黃愉太等
摘要:采用Abaqus中的光滑粒子流體動(dòng)力學(xué)(Smoothed Particle Hydrodynamics,SPH)求解器分析貯箱液體晃動(dòng).通過(guò)理論解驗(yàn)證SPH算法分析液體晃動(dòng)的可行性;考察貯箱模型分別為彈性體和剛體時(shí)的壓力變化,可知?jiǎng)傮w貯箱的峰值壓力比彈性體的大且其峰值出現(xiàn)更早;考慮貯箱為彈性體,研究在各因素下充液貯箱的晃動(dòng)特性,包括充液量、晃動(dòng)轉(zhuǎn)角、液體材料屬性和周期等.當(dāng)貯箱充液量為2/3左右時(shí),貯箱受液體晃動(dòng)影響最明顯;隨著晃動(dòng)轉(zhuǎn)角的增大或周期減小,貯箱結(jié)構(gòu)變形顯著增大;液體材料屬性對(duì)貯箱的影響有限.
關(guān)鍵詞:貯箱; 彈性體; 液體晃動(dòng); 流固耦合; 光滑粒子流體動(dòng)力學(xué)
中圖分類號(hào): O352
文獻(xiàn)標(biāo)志碼:B
Abstract:The sloshing of liquid in tank is analyzed by the Smoothed Particle Hydrodynamics(SPH) solver in Abaqus. The theoretical solution is used to verify that it is feasible to use SPH algorithm to analyze liquid sloshing. The pressure changes are analyzed regarding the tank as elastomer and rigid body respectively, which show that the peak pressure of the rigid body tank is higher than that of the elastomer tank and occurs earlier. Taking the tank as an elastomer, the sloshing characteristics of the tank filled with liquid is studied under different factors, including the filling quantity, sloshing swing angle, liquid material properties and period etc. When the filling quantity of liquid is about 2/3, the effect on the tank is mostly obvious in the process of liquid sloshing; the structure deformation of the tank increases obviously as the sloshing swing angle increases or the period decreases; the liquid material properties have little effect on the tank.
Key words:tank; elastomer; liquid sloshing; fluid-structure coupling; smoothed particle hydrodynamics
0引言
在航空航天、船舶和汽車等領(lǐng)域中廣泛存在貯箱液體晃動(dòng)問(wèn)題,了解晃動(dòng)特性對(duì)科學(xué)研究和工程設(shè)計(jì)有重要意義.液體晃動(dòng)是復(fù)雜的物理過(guò)程,由于諸多不確定性,早期的線性理論研究?jī)H限于液體的小幅振動(dòng)[1-2],對(duì)大幅振動(dòng)很難給出理論解.液體晃動(dòng)試驗(yàn)研究較多,如AKYILDIZ等[3]研究三維矩形液艙在不同充液量、不同形式擋板、不同激勵(lì)等因素下的液體晃動(dòng)情況;蔣梅榮等[4]對(duì)彈性體貯箱的液體晃動(dòng)進(jìn)行研究.隨著計(jì)算機(jī)技術(shù)的不斷發(fā)展,數(shù)值仿真研究很快得到應(yīng)用.USHIJIMA[5]采用ALE方法對(duì)三維圓柱形貯箱在不同外界激勵(lì)條件下的液體晃動(dòng)特性進(jìn)行研究;FIROUZ-ABADI等[6]采用邊界元法對(duì)三維矩形和圓柱形容器的液體晃動(dòng)進(jìn)行研究,得到液體晃動(dòng)頻率和模態(tài);陳星等[7]運(yùn)用ADINA中的FSI模塊對(duì)三維矩形彈性液艙的液體晃動(dòng)進(jìn)行模擬,分析液面高度和壁面壓力變化.
光滑粒子流體動(dòng)力學(xué)(Smoothed Particle Hydrodynamics,SPH)方法首先由LUCY[8]于1977年提出,是一種無(wú)網(wǎng)格純拉格朗日方法.該方法采用核函數(shù)近似描述微分方程,粒子與粒子之間不存在網(wǎng)格關(guān)系,任意一點(diǎn)的函數(shù)值通過(guò)局部近似由其鄰域內(nèi)的節(jié)點(diǎn)表示,非常適合處理大變形和流固耦合問(wèn)題.[9]本文采用SPH方法進(jìn)行充液貯箱晃動(dòng)分析,首先驗(yàn)證SPH方法的可行性,并對(duì)比彈性體和剛體2種貯箱模型的壓力變化情況,然后對(duì)彈性體模型進(jìn)行充液量、晃動(dòng)轉(zhuǎn)角、液體材料屬性和晃動(dòng)周期等多種因素下的晃動(dòng)特性研究,重點(diǎn)關(guān)注晃動(dòng)過(guò)程中液體對(duì)結(jié)構(gòu)強(qiáng)度和變形的影響,為工程設(shè)計(jì)提供參考.
1SPH方法理論
5)對(duì)稱性,即對(duì)任意與給定粒子距離相同的粒子,其對(duì)給定粒子的影響是相同的.
6)單調(diào)性,即距離給定粒子位置越大的粒子,其對(duì)給定粒子的作用力越小,即光滑核函數(shù)值隨粒子間距離增大而減小.
此外,光滑核函數(shù)為連續(xù)函數(shù)的近似表達(dá),因此為獲得更加準(zhǔn)確的近似結(jié)果,光滑函數(shù)應(yīng)充分光滑.
2SPH方法驗(yàn)證
將Faltinsen基于勢(shì)流理論提出的二維矩形貯箱受水平激勵(lì)的液體晃動(dòng)延伸到三維情況,激勵(lì)位移函數(shù)U=bsin(2πt/T)被廣泛應(yīng)用于三維液體晃動(dòng)模型[11]的驗(yàn)證中,其液面高度
采用Abaqus中自帶的SPH求解器進(jìn)行計(jì)算,將圖1中A點(diǎn)位置液面高度的SPH結(jié)果與解析解進(jìn)行對(duì)比,驗(yàn)證SPH方法分析液體晃動(dòng)的可行性.貯箱采用S4R殼單元進(jìn)行網(wǎng)格劃分;液體材料為水,由PC3D單元轉(zhuǎn)換為SPH粒子,采用Up-Us狀態(tài)方程進(jìn)行控制.貯箱初始充液量為50%,施加水平正弦激勵(lì),位移函數(shù)與Faltinsen理論一致,其中振幅b為4 mm,頻率為1.197 Hz,總計(jì)算時(shí)間為12 s.貯箱和液體均施加重力載荷,g=9.806 m/s2.計(jì)算結(jié)果見(jiàn)圖2.