吳 軍,吳慶春,涂宏慶,崔云康,唐春紅
(1. 南京工程學(xué)院數(shù)理部非線性物理研究所,南京 211167; 2. 南京大學(xué)物理系固體微結(jié)構(gòu)物理國家重點(diǎn)實(shí)驗(yàn)室,南京 210093)
磷基的幾何結(jié)構(gòu)與光電子能譜
吳 軍1,2,吳慶春1,涂宏慶1,崔云康1,唐春紅1
(1. 南京工程學(xué)院數(shù)理部非線性物理研究所,南京 211167; 2. 南京大學(xué)物理系固體微結(jié)構(gòu)物理國家重點(diǎn)實(shí)驗(yàn)室,南京 210093)
Franck-Condon分析; Duschinsky效應(yīng); 光譜模擬; 從頭算/密度泛函
Franck-Condon分析中,由于分子振動(dòng)躍遷的兩個(gè)電子態(tài)的構(gòu)型、力常數(shù)甚至對(duì)稱性都可能發(fā)生變化,因而存在由構(gòu)型變化引起的“模式混合”或稱“Duschinsky 效應(yīng)”[11],兩個(gè)電子態(tài)之間的簡(jiǎn)正坐標(biāo)可以寫成Q′=JQ+K.在Born-Oppenheimer近似和諧振子模型下,“Duschinsky效應(yīng)”的處理采用Peter Chen的笛卡爾位移坐標(biāo)變換方法[12],其中正交矩陣J和位移矢量K在ab initio/DFT下的表示式:
(1)
(2)
其中M是以原子質(zhì)量作為對(duì)角元的3N×3N矩陣,g03是一個(gè)3N×3N-6矩陣,含有來自Gaussian03程序輸出的簡(jiǎn)正模,V是一個(gè)以每個(gè)模的約化質(zhì)量作為它的對(duì)角元3N-6×3N-6對(duì)角距陣,Z對(duì)大多數(shù)對(duì)稱類為C2v或更高對(duì)稱性的分子來說是單位矩陣,R=ZReq-Req′是分子質(zhì)心笛卡爾坐標(biāo)系中末態(tài)與初態(tài)分子平衡位置的幾何變化.式中加撇和不加撇的分別表示所研究分子的初態(tài)和末態(tài).
3.1 幾何優(yōu)化和頻率計(jì)算
MethodR(PH)(nm)D(HPH)(o)ω1(a1)ω2(a1)ω3(b2)B3LYP/6-311+G(2d,p)0 142391 72360 78651130 90742367 8721B3LYP/aug?cc?pVTZ0 1425491 87992358 73081122 89632367 9207MP2/6-311+G(2d,p)0 1410692 30922477 14111173 49682483 0878MP2/aug?cc?pVTZ0 1415591 95932454 99491141 90022466 4543CCSD/6-311+G(2d,p)0 1415992 16092422 06011168 17502423 7649Experiment0 1423a91 7a2295±15b,2310±2c1102d
aRef.[19],bRef.[9],cRef.[20],dRef.[21]
MethodR(PH)(nm)D(HPH)(°)ω1(a1)ω2(a1)ω3(b2)B3LYP/6-311G+(2d,p)0 1433792 09292256 52291092 13282259 6551B3LYP/aug?cc?pVTZ0 1435592 26262258 66111082 62912262 8940MP2/6-311+G(2d,p)0 1421392 46222379 53371129 86122382 0911MP2/aug?cc?pVTZ0 1427592 11792354 17661089 69502360 4211CCSD/6-311+G(2d,p)0 142692 44012325 90091131 97872328 7484FromRef.90 143992 31060eIFCA(thiswork)0 1438±0 000292 2±0 2
eRef.[22]
3.2 光譜模擬和迭代Franck-Condon分析
Q1Q2Q3Q′10 98590 00740Q′2-0 02111 00160Q′3000 9958
ΔQ1ΔQ2ΔQ30 0087-0 02140
圖1 實(shí)驗(yàn)觀測(cè)到的的光電子能譜[9]Fig. 1 f.9). The region including the symmetric stretch and bending transitions is multiplied by a factor of 50 and offset from the lower axis
圖2 理論模擬得到的的光電子能譜Fig. 2 The simulated spectrum invoking the experimental geometry given in Ref.. The FWHM used for the components of the simulated spectra is 230 cm-1
[1] Margulès L,Herbst E,Ahrens V,etal. The phosphidogen radical,PH2: terahertz spectrum and detectability in space [J].J.Mol.Spectrosc.,2002,211(2): 211.
[2] Morton R J,Kaiser R I. Kinetics of suprathermal hydrogen atom reactions with saturated hydrides in planetary and satellite atmospheres [J].Planet.SpaceSci.,2003,51(6): 365.
[3] Korobeinichev O P,Bolshova T A,Shvartsberg V M,etal. Inhibition and promotion of combustion by organophosphorus compounds added to flames of CH4or H2in O2and Ar[J].Combust.Flame,2001,125(1-2): 744.
[4] Haworth N L,Bacskay G B.Heats of formation of phosphorus compounds determined by current methods of computational quantum chemistry [J].J.Chem.Phys.,2002,117: 11175.
[5] Hirota Y,Kobayashi T.Chemical vapor deposition and characterization of phosphorus nitride(P3N5) gate insulators for InP metal-insulator-semiconductor devices[J].J.Appl.Phys.,1982,53: 5037.
[6] Robertson A,Jordan A S. Equilibrium gas-phase composition of cracked AsH3and PH3[J].J.Vac.Sci.Technol. B,1993,11: 1041.
[7] Sugino T,Maeda M,Kawarai K.Low-temperature epitaxial growth of InP by remote plasma-assisted metalorganic chemical vapour deposition[J].J.Cryst.Growth,1996,166(1-4): 628.
[8] Baudler M,Glinka K. Open-chain polyphosphorus hydrides(phosphines) [J].Chem.Rev.,1994,94(5): 1273.
[9] Ervin K M,Lineberger W C.Photoelectron spectroscopy of phosphorus hydride anions [J].J.Chem.Phys.,2005,122: 194303.
[10] Frisch M J,Truchs G W,Schlegel H B,etal. GAUSSIAN03,Gaussian Inc.,Pittsburgh PA,2003.
[11] Duschinsky F. The importance of the electron spectrum in multi atomic molecules. concerning the Franck-Condon principle[J].ActaPhysicochim.URSS,1937,7(4): 551.
[12] Chen P.Photoelectronspectroscopyofreactiveintermediates[M]. in:C.Y. Ng,T.Baer,I. Powis(Eds.),Unimolecular and bimolecular reaction dynamics. New York: Wiley,1994: 371.
[13] Sharp T E,Rosenstock H M. Franck-Condon factors for polyatomic molecules [J].J.Chem.Phys.,1964,41: 3453.
[14] Liang J,Cui F,Wang R,etal. A general analytical expression for the three-dimensional Franck-Condon integral and simulation of the photodetachment spectrum of the PO-2anion [J].JournalofMolecularSpectroscopy,2013,12: 286.
[15] Zhang X Y,Wu J,Cui Z F.Franck-Condon analysis of the photoelectron spectra of S2O-: Including Duschinsky effects [J].Chem.Phys.Lett.,2006,428(1-3): 1.
[16] Wu J,Zhang X Y,Chen F,etal. Ab initio calculations and spectral simulation of the P2H(X~2A′)-P2H-(X~1A′) photodetachment process [J].J.Mol.Struct.(Theochem),2006,767(1-3): 149.
[17] Zhang X Y,Wu J,Wang F,etal. Ab initio calculations and Franck-Condon analysis of photoelectron spectra of PO-2[J].J.Mol.Struct.(Theochem),2008,851(1-3): 40.
[18] Chau F T,Dyke J M,Lee E P F,etal. HeI photoelectron spectra of PH2and PF2: comparison between simulation and experiment [J].Chem.Phys.,1997,224(2-3): 157.
[19] Chen Y,Zhang Q,Zhang D,etal. Laser-induced fluorescence spectrum of PH2cooled in a supersonic jet [J].Chem.Phys.Lett.,1994,223: 104.
[20] Abraham P,Bekkaoui A,Bouix J,etal. Raman spectroscopy of PH3and PH2at high temperature and simulation of PH3Raman spectrum [J].J.RamanSpectrosc.,1992,23(7): 379.
[21] Hills G W,McKellar A R W,Laser magnetic resonance spectrum of the ν2band of PH2[J].J.Chem.Phys.,1979,71: 1141.
[22] Dixon R N,Duxbury G,Ramsay D A. Rotational analysis of the 0-0 Band of the2A1-2B1electronic transition of PH2[J].Proc.R.Soc.Lond. A,1967,296: 137.
Photoelectron spectra and geometric structures of phosphino radical
WU Jun1,2,WU Qing-Chun1,TU Hong-Qing1,CUI Yun-Kang1,TANG Chun-Hong1
(1. Institute of Nonlinear Physics,Department of Mathematics and Physics,Nanjing Institute of Technology,Nanjing 211167,China;2. National Laboratory of Solid State Microstructures,Department of Physics,Nanjing University,Nanjing 210093, China)
Franck-Condon analysis; Duschinsky effect; Spectral simulation; Ab initio/DFT
國家自然科學(xué)基金(51472113,21403144 );江蘇省高校自然科學(xué)基礎(chǔ)研究項(xiàng)目(12KJB510004);南京工程學(xué)院科研基金項(xiàng)目(QKJB2011020,CKJA201207,ZKJ201204);江蘇省自然科學(xué)基金(BK20141390);寧夏高??蒲许?xiàng)目(NGY2013105)
吳軍(1983—),男,博士生,講師,主要從事原子與分子、團(tuán)簇物理學(xué)研究. E-mail: wujun@njit.edu.cn
103969/j.issn.1000-0364.2015.08.002
O561
A
1000-0364(2015)08-0538-05
投稿日期: 2014-09-03