李清,袁小會(huì),劉岑,吳元祥,劉兵,劉小寧,*
1.武漢軟件工程職業(yè)學(xué)院機(jī)械工程學(xué)院,湖北 武漢 430205;2.武漢工程大學(xué)機(jī)電工程學(xué)院,湖北 武漢 430205
有效試驗(yàn)數(shù)據(jù)對(duì)鋼材機(jī)械性能分布規(guī)律的影響
李清1,袁小會(huì)1,劉岑2,吳元祥1,劉兵1,劉小寧1,2*
1.武漢軟件工程職業(yè)學(xué)院機(jī)械工程學(xué)院,湖北 武漢 430205;2.武漢工程大學(xué)機(jī)電工程學(xué)院,湖北 武漢 430205
為了建立機(jī)械強(qiáng)度可靠性設(shè)計(jì)方法,必須分析鋼材抗拉強(qiáng)度與屈服強(qiáng)度的分布規(guī)律;判別抗拉強(qiáng)度與屈服強(qiáng)度試驗(yàn)數(shù)據(jù)的有效性是研究其分布規(guī)律的基礎(chǔ).應(yīng)用數(shù)理統(tǒng)計(jì)理論,建立了試驗(yàn)數(shù)據(jù)有效性的判別方法.基于9%預(yù)應(yīng)變奧氏體不銹鋼S30408在液氮溫度下的抗拉強(qiáng)度與屈服強(qiáng)度試驗(yàn)數(shù)據(jù),在單側(cè)置信度為99%時(shí),判別了試驗(yàn)數(shù)據(jù)的有效性;根據(jù)有效試驗(yàn)數(shù)據(jù)與可靠性理論,對(duì)鋼材抗拉強(qiáng)度與屈服強(qiáng)度的分布規(guī)律進(jìn)行了假設(shè)檢驗(yàn).研究表明:試驗(yàn)數(shù)據(jù)的有效性對(duì)分布規(guī)律的影響不可忽視;在顯著度為0.05時(shí),抗拉強(qiáng)度基本符合正態(tài)分布,屈服強(qiáng)度似不符合正態(tài)分布.
抗拉強(qiáng)度;屈服強(qiáng)度;試驗(yàn)數(shù)據(jù);有效性;分布規(guī)律;S30408鋼;9%預(yù)應(yīng)變
抗拉強(qiáng)度與屈服強(qiáng)度是鋼材機(jī)械性能的重要指標(biāo),基于試驗(yàn)數(shù)據(jù),分析與探索抗拉強(qiáng)度與屈服強(qiáng)度的分布規(guī)律,是建立機(jī)械強(qiáng)度可靠性設(shè)計(jì)方法的內(nèi)容之一[1-7].
獲得比較多的試驗(yàn)數(shù)據(jù)是分析與探索抗拉強(qiáng)度與屈服強(qiáng)度分布規(guī)律的前提,由于試驗(yàn)的影響因素比較多,試驗(yàn)數(shù)據(jù)比較分散[8-9],必須對(duì)試驗(yàn)數(shù)據(jù)的有效性進(jìn)行判別,剔除因意外因素影響而形成的無(wú)效數(shù)據(jù);因此,如何判別試驗(yàn)數(shù)據(jù)的有效性,是分析與探索分布規(guī)律的基礎(chǔ).文獻(xiàn)[1]認(rèn)為,當(dāng)試驗(yàn)數(shù)據(jù)比較少時(shí),可將鋼材的抗拉與屈服強(qiáng)度視作正態(tài)分布;隨著科學(xué)技術(shù)的進(jìn)步,鋼材試驗(yàn)數(shù)據(jù)的增加,對(duì)抗拉強(qiáng)度與屈服強(qiáng)度分布規(guī)律進(jìn)行分析成為可能.
文中應(yīng)用數(shù)理統(tǒng)計(jì)理論[1,10-11],建立了試驗(yàn)數(shù)據(jù)有效性的判別方法,基于9%預(yù)應(yīng)變奧氏體不銹鋼S30408在液氮溫度下的有效試驗(yàn)數(shù)據(jù),研究了其抗拉強(qiáng)度與屈服強(qiáng)度的分布規(guī)律.
工程上采用有限的試驗(yàn)數(shù)據(jù)分析鋼材抗拉強(qiáng)度與屈服強(qiáng)度的分布規(guī)律,如果通過(guò)試驗(yàn)測(cè)量得到抗拉與屈服強(qiáng)度的n組試驗(yàn)數(shù)據(jù)Ri(i=1,2,…,n),不難得到試驗(yàn)數(shù)據(jù)的準(zhǔn)確度與精密度[10-11]:
1.1 試驗(yàn)數(shù)據(jù)有效性的判別方法
單側(cè)置信度為(1~0.5α)時(shí),由試驗(yàn)數(shù)據(jù)組數(shù)n和t分布性質(zhì),可確定t分布系數(shù)tn-1,1-0.5α,作為試驗(yàn)數(shù)據(jù)有效性的判別依據(jù),文中所用的t分布系數(shù)如表1所示[11].
表1 t與χ2系數(shù)Table 1 Coefficient t andχ2
試驗(yàn)數(shù)據(jù)Ri有效性的判別指標(biāo)為[9]:
如果
則表明Ri不是有效試驗(yàn)數(shù)據(jù),需要剔除;剔除無(wú)效數(shù)據(jù)應(yīng)從試驗(yàn)數(shù)據(jù)的最大或者最小值開始,每剔除1個(gè)無(wú)效數(shù)據(jù),都要計(jì)算其余數(shù)據(jù)的準(zhǔn)確度與精密度,再進(jìn)行有效性判別;若存在r個(gè)無(wú)效數(shù)據(jù),則最后對(duì)(n-r)個(gè)有效數(shù)據(jù)需要重新計(jì)算其準(zhǔn)確度與精密度.
工程上認(rèn)為小概率事件在一次試驗(yàn)中是不可能發(fā)生的,因此可取α=0.10,0.05,0.02,本文取α=0.02,即在單側(cè)置信度為99%時(shí),分析試驗(yàn)數(shù)據(jù)的有效性,表明有99%把握認(rèn)為剔除的數(shù)據(jù)是意外因素影響而形成的無(wú)效數(shù)據(jù).
1.2 分布規(guī)律的假設(shè)檢驗(yàn)
在試驗(yàn)數(shù)據(jù)比較少時(shí),可將鋼材抗拉強(qiáng)度與屈服強(qiáng)度視為基本符合正態(tài)分布的隨機(jī)變量[1];隨著試驗(yàn)數(shù)據(jù)的增加,對(duì)抗拉強(qiáng)度與屈服強(qiáng)度分布規(guī)律進(jìn)行假設(shè)檢驗(yàn)成為可能,其具體方法是[1,11]:
(1)假設(shè).即假設(shè)鋼材抗拉強(qiáng)度與屈服強(qiáng)度基本符合正態(tài)分布.
(2)分組.根據(jù)有效試驗(yàn)數(shù)據(jù)個(gè)數(shù)(n-r),把有效試驗(yàn)數(shù)據(jù)R1、R2、…、Rn-r分為M個(gè)區(qū)間,M=1+3.3lg(n-r),并取整數(shù).
(3)計(jì)算理論頻數(shù).對(duì)于符合正態(tài)分布的隨機(jī)變量R,其統(tǒng)計(jì)量Ri落在分組區(qū)間[a1,a2],[a2,a3],…,[aM,aM+1]內(nèi)的理論概率為
式(5)中,Φ(·)為標(biāo)準(zhǔn)正態(tài)積分;a1=(Ri)min,aM+1=(Ri)max,(Ri)min、(Ri)max分別為Ri中的最小值與最大值.
其中
對(duì)于(n-r)個(gè)有效試驗(yàn)數(shù)據(jù),其統(tǒng)計(jì)量Ri落在分組區(qū)間[aj,aj+1]內(nèi)的理論頻數(shù)為(n-r)×pj.
(4)計(jì)算皮爾遜統(tǒng)計(jì)量之和.即計(jì)算每個(gè)分組區(qū)間實(shí)際頻數(shù)(Nj)與理論頻數(shù)(m-n)×pj差異的皮爾遜統(tǒng)計(jì)量之和,即計(jì)算:
工程上一般取顯著度δ=0.05,文中所用的系數(shù)見表1[1,11].
2.1 試驗(yàn)數(shù)據(jù)的有效性判別
奧氏體不銹鋼S30408是制造深冷容器的常用鋼材之一,在液氮溫度下,文獻(xiàn)[8]獲得了9%預(yù)應(yīng)變S30408鋼抗拉強(qiáng)度與屈服強(qiáng)度的43組試驗(yàn)數(shù)據(jù),由小至大的排序如表2所示.
表2 9%預(yù)應(yīng)變S30408鋼抗拉與屈服強(qiáng)度的43組試驗(yàn)數(shù)據(jù)Table 2 43 Sets test data of tensile and yield strength of 9%-prestrained steel S30408 MPa
將表2的試驗(yàn)數(shù)據(jù)代入式(1)與式(2),可分別得到43組抗拉與屈服強(qiáng)度的準(zhǔn)確度與精密度,如表3所示.
由式(3)與式(4)可知第43組抗拉強(qiáng)度試驗(yàn)數(shù)據(jù)Rm43=1 785 MPa的|t43|=2.436>t42,0.99=2.420,因此,該數(shù)據(jù)是無(wú)效的.余下的42組試驗(yàn)數(shù)據(jù)重新統(tǒng)計(jì),得到的統(tǒng)計(jì)數(shù)據(jù)列入表3;再一次用式(3)與式(4)可知,第42組Rm42=1 784 MPa抗拉強(qiáng)度試驗(yàn)數(shù)據(jù)的|t42|=2.640>t41,0.99=2.421,因此,該數(shù)據(jù)也是無(wú)效的;其他41組試驗(yàn)數(shù)據(jù)的統(tǒng)計(jì)參數(shù)列入表3,經(jīng)用式(3)與式(4)判別,41組試驗(yàn)數(shù)據(jù)的| ti|<t40,0.99=2.423,表明都是有效的.
用類似的方法,可知表2中屈服強(qiáng)度試驗(yàn)數(shù)據(jù)第1組ReL1=409 MPa的|t1|=2.787>t42,0.99=2.420,因此,該數(shù)據(jù)是無(wú)效的,需要剔除;其余42組試驗(yàn)數(shù)據(jù)的統(tǒng)計(jì)參數(shù)列入表3,經(jīng)用式(3)與式(4)判別,其余42組試驗(yàn)數(shù)據(jù)的|ti|<t41,0.99=2.421,表明其余試驗(yàn)數(shù)據(jù)均有效.
表3 試驗(yàn)數(shù)據(jù)的統(tǒng)計(jì)Table 3 Test data statistics MPa
2.2 抗拉強(qiáng)度分布規(guī)律的假設(shè)檢驗(yàn)
表4 抗拉強(qiáng)度的皮爾遜統(tǒng)計(jì)量χ2(41組有效試驗(yàn)數(shù)據(jù))Table 4 Statisticχ2of tensile strength(41 sets validity test data)
3.1 試驗(yàn)數(shù)據(jù)有效性對(duì)分布規(guī)律分析的影響
如果不考慮試驗(yàn)數(shù)據(jù)的有效性,按上述方法計(jì)算43組抗拉強(qiáng)度試驗(yàn)數(shù)據(jù)的皮爾遜統(tǒng)計(jì)量之和,如表5所示.
表5 抗拉強(qiáng)度的皮爾遜統(tǒng)計(jì)量χ2(43組試驗(yàn)數(shù)據(jù))Table 5 Statisticχ2of tensile strength(43 sets test data)
根據(jù)以上討論可知,應(yīng)用數(shù)理統(tǒng)計(jì)理論,分析試驗(yàn)數(shù)據(jù)的有效性,是分析抗拉強(qiáng)度分布規(guī)律的基礎(chǔ),如果不剔除無(wú)效數(shù)據(jù),可能得到不正確的結(jié)論.
3.2 屈服強(qiáng)度分布規(guī)律的討論
在液氮溫度下,9%預(yù)應(yīng)變奧氏體不銹鋼S30408屈服強(qiáng)度的分布規(guī)律,也可采用假設(shè)檢驗(yàn)方法進(jìn)行分析.
假設(shè)屈服強(qiáng)度基本符合正態(tài)分布,基于42組有效試驗(yàn)數(shù)據(jù),可得到屈服強(qiáng)度的皮爾遜統(tǒng)計(jì)量,如表6所示.
表6 屈服強(qiáng)度的皮爾遜統(tǒng)計(jì)量(42組有效試驗(yàn)數(shù)據(jù))Table 6 Statisticof yield strength(42 sets validity test data)
以上分析表明,奧氏體不銹鋼S30408抗拉強(qiáng)度與屈服強(qiáng)度的分布規(guī)律可能存在不一致.
另外,文獻(xiàn)[8-9]利用所有試驗(yàn)數(shù)據(jù),分析奧氏體不銹鋼S30408抗拉強(qiáng)度與屈服強(qiáng)度的分布規(guī)律與分布參數(shù),沒有剔除無(wú)效數(shù)據(jù)似不妥.
a.試驗(yàn)數(shù)據(jù)的有效性對(duì)鋼材機(jī)械性能分布規(guī)律的研究影響比較大,如果不剔除無(wú)效數(shù)據(jù),可能得到不正確的結(jié)論;文中建立了試驗(yàn)數(shù)據(jù)有效性的分析方法,在單側(cè)置信度為99%時(shí),分析了有關(guān)試驗(yàn)數(shù)據(jù)的有效性.
b.在顯著度為0.05時(shí),9%預(yù)應(yīng)變奧氏體不銹鋼S30408在液氮溫度下的抗拉強(qiáng)度,是基本符合正態(tài)分布的隨機(jī)變量,但其屈服強(qiáng)度似不符合正態(tài)分布.
c.建立機(jī)械強(qiáng)度的可靠性設(shè)計(jì)方法,必須重視鋼材抗拉強(qiáng)度與屈服強(qiáng)度分布規(guī)律可能存在的不一致.
致謝
感謝湖北省教育廳科研項(xiàng)目(B2014209)對(duì)本研究的資助!
[1]徐灝.機(jī)械強(qiáng)度的可靠性設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,1984.
XU Hao.Mechanical strength reliability design[M].Beijing:Mechanical Industry Publishing House,1984.(in Chinese)
[2]袁小會(huì),劉岑,吳元祥,等.單層厚壁圓筒容器爆破壓力的分布規(guī)律與參數(shù)[J].武漢工程大學(xué)學(xué)報(bào),2014,36(2):49-55.
YUAN Xiao-h(huán)ui,LIU Cen,WU Yuan-xiang,et al. Distribution law and parameters of monolayer thickwall cylindrical vessel burst pressure[J].Journal of Wuhan Institute of Technology,2014,36(2):49-55.(in Chinese)
[3]劉小寧,劉岑,張紅衛(wèi),等.球形容器靜強(qiáng)度的分布規(guī)律與參數(shù)[J].壓力容器,2012,29(8):26-30.
LIU Xiao-ning,LIU Cen,ZHANG Hong-wei,et al.New methods of calculation distribution law and parameters of the spherical vessel static strength[J].Pressure Vessel Technology,2012,29(8):26-30.(in Chinese)
[4]劉小寧.基于許用可靠度的超高壓圓筒爆破安全系數(shù)[J].制造業(yè)自動(dòng)化,2015,37(2):73-75.
LIU Xiao-ning.Burst safety factor of super-h(huán)igh pressure cylinder based on allowable reliability[J].Manufacturing Automation,2015,37(2):73-75.(in Chinese)
[5]劉小寧,張紅衛(wèi),劉岑,等.鋼制薄壁內(nèi)壓容器靜強(qiáng)度的可靠性設(shè)計(jì)[J].工業(yè)安全與環(huán)保,2011,37(3):48-50.
LIU Xiao-ning,ZHANG Hong-wei,LIU Cen,et al.Reliability design of static strength for steel thin wall ento-pressure vessel[J].Industrial Safety and Environmental Protection,2011,37(3):48-50.(in Chinese)
[6]劉小寧,劉岑,劉兵,等.密封螺栓的模糊許用可靠度與安全系數(shù)[J].現(xiàn)代制造工程,2014(10):134-137.
LIU Xiao-ning,LIU Cen,LIU Bing,et al.Safety factor of seal bolt based on fuzzy allowable reliability[J].Modern Manufacturing Engineering,2014(10):134-137.(in Chinese)
[7]劉小寧,張紅衛(wèi),韓春鳴.基于模糊可靠度的薄壁外壓容器穩(wěn)定性設(shè)計(jì)[J].機(jī)械強(qiáng)度,2011,33(2):217-224.
LIU Xiao-ning,ZHANG Hong-wei,HAN Chun-ming.Stability design of steel thin wall external pressure vessels based on fuzzy reliability[J].Journal of Mechanical Strength,2011,33(2):217-224.(in Chinese)
[8]鄭津洋,王珂,黃澤,等.液氮溫度下奧氏體不銹鋼強(qiáng)度試驗(yàn)研究[J].壓力容器,2014,31(8):1-6.
ZHENG Jin-yang,WANG Ke,HUANG Ze,et al.Study on strength of austenite stainless steel under liquid-nitrogen temperature[J].Pressure Vessel Technology,2014,31(8):1-6.(in Chinese)
[9]黃澤,繆存堅(jiān),李濤,等.預(yù)拉伸奧氏體不銹鋼常溫拉伸力學(xué)性能試驗(yàn)研究[J].壓力容器,2013,30(6):7-11.
HUANG Ze,MIAO Cun-jian,LI Tao,et al.Experimental study on tensile mechanical properties of prestrained austenitic stainless steel at normal atmospheric temperature[J].Pressure Vessel Technology,2013,30(6):7-11.(in Chinese)
[10]劉智敏.誤差與數(shù)據(jù)處理[M].北京:原子能出版社,1981.
LIU Zhi-min.Errors and data processing[M].Beijing:Atomic Energy Press,1981.(in Chinese)
[11]化學(xué)工程手冊(cè)編輯委員會(huì).化工應(yīng)用數(shù)學(xué)[M].北京:化學(xué)工業(yè)出版社,1983:23-28,369-375.
Editorial Board of Chemical Engineering Handbook.Chemical application mathematics[M].Beijing:Chemical Industry Press,1983:23-28,369-375.(in Chinese)
Validity test data effect on steel mechanical properties distribution law
LI Qing1,YUAN Xiao-h(huán)ui1,LIU Cen2,WU Yuan-xiang1,LIU Bing1,LIU Xiao-ning1,2*
1.School of Mechanical Engineering,Wuhan Polytechnic College of Software and Engineering,Wuhan 430205,China;2.School of Mechanical and Electrical Engineering,Wuhan Institute of Technology,Wuhan 430205,China
To establish mechanical strength reliability design method,the tensile strength and yield strength of the steel distribution law must be analyzed;distinguishing the test data validity of steel tensile strength and yield strength is the basis of studying distribution law.Applying mathematical statistics theory,the method for judging the validity of test data was established.Based on tensile strength and yield strength test data of 9%-prestrained austenite stainless steel S30408 at liquid nitrogen temperature,the test data validity was judged at one-sided confidence of 99%;the distribution law of the steel tensile strength and yield strength was studied by hypothetical test based on the validity test data and reliability theory.Results show that the influence of the validity of test data on the distribution law cannot be ignored;at the saliency of 0.05,the tensile strength is random variable which conforms to normal distribution while the yield strength seems not consistent with the normal distribution.
tensile strength;yield strength;test data;validity;distribution law;steel S30408;9%-prestrained
TH 49 O213.2
A
10.3969/j.issn.1674-2869.2015.04.015
1674-2869(2015)04-0069-05
本文編輯:陳小平
2015-03-02
湖北省教育廳科研項(xiàng)目(B2014209)
李清(1965-),女,湖北武漢人,副教授.研究方向:機(jī)械設(shè)計(jì)與制造等.*通信聯(lián)系人.