翟少偉 李 劍 史慶超
(集美大學(xué)水產(chǎn)學(xué)院,鰻鱺現(xiàn)代產(chǎn)業(yè)技術(shù)教育部工程研究中心,廈門 361021)
抗生素的發(fā)現(xiàn)為預(yù)防病菌感染、治療動(dòng)物疾病、促進(jìn)養(yǎng)殖業(yè)的快速發(fā)展做出了巨大貢獻(xiàn)。但濫用抗生素導(dǎo)致越來越多的耐藥菌株的出現(xiàn)和藥物殘留等問題日趨嚴(yán)重,對(duì)人類和動(dòng)物的健康構(gòu)成了嚴(yán)重威脅[1]。尋找安全環(huán)保、無耐藥性、無殘留的抗生素替代品亟待解決。研究發(fā)現(xiàn),由昆蟲、動(dòng)植物或微生物等基因編碼合成以及人工合成的抗菌肽(antimicrobial peptides,AMPs)具有廣譜抗菌活性,不易產(chǎn)生耐藥性,是潛在的抗生素理想替代品之一[2-3]。但從昆蟲和動(dòng)植物中提取 AMPs工藝復(fù)雜、含量極低使AMPs應(yīng)用受到了極大的限制。研究者嘗試通過基因重組表達(dá)等方法提高AMPs產(chǎn)量,但由于AMPs易受蛋白酶的攻擊,且表達(dá)產(chǎn)物往往對(duì)宿主細(xì)胞有毒性而進(jìn)展緩慢;此外,人工合成或者重組表達(dá)生產(chǎn)的AMPs在應(yīng)用中可能存在安全問題不容忽視[4]。微生物代謝產(chǎn)生的AMPs,如芽孢桿菌脂肽、乳球菌肽、桿菌肽和細(xì)菌素等與昆蟲和動(dòng)植物源AMPs相比,具有高效抗菌優(yōu)勢(shì)[5],成為近年研究熱點(diǎn)。Surfactin是芽孢桿菌屬不同菌株代謝產(chǎn)生的一種脂肽,是研究較為深入的微生物源AMPs之一[6]。研究表明,Surfactin具有廣譜高效的抗菌活性,不僅對(duì)革蘭氏陽(yáng)性菌、革蘭氏陰性菌、霉菌等多種細(xì)菌或真菌具有抗菌作用,而且對(duì)病毒、支原體和原蟲等也具有顯著的抑制效果[7]。作為一種優(yōu)良的新型抗菌物質(zhì),Surfactin在醫(yī)藥、動(dòng)物養(yǎng)殖、農(nóng)業(yè)生防和食品保鮮等領(lǐng)域具有廣闊的應(yīng)用前景。
Surfactin最早由Arima等[8]于1968年在枯草芽抱桿菌(Bacillus subtilis)IFO 3039發(fā)酵液中發(fā)現(xiàn)。Kakinuma等[9]之后對(duì)Surfactin的分子結(jié)構(gòu)進(jìn)行了報(bào)道,闡明了Surfactin由1個(gè)手性序列為L(zhǎng)LDLLDL的七肽和1個(gè)含13到15個(gè)碳原子的β-羥基脂肪酸構(gòu)成。Surfactin長(zhǎng)脂肪酸鏈及肽鏈上的L-亮氨酸2(L-Leu2)、D-亮氨酸3(D-Leu3)、L-纈氨酸4(L-Val4)、D-亮氨酸6(D-Leu6)、L-亮氨酸7(L-Leu7)構(gòu)成其親油基團(tuán),環(huán)鏈骨架與L-谷氨酸1(L-Glu1)和L-天冬氨酸5(L-Asp5)2個(gè)酸性氨基酸殘基構(gòu)成親水基團(tuán)[10]。Bonmatin等[11]運(yùn)用高分辨核磁共振氫譜結(jié)合分子動(dòng)力學(xué)技術(shù)確定了Surfactin的三維結(jié)構(gòu)。Surfactin在水溶液中呈馬鞍型,位于同側(cè)的氨基酸殘基L-Leu2和DLeu6彼此面對(duì),2個(gè)酸性氨基酸L-Glu1和L-Asp5構(gòu)成了一個(gè)較小的極性結(jié)構(gòu)域,具有輕微的親水能力。在另一側(cè),氨基酸殘基D-Leu3、L-Val4和L-Leu7與脂肪酸鏈構(gòu)成主要的疏水結(jié)構(gòu)域[12]。
兩親性化學(xué)結(jié)構(gòu)使Surfactin表現(xiàn)出良好的表面活性和穩(wěn)定性,僅需0.005%或更低濃度的Surfactin即可將雙蒸水的表面張力從72 mN/m降至27 mN/m,其效果甚至優(yōu)于十二烷基硫酸鈉[7]。Surfactin的臨界膠束濃度約為1×10-5mol/L,遠(yuǎn)低于許多化學(xué)合成的表面活性劑[7]。枯草芽孢桿菌SCUT09發(fā)酵產(chǎn)物中提取的脂肽Surfactin耐鹽度高達(dá)21%,121℃高溫處理2 h后的表面活性和乳化能力仍保持穩(wěn)定[13]。Hwang 等[14]和孫力軍等[15]對(duì) Surfacrin的生理毒性研究顯示,Surfactin小鼠口服半致死劑量(LD50)分別超過2 500和5 000 mg/kg,急性毒性屬實(shí)際低毒或無毒級(jí),表明Surfactin具有較高的安全性。其在畜禽及水產(chǎn)動(dòng)物飼料中的安全劑量尚未見報(bào)道,還有待于進(jìn)一步研究。
研究表明,Surfactin對(duì)革蘭氏陽(yáng)性菌、革蘭氏陰性菌、真菌以及微漿菌等均具有較強(qiáng)的抑制作用。Gomaa[16]研究發(fā)現(xiàn),從地衣芽孢桿菌(Bacillus licheniformis)M104中分離出的Surfactin對(duì)蠟樣芽胞桿菌(Bacillus thuringiensis)、蘇云金芽孢桿菌(Bacillus thuringiensis)、金黃色葡萄球菌(Staphylococcus aureus)以及李斯特菌(Listeria monocytogenes)等革蘭氏陽(yáng)性菌和大腸桿菌(Escherichia coli)、綠膿桿菌(Pseudomonas aeruginosa)、傷寒性沙門氏菌(Salmonella typhimurium)以及變形桿菌(Proteus vulgaris)等革蘭氏陰性菌和酵母菌(Candida albicans)均具有明顯的抑菌作用。此外,Surfactin對(duì)哈威式弧菌(Vibro harveyi)、鰻弧菌(Vibro anguillarum)[17]、溶藻弧菌(Vibrio alginolyticus)[18]、產(chǎn)氣單胞菌(Aeromonas hydrophila)[19]和核盤菌(Sclerotinia sclerotiorum)[20]等常見病原菌都具有溫和的抑制效果。微漿菌能引起許多疾病,在后天免疫缺乏癥候群疾病的過程中扮演著一個(gè)重要的角色。微漿菌沒有細(xì)胞壁,其細(xì)胞膜主要由3層脂膜和固醇組成,在哺乳動(dòng)物細(xì)胞培養(yǎng)過程中,細(xì)胞遭受到微漿菌感染的同時(shí)加入Surfactin,可使受感染的細(xì)胞恢復(fù)到未感染的細(xì)胞形態(tài),并且不會(huì)對(duì)細(xì)胞產(chǎn)生毒性[21]。Hwang 等[22]報(bào)道,給感染細(xì)菌敗血癥的老鼠注射Surfactin,其血液中的細(xì)菌數(shù)量約為未注射的老鼠的1/400,表現(xiàn)出良好的抗菌效果。
近來研究發(fā)現(xiàn),Surfactin還能有效對(duì)抗皰疹病毒(Herpes simplex virus)[23]、塞姆利基森林病毒(Semliki forest virus)[24]、豬細(xì)小病毒(Porcine p arvovirus)、偽狂犬病毒(Pseudorabies virus)、新城疫病毒(Newcastle disease virus)[25]等多種病毒。此外,Surfactin對(duì)衣原體[26]、雞柔嫩艾美耳球蟲(Eimeria tenella)[27]也具有顯著的抑制作用。綜上所述,Surfactin具有廣譜高效的抗菌活性,作為抗菌藥物研究與開發(fā)極具潛力。
目前,Surfactin抗菌的具體機(jī)制尚不明確,普遍認(rèn)為Surfactin的抗菌活性與其理化性質(zhì)密切相關(guān)。很多學(xué)者試圖通過提出不同假說,建立相關(guān)模型及開展試驗(yàn)來解釋Surfactin的抗菌作用進(jìn)程。鑒于Surfactin抗菌過程的復(fù)雜性,目前尚不明確其是通過哪一種途徑或者多種途徑共同作用而發(fā)揮抗菌效果。
研究表明,Surfactin對(duì)病原菌作用的細(xì)胞靶位點(diǎn)是細(xì)胞膜[28]。目前,關(guān)于 Surfactin與微生物的細(xì)胞膜之間的作用機(jī)制主要有以下2種假說:1)去垢劑假說,Surfactin將帶負(fù)電的肽環(huán)伸入水相,將其非極性的脂肪酸鏈插入到細(xì)胞膜磷脂分子層,達(dá)到一定濃度時(shí),會(huì)產(chǎn)生類去垢劑的效應(yīng),使細(xì)胞膜產(chǎn)生裂縫并分離,胞內(nèi)物質(zhì)外泄,最終引起細(xì)胞生長(zhǎng)受到抑制或死亡[29-30]。Deleu 等[31]以二油?;字D憠A(dioleoyl phosphatidylcholine,DOPC)作為流動(dòng)相,二油酰基磷脂酰膽堿(dipalmitoyl phosphatidylcholine,DPPC)作為凝膠相模擬細(xì)胞膜結(jié)構(gòu),研究Surfactin對(duì)膜脂質(zhì)相分離作用表明,Surfactin的濃度起著至關(guān)重要的影響。當(dāng)Surfactin的濃度低于臨界微團(tuán)濃度(CMC)時(shí),Surfactin插入到膜的凝膠相和液體脂質(zhì)結(jié)構(gòu)域的邊界處,這時(shí)Surfactin發(fā)揮類似膽固醇的作用,增強(qiáng)各相之間的范德華力,促進(jìn)液相膜的流動(dòng)。該階段脂質(zhì)體大小并沒有受到影響,但膜內(nèi)的降鈣素會(huì)發(fā)生釋放。隨著Surfactin濃度的增加,接近至CMC時(shí),DOPC立即發(fā)生溶解,由于Surfactin的選擇作用,大部分DOPC分子被Surfactin溶解,并形成混合膠束,而DPPC的結(jié)構(gòu)并不會(huì)受到影響。當(dāng)濃度高于CMC后,Surfactin發(fā)揮其明顯的增溶作用,DOPC和DPPC分子都被溶解形成混合膠束,使膜的大小的通透性發(fā)生變化。2)孔洞假說,該假說將Surfactin與生物膜作用簡(jiǎn)要分為3個(gè)過程[32-33]:1)Surfactin通過與膜之間的疏水作用力插入膜表面;2)由于Surfactin帶負(fù)電荷的氨基酸和脂質(zhì)頭部產(chǎn)生電荷相互排斥,造成膜彎曲;3)膜體極不穩(wěn)定而產(chǎn)生類似膠束的結(jié)構(gòu)造成膜崩解。添加低濃度的Surfactin時(shí)其會(huì)和微漿菌的細(xì)胞膜結(jié)合,造成膜上孔洞的發(fā)生進(jìn)而造成膜內(nèi)外滲透壓失衡使細(xì)菌死亡,而添加高濃度的Surfactin則會(huì)導(dǎo)致微漿菌整個(gè)細(xì)胞膜瓦解[34]。然而相同濃度的Surfactin并不會(huì)對(duì)哺乳動(dòng)物細(xì)胞造成影響,其原因可能是微漿菌細(xì)胞膜上的膽固醇含量比哺乳動(dòng)物細(xì)胞高20% ~30%,而且微漿菌細(xì)胞膜上磷脂酰膽堿、磷脂酰甘油和磷脂酰乙醇胺等磷脂質(zhì)的比例也較高。高比例的膽固醇及磷脂質(zhì)可能導(dǎo)致其對(duì)于Surfactin的感受性高于哺乳動(dòng)物細(xì)胞,從而Surfactin能選擇性的作用于微漿菌的細(xì)胞膜[35]。
Brogden[36]和 Gueguen 等[37]認(rèn)為脂肽可與病原菌染色體DNA發(fā)生相互作用,導(dǎo)致DNA的復(fù)制、轉(zhuǎn)錄、表達(dá)功能受抑制,影響細(xì)菌蛋白質(zhì)的合成,進(jìn)而導(dǎo)致病原菌繁殖受阻。但研究納豆菌脂肽(活性成分為 Surfactin、Iturin和Fengycin)對(duì)金黃色葡萄球菌[38]和副溶血弧菌(Vibrio parahemolyticus)[39]抑菌試驗(yàn)發(fā)現(xiàn),抗菌脂肽雖然能與金黃色葡萄球菌和副溶血弧菌的DNA體外結(jié)合,使DNA最大吸收峰發(fā)生了輕微的藍(lán)移,并產(chǎn)生增色效應(yīng),但納豆菌脂肽并不能抑制所有蛋白質(zhì)的合成,而納豆菌脂肽進(jìn)入細(xì)胞后,能否到達(dá)細(xì)胞核和細(xì)菌染色體DNA發(fā)生作用,還需進(jìn)一步研究。
Huang等[40]研究發(fā)現(xiàn),枯草芽孢桿菌 fmbJ所產(chǎn)脂肽(活性成分Surfactin和Iturin)可抑制點(diǎn)青霉(Penicillium notatum)菌絲體細(xì)胞內(nèi)琥珀酸脫氫酶(succinate dehydrogenase,SDH)和蘋果酸脫氫酶(malate dehydrogenase,MDH)活性,并且隨著脂肽濃度的增加對(duì)酶活性的抑制作用逐漸增強(qiáng)。SDH參與細(xì)胞的能量代謝,是連接氧化磷酸化與電子傳遞的樞紐之一。MDH可以催化蘋果酸與草酰乙酸間的可逆轉(zhuǎn)換,是參與細(xì)胞的生物合成代謝的關(guān)鍵酶之一。脂肽對(duì)酶活性得不同程度的影響表明其能夠通過影響酶的活性來改變細(xì)胞的代謝。此外,脂肽還能夠抑制點(diǎn)青霉對(duì)糖類及蛋白質(zhì)利用,導(dǎo)致點(diǎn)青霉生長(zhǎng)受阻[41]。
抗生素的濫用導(dǎo)致細(xì)菌耐藥性問題的出現(xiàn)已經(jīng)逐漸成為醫(yī)學(xué)界迫在眉睫的難題,可代替抗生素的新藥物的開發(fā)勢(shì)在必行[42]。Surfactin特殊的兩親型結(jié)構(gòu),能夠與細(xì)菌細(xì)胞膜結(jié)合并將其非極性端插入到細(xì)胞膜的疏水孔中,破壞細(xì)胞的完整性,干擾細(xì)胞正常代謝從而起到抑菌作用[43]。研究表明,Surfactin在臨床上能有效對(duì)抗糞產(chǎn)堿菌(Alcaligenesfaecalis)、變形桿菌、綠膿桿菌、大腸桿菌和金黃色葡萄球菌等耐藥菌[44];Surfactin可抑制鼠細(xì)胞脂多糖(lipopolysaccharides,LPS)介導(dǎo)生成的炎癥介質(zhì),如腫瘤壞死因子α(TNF-α)、白細(xì)胞介素1(IL-1)、白細(xì)胞介素6(IL-6)和一氧化氮合酶,減緩由LPS引起的真核細(xì)胞感染[45]。近年來,Surfactin 在抗病毒制劑[25]、抗腫瘤制劑[46]、溶血栓制劑[47]、口服免疫佐劑[48]、乙肝疫苗[49]以及糖尿病治療[50]等方面中的應(yīng)用研究也取得了突破,Surfactin在醫(yī)藥領(lǐng)域中扮演著越來越重要的角色。
抗生素類促生長(zhǎng)添加劑在動(dòng)物養(yǎng)殖過程中長(zhǎng)期使用會(huì)導(dǎo)致其耐藥性、藥物殘留和環(huán)境污染等問題,探尋新型抗菌藥物越來越受到重視。Surfactin具有獨(dú)特殺菌機(jī)制和抗菌廣譜性,且病原菌不易對(duì)Surfactin產(chǎn)生耐藥性,正逐漸進(jìn)入人們的視野。一方面,Surfactin具有較好的熱穩(wěn)定性和化學(xué)穩(wěn)定性,不僅在加工過程中能有效防治病原菌對(duì)原料的感染,而且能保證其經(jīng)過加工之后,仍然保持較高的抗菌活性;另一方面,Surfactin分子質(zhì)量較小,經(jīng)動(dòng)物食用后進(jìn)入腸道可以有效抑制體內(nèi)病原微生物的生長(zhǎng)繁殖,調(diào)節(jié)腸道菌群平衡,并不易產(chǎn)生耐藥性和殘留[51]。近年來,關(guān)于Surfactin在動(dòng)物養(yǎng)殖中應(yīng)用的報(bào)道日益增多。由于抗菌脂肽Surfactin可導(dǎo)致嗜水氣單胞菌細(xì)胞膜通透性增加,使細(xì)胞內(nèi)一些離子以及大分子的蛋白質(zhì)和核酸泄漏到細(xì)胞外,從而引起細(xì)胞的死亡,其被認(rèn)為可用于嗜水氣單胞菌感染引起的水生動(dòng)物疾病預(yù)防和控制[19]。研究表明,點(diǎn)帶石斑魚(Epinephelus coioides)飼料中添加20 mg/kg Surfactin可增強(qiáng)魚體免疫力以對(duì)抗溶藻弧菌等病原菌的感染[18];誘導(dǎo)石斑魚AMPs、干擾素誘導(dǎo)蛋白和黏病毒抗性蛋白等先天型免疫基因的表達(dá),顯著提高增重率;降低感染神經(jīng)壞死病毒(Necrosis cirus)和虹彩病毒(Irido virus)石斑魚的死亡率[52]。史慶超等[53]在吉富羅非魚飼料中添加12.5 mg/kg的抗菌脂肽Surfactin即可顯著提高增重率、腸道脂肪酶和蛋白酶的活性。石廣舉等[54]發(fā)現(xiàn),在凡納濱對(duì)蝦飼料中添加100 mg/kg NT-6抗菌脂肽(活性成分為Surfactin、Fengycin和Iturin同系物)可抑制水體和蝦體中弧菌的生長(zhǎng),提高對(duì)蝦增重率和特定生長(zhǎng)率。飼料中添加4 000 U/kg抗菌脂肽(活性成分為 Surfactin、Fengycin及其同系物),可對(duì)艾拔益加(AA)肉雞的生長(zhǎng)發(fā)育和免疫機(jī)能具有較好的調(diào)節(jié)和促進(jìn)作用[55],還能提高抗氧化機(jī)能和促進(jìn)蛋白質(zhì)的代謝[56];提高斷奶仔豬生長(zhǎng)性能,抑制仔豬斷奶應(yīng)激造成的腹瀉和腸道有害微生物,但對(duì)有益微生物也有一定的抑制作用,有效調(diào)節(jié)血液激素水平和某些生化指標(biāo),提高機(jī)體對(duì)脂類的轉(zhuǎn)化利用能力和蛋白質(zhì)的沉積能力[57]。研究表明,斷奶仔豬飼料中添加150 mg/kg抗菌脂肽替代75 mg/kg金霉素,可促進(jìn)采食,提高日增重,顯著改善飼料報(bào)酬,并顯著降低腹瀉率[58];Surfactin與枯草芽孢桿菌聯(lián)用也可以促進(jìn)斷奶仔豬腸道內(nèi)有益菌增殖,改善腸道微生態(tài)環(huán)境,提高機(jī)體全身的免疫應(yīng)答反應(yīng)[59]。隨著更多關(guān)于Surfactin在動(dòng)物飼料中應(yīng)用的研究,Surfactin有望成為新型綠色抑菌促生長(zhǎng)飼料添加劑在動(dòng)物養(yǎng)殖中廣泛應(yīng)用。
研究表明,Surfactin對(duì)豆科作物灰霉病[60]、水稻細(xì)菌性條斑?。?1]、黃瓜枯萎病[62]和生菜霜霉?。?3]等具有顯著的防治效果。Waewthongrak等[64]還發(fā)現(xiàn),枯草芽孢桿菌ABS-S14發(fā)酵粗提物(活性成分為Surfactin、Iturin A和Fengycin)可誘導(dǎo)植物過氧化物酶和L-苯丙氨酸解氨酶等抗病有關(guān)酶的活性的增強(qiáng),強(qiáng)烈抑制綠霉菌(Penicilium digitatum)Sacc的生長(zhǎng),降低柑桔類水果患病率。Surfactin還可替代化學(xué)表面活性劑,作為分散劑、農(nóng)藥助劑提高化肥和農(nóng)藥的使用效率[65-66]。
食品加工過程中,Surfactin可促進(jìn)脂肪乳化,控制脂肪聚集,有利于食品的加工,并保持食品的質(zhì)地和口感[67]。Surfactin的抗菌活性能有效控制食品中有害微生物的滋生,可作為生物防腐劑應(yīng)用在食品防腐保鮮領(lǐng)域[68]。研究表明,Surfactin可有效抑制乳中大腸桿菌 O157,延長(zhǎng)乳保質(zhì)期[69];納豆菌抗菌肽APNT-6(活性成分為Surfactin、Fengycin和Iturin)可減緩凡納濱對(duì)蝦貯藏過程中pH、揮發(fā)性鹽基氮和細(xì)菌總數(shù)增加,延長(zhǎng)2~3 d貨架期[70],Surfactin還能減緩肉制品儲(chǔ)藏過程中pH的上升,防止脂肪氧化,對(duì)肉制品儲(chǔ)藏起到良好的保鮮效果[51]。
Surfactin優(yōu)良的表面性能使其在原油采收、環(huán)境修復(fù)和化妝品等領(lǐng)域的應(yīng)用也頗具優(yōu)勢(shì)。Al-Wahaibi等[71]報(bào)道由枯草芽孢桿菌B30產(chǎn)Surfactin能分別提高17%~26%輕質(zhì)油采收率和31%稠油采收率。石油開采、運(yùn)輸、加工及儲(chǔ)存過程中,難以避免地會(huì)排入環(huán)境對(duì)土壤、水體造成污染。加入生物表面活性劑乳化烴類和水的混合液,增加烴類的降解是目前治理油污的有效方法之一。Singh等[72]以Surfactin為主要成分的脂肽生物表面活性劑洗滌含有石油烴的土壤,去除率達(dá)64.5%。通過利用Surfactin對(duì)重金屬離子的絡(luò)合作用,提高驅(qū)除土壤中重金屬的效率成為環(huán)境保護(hù)研究中的熱點(diǎn)之一[72-73]。此外,Surfactin可以改善化妝品的水洗性能,增加皮膚的光潤(rùn)和滑嫩性[74],在化妝品領(lǐng)域中應(yīng)用也極具吸引力。
Surfactin優(yōu)良的抗菌活性和特殊的抗菌機(jī)制使其有望成為抗生素潛在替代品之一,在醫(yī)藥、動(dòng)物養(yǎng)殖、農(nóng)業(yè)生物防治以及食品加工和保鮮等領(lǐng)域具有巨大的應(yīng)用價(jià)值。但目前Surfactin在生產(chǎn)實(shí)踐中廣泛應(yīng)用仍然面臨著一些挑戰(zhàn):1)Surfactin的抗菌機(jī)制尚不明確,關(guān)于Surfactin作用機(jī)制的研究多為體外模型模擬,而對(duì)Surfactin在生物體內(nèi)作用研究甚少;2)Surfactin發(fā)酵生產(chǎn)產(chǎn)量一般較低,受其特殊的兩親性質(zhì)的影響,Surfactin分離提純成本較高,大規(guī)模商品化生產(chǎn)至今還未實(shí)現(xiàn),極大限制了Surfactin的應(yīng)用。因此,通過改良生產(chǎn)菌株、改善發(fā)酵生產(chǎn)工藝和選擇適合的廉價(jià)的發(fā)酵底物等途徑提高Surfactin產(chǎn)量仍將是今后科研人員重點(diǎn)研究課題之一;3)Surfactin在不同領(lǐng)域中適宜的添加劑量有待研究,雖然毒理試驗(yàn)證明Surfactin的急性毒性屬實(shí)際低毒或無毒級(jí),但過高的濃度可能誘發(fā)細(xì)胞溶血,對(duì)細(xì)胞產(chǎn)生毒性仍然令人擔(dān)憂。因此,Surfactin安全有效的用量還需進(jìn)一步評(píng)估。隨著人們對(duì)Surfactin研究的深入和生物工程技術(shù)的不斷進(jìn)步,Surfactin的應(yīng)用必將取得突破性進(jìn)展。
[1] LEUNG E,WEIL D E,RAVIGLIONE M,et al.The WHO policy package to combat antimicrobial resistance[J].Bulletin of the World Health Organization,2011,89:390-392.
[2] 李冠楠,夏雪娟,隆耀航,等.抗菌肽的研究進(jìn)展及其應(yīng)用[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2014,26(1):17-25.
[3] BRANDENBURG L O,MERRES J,ALBRECHT L J,et al.Antimicrobial peptides:multifunctional drugs for different applications[J].Polymers,2012,4(1):539-560.
[4] 汪以真.動(dòng)物源抗菌肽的研究現(xiàn)狀和展望[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2014,26(10):2934-2941.
[5] HASSAN M,KJOS M,NESI F,et al.Natural antimicrobial peptides from bacteria:characteristics and potential applications to fight against antibiotic resistance[J].Journal of Applied Microbiology,2012,113(4):723-736.
[6] 陳琛.微生物源抗菌肽研究概況[J].生物技術(shù)通報(bào),2010(7):59-63.
[7] SEYDLOVá G,SVOBODOVá J.Review of surfactin chemical properties and the potential biomedical applications[J].Central European Journal of Medicine,2008,3(2):123-133.
[8] ARIMA K,KAKINUMA A,TAMURA G.Surfactin,a crystalline peptidelipid surfactant produced by Bacillus subtilis:isolation,characterization and its inhibition of fibrin clot formation[J].Biochemical and Biophysical Research Communications,1968,31(3):488-494.
[9] KAKINUMA A,SUGINO H,ISONO M,et al.Determination of fatty acid in surfactin and elucidation of the total structure of surfactin[J].Agricultural and Biological Chemistry,1969,33(6):973-976.
[10] KAKINUMA A,HORI M,ISONO M,et al.Determination of amino acid sequence in surfactin,a crystalline peptidelipid surfactant produced by Bacillus subtilis[J].Agricultural and Biological Chemistry,1969,33(6):971-972.
[11] BONMATIN J M,GENEST M,LABBé H,et al.Solution three-dimensional structure of surfactin:a cyclic lipopeptide studied by1H-nmr,distance geometry,and molecular dynamics[J].Biopolymers,1994,34(7):975-986.
[12] EEMAN M,BERQUAND A,DUFRêNE Y F,et al.Penetration of surfactin into phospholipid monolayers:nanoscale interfacial organization[J].Langmuir,2006,22(26):11337-11345.
[13] 彭麗麗.脂肽類生物表面活性劑的發(fā)酵優(yōu)化及其性質(zhì)和應(yīng)用研究[D].碩士學(xué)位論文.廣州:華南理工大學(xué),2011.
[14] HWANG Y H,KIM M S,SONG I B,et al.Subacute(28 day)toxicity of surfactin C,a lipopeptide produced by Bacillus subtilis in rats[J].Journal of Health Science,2009,55(3):351-355.
[15] 孫力軍,王雅玲,劉喚明,等.一種新型抗菌肽APNT-6的溶血性和急性毒性評(píng)價(jià)[J].水產(chǎn)學(xué)報(bào),2012,36(6):974-978.
[16] GOMAA E Z.Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey[J].Brazilian Archives of Biology and Technology,2013,56(2):259-268.
[17] 廖琦淑.表面素最適生產(chǎn)條件及生物活性之研究[D].碩士學(xué)位論文.基隆:國(guó)立臺(tái)灣海洋大學(xué),2009.
[18] 梁瑋斌.表面素抗菌機(jī)制之研究[D].碩士學(xué)位論文.基隆:國(guó)立臺(tái)灣海洋大學(xué),2010.
[19] 楊麗莉,呂鳳霞,別小妹,等.枯草芽孢桿菌抗菌脂肽對(duì)嗜水氣單胞菌抑菌效果[J].食品科學(xué),2011,32(1):193-198.
[20] PLAZAL G A ,TUREKL A ,KRóL E,et al.Antifungal and antibacterial properties of surfactin isolated from Bacillus subtilis growing on molasses[J].African Journal of Microbiology Research,2013,7(25):3165-3170.
[21] VOLLENBROICH D,?ZEL M,VATER J,et al.Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis[J].Biologicals,1997,25(3):289-297.
[22] HWANG Y H,PARK B K,LIM J H,et al.Lipopolysaccharide-binding and neutralizing activities of surfactin C in experimental models of septic shock[J].European Journal of Pharmacology,2007,556(1/2/3):166-171.
[23] VOLLENBROICH D,PAULI G,OZEL M,et al.Anti-mycoplasma properties and application in cell culture of surfactin,a lipopeptide antibiotic from Bacillus subtilis[J].Applied and Environmental Microbiology,1997,63(1):44-49.
[24] KRACHT M,ROKOS H,?ZEL M,et al.Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives[J].The Journal of Antibiotics,1999,52(7):613-619.
[25] HUANG X Q,LU Z X,ZHAO H Z,et al.Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus,porcine parvovirus,newcastle disease virus and infectious bursal disease virus in vitro[J].International Journal of Peptide Research and Therapeutics,2006,12(4):373-377.
[26] FEHRI L F,WRóBLEWSKI H,BLANCHARD A.Activities of antimicrobial peptides and synergy with enrofloxacin against Mycoplasma pulmonis[J].Antimicrobial Agents and Chemotherapy,2007,51(2):468-474.
[27] 黃現(xiàn)青,高曉平,牛新生,等.表面活性素抗球蟲作用的研究[J].中國(guó)病原生物學(xué)雜志,2008,3(1):43-45.
[28] CARRILLO C,TERUEL JA,ARANDA F J,et al.Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin[J].Biochimica et Biophysica Acta(BBA):Biomembranes,2003,1611(1/2):91-97.
[29] HEERKLOTZ H,SEELIG J.Leakage and lysis of lipid membranes induced by the lipopeptide surfactin[J].European Biophysics Journal,2007,36(4/5):305-314.
[30] PATEL H,HUYNH Q,B?RLEHNER D,et al.Additive and synergistic membrane permeabilization by antimicrobial(Lipo)peptides and detergents[J].Biophysical Journal,2014,106(10):2115-2125.
[31] DELEU M,LORENT J,LINS L,et al.Effects of surfactin on membrane models displaying lipid phase separation[J].Biochimica et Biophysica Acta(BBA):Biomembranes,2013,1828(2):801-815.
[32] BUCHOUX S,LAI-KEE-HIM J,GARNIER M,et al.Surfactin-triggered small vesicle formation of negatively charged membranes:a novel membrane-lysis mechanism[J].Biophysical Journal,2008,95(8):3840-3849.
[33] HUANG K C,LIN C M,TSAO H K,et al.The interactions between surfactants and vesicles:dissipative particle dynamics[J].The Journal of Chemical Physics,2009,130(24):245101.
[34] MAGET-DANA R,PTAK M.Iteractions of surfactin with membrane models[J].Biophysical Journal,1995,68(5):1937-1943.
[35] ROTTEM S.Membrane lipids of mycoplasmas[J].Biochimica et Biophysica Acta(BBA):Biomembranes,1980,604(1):65-90.
[36] BROGDEN K A.Antimicrobial peptides:pore formers or metabolic inhibitors in bacteria?[J].Nature Reviews Microbiology,2005,3(3):238-250.
[37] GUEGUEN Y,BERNARD R,JULIE F,et al.Oyster hemocytes express a proline-rich peptide displaying synergistic antimicrobial activity with a defensin[J].Molecular Immunology,2009,46(4):516-522.
[38] 劉喚明,孫力軍,王雅玲,等.納豆菌脂肽對(duì)金黃色葡萄球菌抑菌機(jī)理的研究[J].食品工業(yè)科技,2012,33(11):109-112.
[39] 劉喚明,孫力軍,王雅玲,等.納豆菌抗菌脂肽對(duì)副溶血弧菌的抑菌機(jī)理[J].食品科學(xué),2012,33(15):201-205.
[40] HUANG X Q,WANG Y F,CUI Y H,et al.Optimization of antifungal effect of surfactin and iturin to penicillium notatum in syrup of peach by RSM[J].International Journal of Peptide Research and Therapeutics,2010,16(2):63-69.
[41] 黃現(xiàn)青.Bacillus subtilis fmbJ產(chǎn)生的脂肽抗微生物效果及安全性評(píng)價(jià)[D].博士學(xué)位論文.南京:南京農(nóng)業(yè)大學(xué),2006.
[42] KALOORAZI N A,CHOOBARI M F S.Biosurfactants:properties and applications[J].Journal of Biology and Today’s World,2013,2(5):235-241.
[43] SABATé D C,AUDISIO M C.Inhibitory activity of surfactin,produced by different Bacillus subtilis subsp.Subtilis strains,against Listeria monocytogenes sensitive and bacteriocin-resistant strains[J].Microbiological Research,2013,168(3):125-129.
[44] DAS P,MUKHERJEE S,SEN R.Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans[J].Journal of Applied Microbiology,2008,104(6):1675-1684.
[45] HWANG M H,CHANG Z Q,KANG E H,et al.Surfactin C inhibits Mycoplasma hyopneumoniae-induced transcription of proinflammatory cytokines and nitric oxide production in murine RAW 264.7 cells[J].Biotechnology Letters,2008,30(2):229-233.
[46] LEE JH,NAM SH,SEO W T,et al.The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells[J].Food Chemistry,2012,131(4):1347-1354.
[47] DEHGHAN-NOUDEH G,HOUSAINDOKHT M,BAZZAZ B S.Isolation,characterization,and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633[J].Journal of Microbiology,2005,43(3):272-276.
[48] GAO Z Q,ZHAO X Y,LEE S,et al.WH1fungin a surfactin cyclic lipopeptide is a novel oral immunoadjuvant[J].Vaccine,2013,31(26):2796-2803.
[49] PAN H,ZHAO X Y,GAO Z Q,et al.A surfactin lipopeptide adjuvanted hepatitis B vaccines elicit enhanced humoral and cellular immune responses in mice[J].Protein and Peptide Letters,2014,21(9):901-910.
[50] GAO Z Q,ZHAO X Y,YANG T,et al.Immunomodulation therapy of diabetes by oral administration of a surfactin lipopeptide in NOD mice[J].Vaccine,2014,32(50):6812-6819.
[51] 章棟梁.Surfactin工業(yè)分離純化工藝及其對(duì)肉品的防腐保鮮效果[D].碩士學(xué)位論文.南京:南京農(nóng)業(yè)大學(xué),2013.
[52] 林逸朋.以半固態(tài)發(fā)酵生產(chǎn)表面素最適條件之探討與作為飼料添加劑之研究[D].碩士學(xué)位論文.基隆:國(guó)立臺(tái)灣海洋大學(xué),2013.
[53] 史慶超,盧俊姣,陸鵬,等.飼料中添加抗菌脂肽對(duì)吉富羅非魚生長(zhǎng)性能和腸道消化酶活性的影響[J].飼料工業(yè),2014,35(12):6-10.
[54] 石廣舉,孫力軍,王雅玲,等.NT-6抗菌脂肽對(duì)凡納濱對(duì)蝦生長(zhǎng)性能及養(yǎng)殖源頭弧菌數(shù)的影響[J].廣東農(nóng)業(yè)科學(xué),2014(12):119-122.
[55] 都海明,戚廣州,王建軍,等.抗菌脂肽對(duì)肉雞生產(chǎn)性能和免疫機(jī)能的影響[J].江蘇農(nóng)業(yè)學(xué)報(bào),2010,26(5):1009-1014.
[56] 都海明,陸兆新,王恬.抗菌脂肽對(duì)肉雞抗氧化能力及血清生化指標(biāo)的影響[J].畜牧與獸醫(yī),2010,42(6):8-13.
[57] 都海明,戚廣州,王建軍,等.抗菌脂肽對(duì)斷奶仔豬生長(zhǎng)性能、腸道微生物及血液指標(biāo)的影響研究[J].中國(guó)糧油學(xué)報(bào),2011,26(5):76-82.
[58] 喻紅波,伍冶,潘成國(guó).抗菌脂肽替代抗生素在斷奶仔豬生產(chǎn)中的應(yīng)用效果評(píng)價(jià)[J].飼料與畜牧,2012(9):12-14.
[59] KIM M S,LIM JH,PARK B K,et al.Effect of Surfactin on growth performance of weaning piglets in combination with Bacillus subtilis BC1212[J].Journal of Veterinary Clinics,2009,26(2):117-122.
[60] ONGENA M,JOURDAN E,ADAM A,et al.Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants[J].Environmental Microbiology,2007,9(4):1084-1090.
[61] 張榮勝,王曉宇,羅楚平,等.解淀粉芽孢桿菌Lx-11產(chǎn)脂肽類物質(zhì)鑒定及表面活性素對(duì)水稻細(xì)菌性條斑病的防治作用[J].中國(guó)農(nóng)業(yè)科學(xué),2013,46(10):2014-2021.
[62] 賈珂,李世東,劉桂君,等.枯草芽孢桿菌B006產(chǎn)surfactin突變株特性及其對(duì)黃瓜枯萎病的抑制能力[J].中國(guó)生物防治學(xué)報(bào),2013,29(4):538-546.
[63] DERAVEL J,LEMIèRE S,COUTTE F,et al.Mycosubtilin and surfactin are efficient,low ecotoxicity molecules for the biocontrol of lettuce downy mildew[J].Applied Microbiology and Biotechnology,2014,98(14):6255-6264.
[64] WAEWTHONGRAK W,PISUCHPEN S,LEELASUPHAKUL W.Effect of Bacillus subtilis and chitosan applications on green mold(Penicilium digitatum Sacc.)decay in citrus fruit[J].Postharvest Biology and Technology,2015,99:44-49.
[65] SACHDEV D P,CAMEOTRA S S.Biosurfactants in agriculture[J].Applied Microbiology and Biotechnology,2013,97(3):1005-1016.
[66] ROSTáS M,BLASSMANN K.Insects had it first:surfactants as a defence against predators[J].Proceedings Biological Sciences,2009,276(1657):633-638.
[67] MANDAL S M,BARBOSA A E A D,F(xiàn)RANCO O L.Lipopeptides in microbial infection control:scope and reality for industry[J].Biotechnology Advances,2013,31(2):338-345.
[68] MEENA K R,KANWAR SS.Lipopeptides as the antifungal and antibacterial agents:applications in food safety and therapeutics[J].Biomed Research International,2015,2015:1-9.
[69] 高曉平,胡惠,黃現(xiàn)青.Surfactin抑制乳中大腸桿菌O157活性研究[J].食品科學(xué),2009,30(11):91-94.
[70] 王東,孫力軍,王雅玲,等.納豆菌抗菌肽APNT-6對(duì)凡納濱對(duì)蝦的低溫保鮮效果[J].水產(chǎn)學(xué)報(bào),2012,36(7):1133-1139.
[71] AL-WAHAIBI Y,JOSHI S,AL-BAHRY S,et al.Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery[J].Colloids and Surfaces B:Biointerfaces,2014,114:324-333.
[72] SINGH A K,CAMEOTRA S S.Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil[J].Environmental Science and Pollution Research,2013,20(10):7367-7376.
[73] HARYANTO B,CHANG J S,CHANG C H.Application of biosurfactant surfactin on copper ion removal from sand surfaces with continuous flushing technique[J].Tenside Surfactants Detergents,2014,51(5):407-414.
[74] KANLAYAVATTANAKUL M,LOURITH N.Lipopeptides in cosmetics[J].International Journal of Cosmetic Science,2010,32(1):1-8.