隆艷艷,焦順昌
1重慶市腫瘤研究所 腫瘤放射治療科,重慶 400030;2解放軍總醫(yī)院 腫瘤內(nèi)科,北京 100853
mTOR抑制劑對炎癥相關(guān)細胞因子分泌的影響
隆艷艷1,焦順昌2
1重慶市腫瘤研究所 腫瘤放射治療科,重慶 400030;2解放軍總醫(yī)院 腫瘤內(nèi)科,北京 100853
哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)抑制劑因其免疫抑制作用和抗腫瘤作用,目前已廣泛應(yīng)用于移植后抗排斥反應(yīng)及多種惡性腫瘤的治療中。然而,在臨床中發(fā)現(xiàn)其可導(dǎo)致腎小球腎炎、間質(zhì)性肺炎、慢性炎癥性貧血等炎癥相關(guān)不良反應(yīng)。有研究報道,細胞因子作為炎癥介質(zhì)的重要組成之一,其產(chǎn)生受mTOR抑制劑的影響,本文主要就mTOR抑制劑對炎癥相關(guān)細胞因子分泌的影響及可能作用機制進行綜述,為改善mTOR抑制劑所致炎癥相關(guān)藥物不良反應(yīng)提供研究思路。
mTOR抑制劑;藥物不良反應(yīng);炎癥;細胞因子
哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)抑制劑目前已作為免疫抑制劑和抗腫瘤藥物廣泛應(yīng)用于臨床。然而,在臨床使用過程中,有少部分患者出現(xiàn)了包括間質(zhì)性肺炎、淋巴細胞性肺泡炎在內(nèi)的肺毒性表現(xiàn),以及腎小球腎炎、胃炎、慢性炎癥性貧血等炎癥相關(guān)不良反應(yīng),可見mTOR抑制劑有一定的促炎作用。炎癥相關(guān)細胞因子與許多炎癥相關(guān)疾病密切相關(guān)。如IL-1能促進內(nèi)皮細胞黏附分子、腎小球系膜細胞COX-2、軟骨細胞基質(zhì)金屬蛋白酶的表達,與類風濕關(guān)節(jié)炎、骨關(guān)節(jié)炎、炎性腸病等疾病的發(fā)生密切相關(guān)[1]。TNF-α和IL-1β表達的升高與感染性休克密切相關(guān)[2]。IL-6及其所在通路的激活與某些炎性疾病及炎癥相關(guān)腫瘤有關(guān),因此,抗IL-6或IL-6R的策略有望成為非常有前景的治療手段[3]?,F(xiàn)有研究表明,mTOR抑制劑會影響炎癥相關(guān)細胞因子的產(chǎn)生,探索mTOR抑制劑對炎癥相關(guān)細胞因子分泌的影響及可能作用機制對改善mTOR抑制劑所致炎癥相關(guān)不良反應(yīng)有重要臨床價值。本文主要就上述相關(guān)研究進展進行綜述。
對mTOR的認識,是源于對雷帕霉素(Rapamycin)作用靶點的探索。研究證實,mTOR作為一種非典型的絲、蘇氨酸蛋白激酶,在調(diào)節(jié)細胞生長、增殖、細胞代謝、自噬等中起著重要作用[4]。它的功能失調(diào),與自身免疫性疾病、惡性腫瘤、肥胖、衰老等密切相關(guān)[5]。
mTOR整合了上游來自多條信號通路的信息,包括多種生長因子、細胞因子、營養(yǎng)、壓力[6],是關(guān)鍵的樞紐分子。目前公認的上游信號通路有PI3K-Akt、Wnt-GSK以及AMPK(AMP-activated protein kinase)[4]。其中,PI3K-Akt通路是目前認為與細胞增殖、耐藥最相關(guān)的通路之一,該通路的異常激活常在腫瘤以及化療耐藥中發(fā)現(xiàn)[7-11],這也解釋了為什么針對下游mTOR的抑制劑能起到抗腫瘤、逆轉(zhuǎn)耐藥的作用。另外,PI3K/Akt/mTOR信號軸也接收來自免疫微環(huán)境的信號,例如T細胞受體(T cell receptors,TCR)、共刺激分子CD28(cluster of differentiation 28)和白介素家族,從而起到相應(yīng)的免疫調(diào)節(jié)功能[6]。
對mTOR下游靶分子的研究提示,mTOR通過與不同的適配子結(jié)合形成兩種主要復(fù)合物 — mTORC1和mTORC2,其在上、下游效應(yīng)分子以及功能上有所不同。目前對mTORC1的研究更為深入,其在蛋白合成、脂質(zhì)代謝、細胞增殖中有著重要的作用[4,6,12]。40S核糖體6激酶1(S6 kinase 1,S6K1)和真核細胞翻譯起始因子4E結(jié)合蛋白1(4E binding protein 1,4EBP1)是mTORC1下游最重要的兩個效應(yīng)分子。磷酸化的S6K1通過增強相關(guān)mRNA的翻譯而促進細胞生長;而磷酸化的4EBP1解除eIF4E(eukaryotic initiation factor 4E)對下游的抑制作用,進而也促進mRNA的翻譯[4,6]。這些mRNA涉及編碼一系列細胞因子、細胞周期調(diào)控點蛋白、生長因子等。對于mTORC2的研究相對較少,目前多認為其與Akt的磷酸化有關(guān)[4]。
雷帕霉素作為最早發(fā)現(xiàn)和認識的mTOR抑制劑,主要通過與FK506結(jié)合蛋白(FK-binding protein12,F(xiàn)KBP12)結(jié)合形成復(fù)合物,此復(fù)合物與mTOR的FRB (FKBP12 rapamycinbinding,F(xiàn)RB)區(qū)域結(jié)合,進而抑制mTOR下游復(fù)合物的功能(目前觀點認為是mTORC1而非mTORC2[4,13-14]),使得上游來的信號不能傳遞到下游效應(yīng)分子,最終影響細胞生長、增殖、代謝等。除了雷帕霉素(又稱西羅莫司),常見的mTOR抑制劑還包括CCI-779(temsirolimus)、依維莫司(everolimus)、Deforolimus等雷帕霉素衍生物[14-15]。它們作用機制類似,但一般認為在化學(xué)結(jié)構(gòu)、藥物穩(wěn)定性、藥物代謝及不良反應(yīng)上后者更有優(yōu)勢[14,16]。
mTOR抑制劑最初被當作抗真菌藥使用,通過對其作用機制的不斷深入認識,目前更多的是作為免疫抑制劑、抗腫瘤藥物等用于臨床。mTOR抑制劑能抑制T、B細胞的增殖,抑制DCs細胞的激活和分化,促進CD4+T細胞向Treg細胞分化,從而具有強大的免疫抑制作用[4],且較常規(guī)的免疫抑制劑,如鈣調(diào)磷酸酶類抑制劑環(huán)孢素A,其不良反應(yīng)明顯降低,所以已經(jīng)常規(guī)用于腎移植患者術(shù)后[4]。很多腫瘤中均發(fā)現(xiàn)mTOR所在通路的異常激活,所以抑制mTOR,能有效地控制腫瘤的生長[10-11,14,17]。mTOR抑制劑通過抑制細胞周期調(diào)控點蛋白mRNA的轉(zhuǎn)錄和翻譯,將細胞周期阻滯在G1期進而抑制腫瘤細胞的增殖[12,18],但也有少部分報道其有促凋亡的細胞毒作用[19-20],這可能取決于細胞類型。對于激素受體陽性,Her-2陰性的晚期乳腺癌,給予來曲唑或阿那曲唑等內(nèi)分泌治療失敗后,給予依西美坦聯(lián)合mTOR抑制劑依維莫司,患者仍能從中獲益[21-22]。對Her-2陽性的晚期乳腺癌患者,赫賽汀(Her-2抑制劑)用藥進展后,可以繼續(xù)使用赫賽汀同時聯(lián)合依維莫司[23]。以上是基于這些信號之間存在交叉對話,能激活PI3K/Akt/ mTOR通路[15,23-24],該通路是目前公認的耐藥相關(guān)通路[7-9],遂加用mTOR抑制劑后,患者可從之前的內(nèi)分泌或靶向治療中獲益。
基于臨床前期研究和臨床試驗結(jié)果,mTOR抑制劑已獲批應(yīng)用于移植術(shù)后抗排斥反應(yīng)和多種腫瘤治療中,包括腎細胞癌、乳腺癌、胰腺神經(jīng)內(nèi)分泌腫瘤、伴結(jié)節(jié)性硬化的室管膜下巨細胞星形細胞、成人腎血管肌脂肪瘤和復(fù)合型結(jié)節(jié)硬化病[21]。然而,在臨床使用時,有少部分患者出現(xiàn)了藥物不良反應(yīng)。如移植術(shù)后患者使用雷帕霉素/依維莫司出現(xiàn)腎小球腎炎、間質(zhì)性肺炎、淋巴細胞性肺泡炎、慢性炎癥相關(guān)性貧血[16,25-28]。依維莫司被美國FDA批準用于舒尼替尼(sunitinib)或索拉非尼(sorafenib)治療失敗的晚期腎細胞癌,這主要基于臨床試驗RECORD-1的結(jié)果[29-30],它是一個國際多中心的、隨機對照Ⅲ期臨床研究,主要證實依維莫司對于既往VEGFR-TKIs治療進展的轉(zhuǎn)移性腎細胞癌的有效性和安全性,試驗結(jié)果表明,該藥物總體耐受性良好,但有罕見嚴重不良反應(yīng),其中包括非感染性肺炎。BOLERO-2臨床試驗結(jié)果[21-22]使得依維莫司可聯(lián)合依西美坦用于非甾體類芳香化酶抑制劑治療失敗的絕經(jīng)后激素受體陽性、HER2陰性的晚期乳腺癌患者,而接受依維莫司治療的主要不良反應(yīng)是口腔潰瘍和肺間質(zhì)纖維化。綜上不難看出,mTOR抑制劑有一定的促炎作用。
炎癥是具有血管系統(tǒng)的活體組織對一系列損傷因子所發(fā)生的復(fù)雜的吞噬、清除等防御反應(yīng),它本身是機體抵御外界感染、抵御外界不良刺激的重要防御機制。然而,當炎癥過度或調(diào)控不當時,會引起各種病理表現(xiàn),如慢性肉芽腫性炎、間質(zhì)性肺炎、纖維素性心包炎等。參與炎癥反應(yīng)過程涉及結(jié)締組織、單核-巨噬細胞、中性粒細胞、細胞外基質(zhì),以及一系列炎癥相關(guān)細胞因子等。后者在炎癥的發(fā)生發(fā)展過程中起著重要和不可替代的作用,常見的有IL-1β、IL-2、IL-6、IL-10、IL-23、TNF-α、TGF-β和炎癥趨化因子等。它們主要由單核-巨噬細胞系統(tǒng)(主要包括巨噬細胞、單核細胞、樹突狀細胞)產(chǎn)生,但也可由其他細胞產(chǎn)生。如IL-2可由活化的T細胞產(chǎn)生,IL-8、IL-1還可以分別由成纖維細胞、內(nèi)皮細胞產(chǎn)生。目前,mTOR抑制劑對炎癥相關(guān)細胞因子分泌的影響已有不少研究。
Weichhart等[27-28]報道,mTOR抑制劑雷帕霉素通過轉(zhuǎn)錄因子NF-κB上調(diào)樹突狀細胞分泌促炎細胞因子IL-6/12/23、IL-1β、TNF-α的表達,通過轉(zhuǎn)錄因子STAT3下調(diào)抗炎細胞因子IL-10的產(chǎn)生。另外,對于結(jié)核分枝桿菌誘導(dǎo)激活的人巨噬細胞,雷帕霉素顯著增加其細胞因子IL-12、IL-23p40(p40)、IL-23p19(p19)mRNA的表達和IL-23蛋白的表達[31]。
但也有不同觀點,有研究者認為,雷帕霉素抑制樹突狀細胞產(chǎn)生IL-12、TNF[32]。同樣,Schmitz等[2]研究表明,雷帕霉素損害TLR誘導(dǎo)激活的巨噬細胞和樹突狀細胞產(chǎn)生IL-10、IL-6、TNF-α和IL-2,損害外周血單個核細胞(peripheral blood mononuclear cell,PBMC)產(chǎn)生IL-10,唯一例外的是,不管在巨噬細胞還是PBMC中,其IL-12p40的產(chǎn)生卻是增加的。同時,研究還發(fā)現(xiàn),mTOR抑制劑增加內(nèi)毒素所致休克的死亡率,并認為這與藥物抑制mTOR后反饋性增加生物活性IL-1β的表達有關(guān)。IL-1β是目前公認的最具促炎作用的細胞因子之一,主要由單核-巨噬細胞、內(nèi)皮細胞產(chǎn)生。另有學(xué)者探索mTOR抑制劑對LPS刺激的單核細胞釋放炎癥趨化因子的影響,結(jié)果發(fā)現(xiàn)西羅莫司通過抑制NF-κB-p65和MAPK-p38信號通路下調(diào)MCP-1、RANTES、IL-8、MIP-1α、MIP-1β的表達[33]。
可以看出,以上mTOR抑制劑對細胞因子分泌影響的報道多集中于單核/巨噬細胞系統(tǒng),它是機體固有免疫系統(tǒng)的重要組成之一,也是分泌細胞因子最主要的細胞類型,后續(xù)研究可以進一步擴大到其他細胞類型。除了針對特定的細胞群,籠統(tǒng)地探索mTOR抑制劑對炎癥相關(guān)細胞因子分泌的影響也有報道。有學(xué)者用脂多糖LPS誘發(fā)急性肺損傷小鼠模型,發(fā)現(xiàn)mTOR抑制劑雷帕霉素可顯著降低其炎性細胞因子TNF-α、IL-6的產(chǎn)生,盡管對急性肺損傷嚴重程度和生存無明顯改善[34]。同樣,Uestuen等[35]也在體外模擬急性肺損傷模型,提前給予小鼠mTOR抑制劑依維莫司或PI3K/mTOR雙靶點抑制劑NVP-BEZ235,再給予LPS或LPS/油酸誘發(fā)急性肺損傷,結(jié)果發(fā)現(xiàn),給予上述抑制劑并沒有加重小鼠肺部組織病理的嚴重程度,但在LPS/油酸誘導(dǎo)的肺損傷模型中兩種抑制劑均減少促炎細胞因子TNF-α、IL-6的表達,而在LPS誘導(dǎo)的模型中,NVPBEZ235使促炎細胞因子在作用后24 h的表達升高,依維莫司卻不影響促炎細胞因子的表達水平。作者認為不同條件誘導(dǎo)下,藥物對細胞因子分泌的影響不同。
隨著mTOR抑制劑適應(yīng)證的不斷擴大,解決其炎癥相關(guān)藥物不良反應(yīng)顯得極為迫切和重要。深入了解mTOR抑制劑對炎癥相關(guān)細胞因子分泌的影響及相關(guān)機制,有助于我們找到逆轉(zhuǎn)炎癥反應(yīng)的突破口,以解決mTOR抑制劑的藥物相關(guān)炎癥不良反應(yīng)。
1 Perregaux DG, Mcniff P, Laliberte R, et al. ATP acts as an agonist to promote stimulus-induced secretion of IL-1 beta and IL-18 in human blood[J]. J Immunol, 2000, 165(8): 4615-4623.
2 Schmitz F, Heit A, Dreher S, et al. Mammalian target of rapamycin(mTOR) orchestrates the defense program of innate immune cells[J]. Eur J Immunol, 2008, 38(11): 2981-2992.
3 Neurath MF, Finotto S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer[J]. Cytokine Growth Factor Rev, 2011, 22(2): 83-89.
4 Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition[J]. Nat Rev Immunol, 2009, 9(5): 324-337.
5 Perl A. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging[J]. Ann N Y Acad Sci, 2015, 1346(1): 33-44.
6 Soliman GA. The role of mechanistic target of rapamycin (mTOR)complexes signaling in the immune responses[J]. Nutrients, 2013,5(6): 2231-2257.
7 Dave B, Migliaccio I, Gutierrez MC, et al. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers[J]. J Clin Oncol, 2011, 29(2):166-173.
8 Chen X, Wang H, Ou-Yang XN, et al. Research on drug resistance mechanism of trastuzumab caused by activation of the PI3K/Akt signaling pathway[J]. Contemp Oncol (Pozn), 2013, 17(4): 363-369.
9 Li Y, Chen K, Li L, et al. Overexpression of SOX2 is involved in paclitaxel resistance of ovarian cancer via the PI3K/Akt pathway[J/ OL]. http://link.springer.com/article/10.1007%2Fs13277-015-3561-3565.
10 Myers AP. New strategies in endometrial cancer: targeting the PI3K/ mTOR pathway--the devil is in the details[J]. Clin Cancer Res,2013, 19(19): 5264-5274.
11 Beck JT, Ismail A, Tolomeo C. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)pathway: an emerging treatment strategy for squamous cell lung carcinoma[J]. Cancer Treat Rev, 2014, 40(8): 980-989.
12 Mita MM, Mita A, Rowinsky EK. The molecular target of rapamycin(mTOR) as a therapeutic target against cancer[J]. Cancer Biol Ther, 2003, 2(4 Suppl 1):S169-S177.
13 Barrett D, Brown VI, Grupp SA, et al. Targeting the PI3K/AKT/ mTOR signaling axis in children with hematologic malignancies[J]. Paediatr Drugs, 2012, 14(5): 299-316.
14 Gibbons JJ, Abraham RT, Yu K. Mammalian target of rapamycin:discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth[J]. Semin Oncol, 2009, 36(Suppl 3): S3-S17.
15 Chan S. Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer[J]. Br J Cancer, 2004, 91(8):1420-1424.
16 Molas-Ferrer G, Soy-Muner D, Anglada-Martínez H, et al. Interstitial pneumonitis as an adverse reaction to mTOR inhibitors[J]. Nefrologia, 2013, 33(3): 297-300.
17 Dowling RJ, Pollak M, Sonenberg N. Current status and challenges associated with targeting mTOR for cancer therapy[J]. BioDrugs,2009, 23(2): 77-91.
18 Witzig TE, Reeder C, Han JJ, et al. The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma[J]. Blood,2015, 126(3): 328-335.
19 Cai YC, Xia Q, Su Q, et al. mTOR inhibitor RAD001 (everolimus)induces apoptotic, not autophagic cell death, in human nasopharyngeal carcinoma cells[J]. Int J Mol Med, 2013, 31(4):904-912.
20 Teachey DT, Obzut DA, Cooperman J, et al. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL[J]. Blood, 2006, 107(3): 1149-1155.
21 Peterson ME. Management of adverse events in patients with hormone receptor-positive breast cancer treated with everolimus: observations from a phase III clinical trial[J]. Support Care Cancer, 2013, 21(8):2341-2349.
22 Noguchi S, Masuda N, Iwata H, et al. Efficacy of everolimus with exemestane versus exemestane alone in Asian patients with HER2-negative, hormone-receptor-positive breast cancer in BOLERO-2[J]. Breast Cancer, 2014, 21(6): 703-714.
23 Mohd Sharial MS, Crown J, Hennessy BT. Overcoming resistance and restoring sensitivity to HER2-targeted therapies in breast cancer[J]. Ann Oncol, 2012, 23(12): 3007-3016.
24 Simoncini T, Hafezi-Moghadam A, Brazil DP, et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase[J]. Nature, 2000, 407(683): 538-541.
25 Dittrich E, Schmaldienst S, Soleiman A, et al. Rapamycinassociated post-transplantation glomerulonephritis and its remission after reintroduction of calcineurin-inhibitor therapy[J]. Transpl Int, 2004, 17(4): 215-220.
26 Lopez P, Kohler S, Dimri S. Interstitial Lung Disease Associated with mTOR Inhibitors in Solid Organ Transplant Recipients: Results from a Large Phase III Clinical Trial Program of Everolimus and Review of the Literature[J/OL]. http://www.hindawi.com/journals/ jtrans/2014/305931.
27 Weichhart T, Haidinger M, Katholnig K, et al. Inhibition of mTOR blocks the anti-inflammatory effects of glucocorticoids in myeloid immune cells[J]. Blood, 2011, 117(16): 4273-4283.
28 Weichhart T, Costantino G, Poglitsch MA, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response[J]. Immunity, 2008, 29(4): 565-577.
29 Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised,placebo-controlled phase III trial[J]. Lancet, 2008, 372(9637):449-456.
30 Motzer RJ, Escudier B, Oudard S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma : final results and analysis of prognostic factors[J]. Cancer, 2010, 116(18): 4256-4265.
31 Yang CS, Song CH, Lee JS, et al. Intracellular network of phosphatidylinositol 3-kinase, mammalian target of the rapamycin/70 kDa ribosomal S6 kinase 1, and mitogen-activated protein kinases pathways for regulating mycobacteria-induced IL-23 expression in human macrophages[J]. Cell Microbiol, 2006, 8(7): 1158-1171.
32 Hackstein H, Taner T, Zahorchak AF, et al. Rapamycin inhibits IL-4--induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo[J]. Blood, 2003, 101(11):4457-4463.
33 Lin HY, Chang KT, Hung CC, et al. Effects of the mTOR inhibitor rapamycin on monocyte-secreted chemokines[J]. BMC Immunol,2014, 15: 37.
34 Wang L, Gui YS, Tian XL, et al. Inactivation of mammalian target of rapamycin (mTOR) by rapamycin in a murine model of lipopolysaccharide-induced acute lung injury[J]. Chin Med J (Engl),2011, 124(19): 3112-3117.
35 Uestuen S, Lassnig C, Preitschopf AA, et al. Effects of the mTOR inhibitor everolimus and the PI3K/mTOR inhibitor NVP-BEZ235 in murine acute lung injury models[J]. Transpl Immunol, 2015, 33(1):45-50.
Effect of mTOR inhibitor on secretion of inflammation-related cytokines
LONG Yanyan1, JIAO Shunchang2
1Department of Radiotherapy, Chongqing Cancer Institute, Chongqing 400030, China;2Department of Medical Oncology, Chinese PLA General Hospital, Beijing 100853, China
JIAO Shunchang. Email: jiaosc@vip.sina.com
Inhibitors of mammalian target of rapamycin (mTOR) have been widely applied both as anti-rejection medicine after transplant surgery and anti-tumor agent in various cancer patients. However, it is found to have inflammation-related adverse effect in clinical practice, such as glomerulonephritis, interstitial pneumonia, chronic inflammatory anemia and so on. Cytokine is an important component of inflammatory mediators, whose secretion will be affected by mTOR inhibitors. This article reviews the effect of mTOR inhibitors on the secretion of inflammation-related cytokines and the possible mechanisms, in order to provide some tips for improving the inflammation-related adverse effect induced by mTOR inhibitors.
mTOR inhibitor; adverse drug reaction; inflammation; cytokine
R 73-3
A
2095-5227(2015)12-1252-04
10.3969/j.issn.2095-5227.2015.12.025
時間:2015-10-26 11:11:24
http://www.cnki.net/kcms/detail/11.3275.R.20151026.1111.002.html
2015-08-31
總后十二五重點項目(JZ9036328)
Supported by the Key Project of the General Logistics Department of PLA During the Twelfth Five-year Plan Period (JZ9036328)
隆艷艷,女,博士,醫(yī)師。研究方向:腫瘤分子靶向治療、腫瘤特異性免疫治療。Email: lonky_007@163.com
焦順昌,男,博士,主任醫(yī)師,教授,主任。Email: jia osc@vip.sina.com