條件及其應(yīng)用Tab.5 Reaction types,conditions and the applications of compounds 36-43
圖9列出了一種新穎的合成含萘多氟代衍生物47的溫和反應(yīng)線路[42],芳基噻唑氨基化合物的分子內(nèi)親核環(huán)化提供了鄰位取代2,1,3-苯并噻二唑共軛有機(jī)分子的新穎合成思路。
圖9 BTD環(huán)的新合成Fig.9 New synthesis of BTD ring
具有苯并噻二唑結(jié)構(gòu)單元的化合物是一類非常重要的化合物,它擁有優(yōu)良的光電性質(zhì)和廣泛的應(yīng)用前景,因此,苯并噻二唑衍生物的合成已成為一個(gè)重要的研究課題。本文綜述了最近發(fā)表的關(guān)于苯并噻二唑衍生物的合成方法。最有效的是從4,7-二溴-2,1,3-苯并噻二唑這個(gè)中間體開始,Pd催化的偶聯(lián)反應(yīng),例如Suzuki反應(yīng),Stille反應(yīng),Heck反應(yīng)及Sonogashira反應(yīng)等。當(dāng)然還有一些其他方法。以Pd為催化劑制備的方法仍然存在成本較高的缺憾,所以仍需要不斷優(yōu)化反應(yīng)條件和探索更好的合成苯并噻二唑衍生物的高效途徑,為這類功能材料的應(yīng)用不斷拓展新天地。
[1]高紅飛,黃旦翔,程曉紅,等.基于苯并噻二唑液晶化合物的研究[J].云南化工,2014,41(4):20-25.
[2]a)Lin P.Fluorescence of Organic Molecules in Chiral Recognition[J].Chem.Rev.,2004,104(3):1687-1716;b)Sun SS,Lees A J.Self-assembly triangular and square rhenium(I)tricarbonyl comp lexes:a comprehensive study of their preparation,electrochemistry,photophysics,photochemistry,and host-guest properties[J].J.Am.Chem.Soc.,2000,122(37):8956 -8967.
[3]Neto B A D,Lapis A A M,Dupont J,et al.2,1,3-Benzothiadiazole and derivatives:synthesis,properties,reactions,and applications in light technology of smallmolecules[J].Eur.J.Org.Chem.,2013,2013(2):228-255.
[4]a)Suzuki T.Regulation of crystal structure in organic redox systems by using intermolecular interactions induced by annelation of heterocycles[J].Asahi Garasu Zaidan JoseiKenkyu Seika Hokoku,1994,149-153;b)Tomura M,Akhtaruzzaman M,Suzuki K,et al.4,7-Diiodo-2,1,3-benzothiadiazole and 7,7'-diiodo-4,4'-bi(2,1,3-benzothiadiazole)[J].Acta. Cryst.,2002,58(7):373-375.
[5]Weinstock LM,Davis P,Handelsman B,et al.General synthetic system for 1,2,5-thiadiazoles[J].J. Org.Chem.,1967,32(7):2823-2829;b)Kom im A P,Street RW,Carmack M,Chemistry of 1,2,5-thiadiazoles.III.[1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole[J].J.Org.Chem.,1975,40(19):2749-2752;c)Bryce M R,Use of piperidine-1-sulfenyl chloride as a sulfur-transfer reagent in reactions with diamines:the preparation of sulfur-nitrogen heterocycles[J].J.Chem.Soc.,1984,11:2591-2593.
[6]Pilgram K,Zupan M,Skiles R.Bromination of2,1,3-benzothiadiazoles[J].J.Heterocycl.Chem.,1970,7(3):629-633.
[7]Raimundo JM,Blanchard P,et al.Proquinoid acceptors as building blocks for the design of efficient pconjugated fluorophoreswith high electron affinity[J]. Chem.Commun.,2000,11:939-940.
[8]ZhuW H,Meng X L,Tian H,et al.Bisthienylethenes containing a benzothiadiazole unit as a bridge:photochromic performance dependence on substitution position[J].Chem.Eur.J.,2010,16(3):899-906.
[9]Hou Q,Xu X,Yang L T,et al.Synthesis and photovoltaic properties of fluorene-based copolymerswith narrow band-gap units on the side chain[J].Eur. Polym.J.,2010,46(12):2365-2371.
[10]Yasuda T,Shinohara Y,Ishi-i T,etal.Synthesis and photovoltaic properties of amorphous polymers based on dithienyl-benzothiadiazole-triphenyl-amine with hexyl side chains on different positions of thienyl groups[J].Ploym.Chem.,2013,51(12):2536 -2544.
[11]Aldred M P,Contoret A E A,Vlachos P,etal.Organic electroluminescence using polymer networks from smectic liquid crystals[J].Liquid Crystals.,2006,4(33):459-467.
[12]Zeng SH,Yin L X,Li K C,et al.D-A-D low band gap molecule containing triphenylamine and benzoxadiazole/benzothiadiazole units:synthesis and photophysical properties[J].Dyes and Pigments,2012,95(2):229-235.
[13]Neto B A D,Lopes A S A,Dupont J,et al.Photophysical and electrochemical properties of p-extended molecular 2,1,3-benzothiadiazoles[J].Tetrahedron,2005,61(46):10975-10982.
[14]Operamolla A,Colella S,Babudri F,et al.Low band gap poly(1,4-arylene-2,5-thienylene)s with benzothiadiazole units:Synthesis,characterization and application in polymer solar cells[J].Sol.Energ. Mat.Sol.C.,2011,95(12):3490-3503.
[15]Liu J,Guo X,Jing X B,et al.White electroluminescence from a single-polymer system with simultaneous two-color emission:polyfluorene as blue host and 2,1,3-benzothiadiazole derivatives as orange dopants on the side chain[J].Adv.Funct.Mater.,2007,17(12):1917-1925.
[16]Ranjith K,Swathi SK,Kumar P,et al.Dithienylcyclopentadienone derivative-co-benzothiadiazole:an alternating copolymer for organic photovoltaics[J].Sol. Energ.Mat.Sol.C.,2012,98:448-454.
[17]Ranjith K,Swathi SK,Malavika A,et al.Random copolymers consisting of dithienylcyclopentadienone,thiophene and benzothiadiazole for bulk heterojunction solar cells[J].Sol.Energ.Mat.Sol.C.,2012,105:263-271.
[18]Shang H X,Li Y F,Zhan XW,et al.Solution processable D-A-D molecules based on triphenylamine for efficient organic solar cells[J].Sol.Energ.Mat. Sol.C.,2010,94(3):457-464.
[19]Misra R,Mobin SM,Thaksen J,et al.Donor acceptor ferrocenyl-substituted benzothiadiazoles:synthesis,structure,and properties[J].J.Org.Chem.,2013,78(10):4940-4948.
[20]Wang B,Tao Y,Wong M S,et al.Naphthodithiophene-2,1,3-benzothiadiazole copolymers for bulk heterojunction solar cells[J]Chem.Commun.,2011,47(33):9471-9473.
[21]Jheng JF,Lai Y Y,Hsu C S,et al.Influences of the non-covalent interaction strength on reaching high solid-state order and device performance of a low bandgap polymer with axisymmetrical structural units[J].Adv.Mater.,2013,25(17):2445-2451.
[22]Zhou H X,Yang L Q,You W,et al.Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7%efficiency[J].Angew. Chem.Int.Ed.,2011,50(13):2995-2998.
[23]Lin L Y,Chen Y H,Wong K T,et al.A low-energy-gap organic dye for high-performance smallmolecule organic solar cells[J].J.Am.Chem.Soc.,2011,133(40):15822-15825.
[24]Crivillers N,MelucciM,Zanelli A,et al.Self-assembly and electrical propertiesof a novel heptameric thiophene-benzothiadiazole based architectures[J]. Chem.Commun.,2012,48(100):12162-12164.
[25]Kato S I,Matsumoto T,Mataka S,et al.Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections[J].Chem.Eur.J.,2006,12(8):2303 -2317.
[26]Ishi-i T,Sakai M,Shinoda C.Benzothiadiazolebased dyes that emit red light in solution,solid and liquid state[J].Tetrahedron,2013,69(45):9475-9480.
[27]He Q G,He C,Li Y F,et al.Amorphous molecular material containing bisthiophenyl-benzothiadiazole and triphenylamine with bipolar and low-bandgap characteristics for solar cells[J].Thin Solid Films,2008,516(18):5935-5940.
[28]Yang Y,Zhang J,Li Y F,et al.Solution-processable organic molecule with triphenylamine core and two benzothiadiazole-thiophene arms for photovoltaic application[J].J.Phys.Chem.C.,2010,114(8):3701 -3706.
[29]Zhang J,Yang Y,Li Y F,etal.Solution-processable star-shaped photovoltaic organic molecule with triphenylamine core and benzothiadiazole-thiophene arms[J].Macromolecules,2009,42(20):7619 -7622.
[30]Gallardo H,Conte G,Molin F,et al.New luminescent liquid crystals based on 2,1,3-benzothiadiazole and bent five-membered N-h(huán)eterocyclic cores[J]. Liquid Crystals.,2012,39(9):1099-1111.
[31]Akhtaruzzaman M,Tomura M,Zaman M B.Synthesis and characterization of new linearπ-conjugatedmolecules containing bis(ethynylpyridine)units with a benzothiadiazole spacer[J].J.Org.Chem.,2002,67(22):7813-7818.
[32]Behramand B,Molin F,Gallardo H.2,1,3-Benzoxadiazole and 2,1,3-benzothiadiazole-based fluorescent compounds:synthesis,characterization and photophysical/electrochemical properties[J].Dyes and Pigments,2012,95(3):600-605.
[33]Silvestri F,Marrocchi A,Taticchi A,et al.Solutionprocessable low-molecular weight extended arylacetylenes:versatile p-type semiconductors for fieldeffect transistors and bulk heterojunction solar cells[J].J.Am.Chem.Soc.,2010,132(17):6108 -6123.
[34]Tanaka D,Ohshita J,Harima Y,et al.Synthesis of disilanylene polymers with donor-acceptor-type p-conjugated units and applications to dye-sensitized solar cells[J].Journal of Organometallic Chemistry,2012,719:30-35.
[35]Bijleveld JC,Shahid M,Janssen R A J,et al.Copolymers of cyclopentadithiophene and electron-deficient aromatic units designed for photovoltaic applications[J].Adv.Funct.Mater.,2009,19(20):3262 -3270.
[36]TaoY M,LiH Y,You Z X,et al.Synthesis and characterization of efficient luminescent materials based on 2,1,3-benzothiadiazole with carbazole moieties[J].Synthetic Metals.,2011,161(9-10):718 -723.
[37]Chu CW,Horie M.Synthesis and characterization of cyclic conjugated architectures composed of thiophene and benzothiadiazole units[J].Asian J.Org.Chem.,2013,2(10):838-842.
[38]Liu Y M,Lai H,F(xiàn)ang Q,et al.New low bandgap molecules based on ethylene-separated benzothiadiazoles:synthesis and bandgap comparison[J].Tetrahedron Lett.,2010,51:4462-4465
[39]Wang J L,Xiao Q,Pei J.Benzothiadiazole-based D-π-A-π-D organic dyeswith tunable band gap:synthesis and photophysical properties[J].Org. Lett.,2010,12(18):4164-4167.
[40]Zou Q,Tian H.Chemodosimeters formercury(II)and methylmercury(I)based on 2,1,3-benzothiadiazole[J].Sensors and Actuators B.,2010,149(1):20 -27.
[41]Suresh P,Mikroyannidis JA,Stylianakis M M,et al. Effect of the incorporation of a low-band-gap small molecule in a conjugated vinylene copolymer:PCBM blend for organic photovoltaic devices[J].Appl.Mater.Interfaces.,2009,1(7):1370-1374.
[42]Lork E,Mews R,Zibarev A V,et al.Reactions of arylthiazylamides with internal and external fluoro electrophiles-formation of products with unusual structures[J].Eur.J.Inorg.Chem.,2001,8:2123-2134.
Advance in Syntheses of 2,1,3-Benzothiadiazole conjugated compounds
HUANG Dan-xiang,XIA M eng,PENG Xiong-wei,LI Tai-h(huán)ao,CHENG X iao-h(huán)ong
(School of Chemical Science and Technology,Yunnan University,Kunming 650091,China)
2,1,3-Benzothiadiazole conjugated compounds are one of themost active research area in the optoelectronicmaterials due to their outstanding optical and electrical properties and have great potentials as organic light-emitting diodes,solar cells,liquid crystals,fluorescent sensors and photovoltaic cells ect. This review covers the various synthetic methods reported for 2,1,3-Benzothiadiazole(BTD)conjugated compounds in recent years.Including Suzuki coupling reaction,Stille coupling reaction,Heck coupling reaction,Sonogashira coupling reaction,Nigishi coupling reaction,Ullmann coupling reaction ect.
synthesis;2,1,3-Benzothiadiazole;coupling reaction
TN104.3
A
1004-275X(2015)06-0028-08
10.3969/j.issn.1004-275X.2015.06.007
收稿:2015-09-14
國家自然科學(xué)基金(No.21274119,NO.21364017);云南省自然科學(xué)基金(2013FA007),云南省教育廳科學(xué)基金(ZD2015001)。
黃旦翔(1990-),男,碩士研究生;研究方向:超分子液晶化學(xué)。