張明輝, 徐濤, 呂慶田, 白志明, 武澄瀧, 武振波, 滕吉文
1 中國(guó)科學(xué)院地質(zhì)與地球物理研究所, 巖石圈演化國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 1000292 中國(guó)科學(xué)院大學(xué), 北京 1000493 中國(guó)科學(xué)院青藏高原地球科學(xué)卓越創(chuàng)新中心, 北京 1001014 中國(guó)地質(zhì)科學(xué)院地球物理地球化學(xué)勘查研究所, 河北廊坊 0650005 中國(guó)地質(zhì)科學(xué)院地球深部探測(cè)中心, 北京 100037
?
長(zhǎng)江中下游成礦帶及鄰區(qū)三維Moho面結(jié)構(gòu):來(lái)自人工源寬角地震資料的約束
張明輝1,2, 徐濤1,3, 呂慶田4,5, 白志明1, 武澄瀧1,2, 武振波1,2, 滕吉文1
1 中國(guó)科學(xué)院地質(zhì)與地球物理研究所, 巖石圈演化國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 1000292 中國(guó)科學(xué)院大學(xué), 北京 1000493 中國(guó)科學(xué)院青藏高原地球科學(xué)卓越創(chuàng)新中心, 北京 1001014 中國(guó)地質(zhì)科學(xué)院地球物理地球化學(xué)勘查研究所, 河北廊坊 0650005 中國(guó)地質(zhì)科學(xué)院地球深部探測(cè)中心, 北京 100037
為深入理解長(zhǎng)江中下游地區(qū)在中生代成礦的深部動(dòng)力學(xué)過(guò)程,對(duì)跨越寧蕪礦集區(qū)地質(zhì)廊帶內(nèi)的非縱剖面反射/折射地震數(shù)據(jù)進(jìn)行動(dòng)校正和時(shí)深轉(zhuǎn)換處理,獲得了非縱方向的Moho面深度;聯(lián)合縱測(cè)線和非縱測(cè)線上Moho面深度數(shù)據(jù),獲得了長(zhǎng)江中下游成礦帶及鄰區(qū)的三維Moho面深度結(jié)構(gòu).結(jié)果顯示寧蕪礦集區(qū)下方的Moho面整體較淺,約32~34 km,華北塊體合肥盆地內(nèi)Moho面整體較深,約34~35 km.Moho面深度和區(qū)域布格重力異常變化趨勢(shì)對(duì)應(yīng)良好.寧蕪礦集區(qū)下方Moho面呈上隆特征,支持長(zhǎng)江中下游地區(qū)成礦模式中增厚巖石圈發(fā)生拆沉、軟流圈的上隆及底侵作用等動(dòng)力學(xué)過(guò)程.Moho面平行于成礦帶走向的變化趨勢(shì),預(yù)示長(zhǎng)江中下游成礦帶地殼和上地幔在板塊邊界發(fā)生了NE-SW向的切向流動(dòng)變形.郯廬斷裂帶兩側(cè),Moho面深度變化較大,表明地表近陡立的郯廬斷裂為深大斷裂,深部可能切穿Moho面并延伸至上地幔.
長(zhǎng)江中下游成礦帶; 三維地殼結(jié)構(gòu);寬角地震資料; 縱剖面; 非縱剖面
長(zhǎng)江中下游成礦帶位于中國(guó)東部揚(yáng)子塊體的北緣,地處華北與揚(yáng)子塊體的拼合地帶(Pan and Dong, 1999; Mao et al., 2006).該成礦帶形成于燕山期,在長(zhǎng)期的巖漿作用、構(gòu)造活動(dòng)及成礦作用下,形成了豐富的Cu、Fe、Au等金屬礦床組合,多金屬礦床有 200多個(gè),由七個(gè)礦集區(qū)組成,自東向西分別為寧鎮(zhèn)、寧蕪、銅陵、廬樅、安慶—貴池、九瑞、鄂東南礦集區(qū)(常印佛等, 1991; Pan and Dong, 1999; Mao et al., 2006).
針對(duì)該成礦帶為什么會(huì)在如此狹窄的區(qū)域內(nèi)發(fā)生如此大規(guī)模的金屬聚集、深部的巖漿活動(dòng)機(jī)制和動(dòng)力學(xué)過(guò)程等焦點(diǎn)問(wèn)題,在國(guó)土資源部“長(zhǎng)江中下游成礦帶及典型礦集區(qū)深部結(jié)構(gòu)探測(cè)研究專項(xiàng)”(呂慶田等, 2011, 2014; Dong et al., 2013;Lü et al., 2013a, 2013b, 2015)的支持下,啟動(dòng)了NW-SE向橫穿成礦帶的廊帶式多學(xué)科深部探測(cè)工作,對(duì)區(qū)域構(gòu)造模式和成巖、成礦的深部動(dòng)力學(xué)過(guò)程提供了新的約束.寬頻帶地震資料的接收函數(shù)結(jié)果顯示成礦帶對(duì)應(yīng)軟流圈上隆帶(史大年等, 2012; Shi et al., 2013)、上地幔各向異性特征顯示沿成礦帶方向(NE-SW)存在軟流圈物質(zhì)的流動(dòng)變形(Shi et al., 2013)、遠(yuǎn)震層析成像的速度結(jié)果證實(shí)了巖石圈的拆沉(Jiang et al., 2013; 江國(guó)明等, 2014);深地震反射結(jié)果顯示陸內(nèi)俯沖或是巖石圈拆沉前增厚的主要機(jī)制(Lü et al., 2013b; 梁峰等, 2014);人工源寬角反射/折射地震結(jié)果顯示寧蕪礦集區(qū)的下地殼為低速異常,可能與高速下地殼在燕山期的拆沉作用有關(guān)(徐濤等, 2014).通過(guò)多學(xué)科的系列工作及相關(guān)成果(滕吉文等, 1985; 王強(qiáng)等, 2001; 張旗等, 2001, 2002; Dong et al., 2004; 呂慶田等, 2004; Wang et al., 2004, 2006; Zhang et al., 2005, 2007; Bai and Wang, 2006; Bai et al., 2007; 侯增謙等, 2007; Ling et al., 2009; 楊振威等, 2012; Shi et al., 2013; Lü et al., 2013b; 梁鋒等, 2014; 張永謙等, 2014; 強(qiáng)建科等, 2014),呂慶田等(2014)總結(jié)提出燕山期的陸內(nèi)俯沖、巖石圈拆沉、熔融和底侵作用,是造成長(zhǎng)江中下游晚侏羅和早白堊大規(guī)模成巖和成礦作用的主導(dǎo)機(jī)制.
人工源深地震測(cè)深資料是獲取地殼和上地幔頂部速度結(jié)構(gòu)信息的重要途徑.為了解Moho面及地殼結(jié)構(gòu)沿成礦帶方向(NE-SW)的變化,在實(shí)施450 km長(zhǎng)的“利辛—宜興”人工源寬角反射/折射縱剖面過(guò)程中(徐濤等, 2014),同時(shí)開(kāi)展了400 km長(zhǎng)非縱剖面的地震數(shù)據(jù)采集工作(圖1),期望用最小的代價(jià),獲得成礦帶三維深部結(jié)構(gòu),并探討其對(duì)成礦帶深部動(dòng)力學(xué)過(guò)程的約束.
長(zhǎng)江中下游地區(qū)位于下?lián)P子板塊的北緣,是大別—蘇魯超高壓變質(zhì)帶的前陸,北部以北西向的襄樊—廣濟(jì)斷裂和北東向的郯-廬斷裂帶為界,南部以江南斷裂為界與江南古陸為鄰,總體上呈南西狹窄、北東寬闊的“V”字型地帶(圖1).揚(yáng)子塊體呈現(xiàn)“一蓋多底”的地殼結(jié)構(gòu)特征,蓋層的基底由震旦系-三疊系海相碎屑巖及海陸交互相沉積巖石、侏羅系-白堊系陸相碎屑巖和火山巖組成;而長(zhǎng)江中下游地區(qū)的陸殼基底由晚太古-早元古代和中元古代變質(zhì)巖系組成,呈“雙層結(jié)構(gòu)”(常印佛等, 1991; 1996).成礦帶內(nèi)出露的地層有零星分布的前震旦紀(jì)變質(zhì)基底和震旦紀(jì)碎屑巖、白云巖和硅質(zhì)巖,廣泛發(fā)育有寒武紀(jì)至早三疊世的碎屑巖和碳酸鹽巖及侏羅紀(jì)-白堊紀(jì)陸相火山巖夾碎屑巖(常印佛等, 1991).
圖1 長(zhǎng)江中下游成礦帶人工源深地震測(cè)深觀測(cè)系統(tǒng)
長(zhǎng)江中下游地區(qū)的巖漿作用和成礦作用主要發(fā)生于145~120 Ma(Chen et al., 2001; Sun et al., 2003; Mao et al., 2006; 周濤發(fā)等, 2008; 2012),是中國(guó)東部中生代大規(guī)模成巖成礦作用的典型代表.其形成的巖漿巖主要有高堿鈣堿性系列、橄欖安粗巖系列和堿性(A型)花崗巖系列(周濤發(fā)等, 2008; 2012).周濤發(fā)等(2008; 2012)總結(jié)了四種長(zhǎng)江中下游成礦帶中生代銅鐵金多金屬礦床成礦系統(tǒng)的基本類型:與高鉀鈣堿性巖系有關(guān)的矽卡巖-斑巖型成礦系統(tǒng);與橄欖安粗巖系有關(guān)的“玢巖鐵礦型”成礦系統(tǒng);與A型花崗巖有關(guān)的氧化物-銅-金(鈾)礦床成礦系統(tǒng)及與巖漿活動(dòng)不明顯的Ti,Au,Sb,Pb,Zn低溫成礦系統(tǒng).該區(qū)的巖漿活動(dòng)在時(shí)空上表現(xiàn)出明顯的分區(qū)性,主要分布在斷隆區(qū)(如銅陵地區(qū)等)、斷凹區(qū)(如廬縱盆地、寧蕪盆地等)和隆凹過(guò)渡區(qū)(如鄂東南地區(qū)等)等不同的構(gòu)造單元內(nèi),銅陵礦集區(qū)等地主要為高鉀鈣堿性巖石組合,寧蕪和廬樅礦集區(qū)為高納鈣堿性侵入巖、橄欖安粗巖系火山巖組合,寧蕪地區(qū)為堿性火山巖組合,以鄂東南為代表的隆凹過(guò)渡區(qū)以鈣堿性-堿鈣性巖漿巖為主等(常印佛等, 1991; 周濤發(fā)等, 2008),而其成礦具有較明顯的階段性和分帶性(周濤發(fā)等, 2008).自西向東,該區(qū)的成礦時(shí)代有變小的趨勢(shì)(常印佛等, 1991; 周濤發(fā)等, 2008).長(zhǎng)江中下游地區(qū)不同礦集區(qū)的成礦時(shí)代大致分為145~137 Ma、135~127 Ma、126~123 Ma等三個(gè)階段,其中145~137 Ma的巖漿活動(dòng)主要發(fā)生在斷隆區(qū),是銅金礦化的主要時(shí)期,135~127 Ma的巖漿活動(dòng)主要發(fā)生在斷凹區(qū),是鐵礦化的主要時(shí)期(常印佛等, 1991; 周濤發(fā)等, 2008, 2012).
3.1 地震數(shù)據(jù)采集
廣角反射/折射深部地震探測(cè)剖面約850 km,其中縱剖面長(zhǎng)450 km,非縱剖面長(zhǎng)400 km;沿縱探測(cè)剖面設(shè)計(jì)6個(gè)人工源爆破激發(fā)點(diǎn)(總數(shù)達(dá) 13.2 噸TNT),采用多深井組合激發(fā)方式,炮點(diǎn)間距 60~90 km;地震觀測(cè)采用三分量數(shù)字地震儀,共450臺(tái)(縱測(cè)線250臺(tái),非縱測(cè)線200臺(tái)),道間距為1.5~2.0 km,記錄來(lái)自地殼上地幔頂部不同深度范圍、不同屬性的深層地震波信息.
縱測(cè)線(圖1)為NW-SE走向,起始于宜興附近,然后跨過(guò)江南斷裂(JNF)、茅山東側(cè)斷裂(MSF)、滁河斷裂(CHF)和郯廬斷裂(TLF),終止于利辛附近.自東向西依次穿過(guò)的構(gòu)造單元有揚(yáng)子塊體,長(zhǎng)江中下游成礦帶內(nèi)的寧蕪盆地、滁河盆地,然后進(jìn)入華北塊體.非縱測(cè)線(圖1)呈NE-SW走向,與縱測(cè)線近乎垂直,長(zhǎng)約400 km,穿過(guò)滁河斷裂,與縱測(cè)線的交點(diǎn)在Sp03炮附近.
3.2 非縱折合走時(shí)剖面
縱剖面折合走時(shí)記錄的裝配過(guò)程中,以炮點(diǎn)到每個(gè)接收器的距離為偏移距,在炮點(diǎn)的兩側(cè)分別定義為正或負(fù)方向.而非縱剖面的裝配需要以縱剖面和非縱剖面的交點(diǎn)(圖1中Sp03炮點(diǎn)附近)作為坐標(biāo)零點(diǎn),該點(diǎn)到接收器的距離作為橫坐標(biāo),接收器到該點(diǎn)兩側(cè)定義為正或負(fù)方向(本文中定義NE為正方向,SW為負(fù)方向).6炮計(jì)算得到的剖面如圖2所示.由于計(jì)算偏移距的參考點(diǎn)一致,因此6炮折合走時(shí)剖面的接收器的橫坐標(biāo)(樁號(hào))都一樣,為-200~210 km左右.需要注意的是,在圖2(a—f)縱坐標(biāo)折合走時(shí)T-X/6.0的計(jì)算中,X為炮點(diǎn)到接收器的距離(即偏移距),而非圖中的橫坐標(biāo),這是非縱剖面和縱剖面成圖的差異所在.
圖2 長(zhǎng)江中下游成礦帶折合走時(shí)非縱觀測(cè)記錄剖面
3.3 非縱剖面數(shù)據(jù)動(dòng)校正和時(shí)深轉(zhuǎn)換
非縱剖面數(shù)據(jù)處理包括兩個(gè)步驟(Cerveny, 2001; 徐濤等, 2004; Xu et al., 2006; 2010; 2014):動(dòng)校正和時(shí)深轉(zhuǎn)換處理.
(1) 動(dòng)校正和時(shí)深轉(zhuǎn)換
非縱剖面地震記錄動(dòng)校正過(guò)程與縱剖面記錄處理過(guò)程類似,都需要基于已有平均地殼速度模型將觀測(cè)反射到時(shí)數(shù)據(jù)校正為反射點(diǎn)的零偏移距自激自收到時(shí)數(shù)據(jù).假定地殼平均速度為v,實(shí)際觀測(cè)到時(shí)為tobs,接收器炮檢距為x,則動(dòng)校正后反射點(diǎn)的零偏移距自激自收到時(shí)t0表示為:
(1)
時(shí)深轉(zhuǎn)換的反射點(diǎn)深度為:
(2)
值得注意的是,接收器R得到的Moho面深度最終要?dú)w位到炮點(diǎn)S和接收器R的中點(diǎn)M處(圖3).
圖3 非縱剖面數(shù)據(jù)動(dòng)校正和時(shí)深轉(zhuǎn)換示意圖
上述處理過(guò)程中,選擇合適的地殼平均速度比較關(guān)鍵.我們利用“利辛—宜興”剖面的二維速度結(jié)構(gòu)(徐濤等, 2014)得到了該剖面的地殼平均速度結(jié)構(gòu),具體計(jì)算過(guò)程如下.
(3)
可以看出,某點(diǎn)下方的地殼平均速度((3)式)是該點(diǎn)下方水平薄層平均慢度的倒數(shù).根據(jù)上述過(guò)程,便可得到縱剖面的地殼平均速度結(jié)構(gòu)(圖4).
圖4 利辛—宜興縱剖面平均速度
由于縱剖面基本上和主要的構(gòu)造延伸及斷裂走向垂直,因此動(dòng)校正過(guò)程中,將三維地殼速度結(jié)構(gòu)近似為垂直于縱剖面的2.5維速度結(jié)構(gòu),即速度結(jié)構(gòu)沿垂直于縱剖面方向進(jìn)行均勻延拓.這樣的近似處理基本上符合三維速度結(jié)構(gòu)真實(shí)情況.
非縱剖面某接收點(diǎn)R(圖3)的動(dòng)校正速度,用縱剖面上的投影點(diǎn)O點(diǎn)與炮點(diǎn)S點(diǎn)之間的速度曲線(圖4),求取OS間的平均值來(lái)近似.
(2)非縱剖面Moho面深度
經(jīng)過(guò)動(dòng)校正和時(shí)深轉(zhuǎn)換,獲得6炮的深度剖面(圖5),再在深度剖面上進(jìn)行人工拾取Moho面深度.可以看出,Sp02-05炮非縱剖面震相信噪比高,測(cè)線端點(diǎn)附近的炮點(diǎn)Sp01和Sp06炮信噪比稍低.
如圖3所示,每個(gè)接收器R拾取的Moho面深度要?dú)w位到炮點(diǎn)和接收器的中點(diǎn)M處.將圖5中6條非縱剖面拾取的Moho面深度歸位到相應(yīng)的位置,并聯(lián)合跨越寧蕪礦集區(qū)的長(zhǎng)450 km的縱剖面的Moho面深度結(jié)果(徐濤等, 2014),通過(guò)插值及一定程度的平滑獲得寧蕪礦集區(qū)及其鄰域的Moho面深度結(jié)構(gòu)(圖6).圖中只顯示了信噪比較高的Moho面深度區(qū)域.
Moho面深度結(jié)構(gòu)顯示,揚(yáng)子塊體內(nèi)部寧蕪礦集區(qū)及華北塊體合肥盆地內(nèi)部,Moho面深度呈現(xiàn)較大的非均勻性.在郯廬斷裂的兩側(cè),Moho面深度呈現(xiàn)一定的差異.長(zhǎng)江中下游成礦帶中的寧蕪礦集區(qū)內(nèi)的Moho面存在隆起,深度約32~33 km,華北塊體中的合肥盆地內(nèi)Moho面深度約34~35 km.炮點(diǎn)Sp01和Sp06 附近Moho面深度均比較淺,由于受端點(diǎn)兩側(cè)射線覆蓋的限制,誤差稍大.
4.2 結(jié)果比較
圖7為衛(wèi)星布格重力異常分布圖.圖中的布格重力異常值分布只選取了和Moho面深度范圍一致的區(qū)域.從圖中可以看出,研究區(qū)內(nèi)的重力異常值范圍為-30~20 mGal,且和Moho面深度有很好的相關(guān)性,如郯廬斷裂東側(cè)地區(qū),布格異常值普遍較高,變化范圍約為-10~20 mGal;郯廬斷裂西側(cè),異常值相對(duì)東側(cè)較低,變化范圍約-30~5 mGal;寧蕪礦集區(qū)下方為正異常,異常值范圍大約為0~10 mGal.通常情況下,正的布格重力異常表示地殼物質(zhì)虧損、Moho面較淺等基本特征,正值越大,Moho面深度越淺,其異常結(jié)果和Moho面深度有很好的相關(guān)性.比較Moho面深度和布格重力異常結(jié)果,可以看出整體特征吻合較好,差異較大的區(qū)域主要集中在Sp01和Sp06炮等邊緣地區(qū).由于這兩炮的地震剖面偏移距較大,信噪比較低,且射線覆蓋密度非常低,因此誤差相對(duì)較大,與該區(qū)域的重力異常值特征吻合性差.嚴(yán)加永等(2011)利用區(qū)域重力異常反演得到的Moho面深度顯示,寧蕪火山巖盆地下方的Moho面存在隆起.寬頻資料的遠(yuǎn)震接收函數(shù)結(jié)果顯示寧蕪礦集區(qū)下方Moho面為隆起特征,郯廬斷裂帶兩側(cè)的Moho面深度存在差異,且西側(cè)較東側(cè)的Moho面要深(Shi et al., 2013).反射地震結(jié)果也顯示Moho面在寧蕪火山巖盆地下方較淺,在合肥盆地下方較深(呂慶田等, 2014).這些結(jié)果都與我們的結(jié)果特征相一致,顯示了結(jié)果的可靠性.
根據(jù)寬頻地震、反射地震、折射地震、大地電磁等多學(xué)科地球物理深部探測(cè)結(jié)果,呂慶田等(2014)提出了長(zhǎng)江中下游成礦帶成礦地球動(dòng)力學(xué)模型.模型認(rèn)為發(fā)生在研究區(qū)的印支運(yùn)動(dòng)和燕山運(yùn)動(dòng)是兩次獨(dú)立的造山過(guò)程.印支運(yùn)動(dòng)在長(zhǎng)江中下游地區(qū)并沒(méi)有產(chǎn)生強(qiáng)烈的地殼變形(Zhu et al., 2009),但因古太平洋板塊NW向低角度俯沖遠(yuǎn)程效應(yīng)引起的燕山期造山運(yùn)動(dòng)(Chen et al., 2006),是決定研究區(qū)構(gòu)造格局、并產(chǎn)生強(qiáng)烈?guī)r漿活動(dòng)的根源.燕山運(yùn)動(dòng)是一期快速造山過(guò)程,不僅造成長(zhǎng)江中下游成礦帶強(qiáng)烈的地殼變形,同時(shí)還發(fā)生了陸內(nèi)俯沖或疊瓦,使巖石圈增厚.增厚的巖石圈在隨后的區(qū)域應(yīng)力減弱和自身不穩(wěn)定性的雙重因素作用下,發(fā)生拆沉和軟流圈的上隆.拆沉巖石圈的熔融(包含下地殼的熔融)、底侵和軟流圈上隆的熱流作用,導(dǎo)致了長(zhǎng)江中下游地區(qū)大規(guī)模的巖漿作用和成礦作用.
增厚巖石圈發(fā)生拆沉、軟流圈的上隆及底侵作用等動(dòng)力學(xué)過(guò)程,可能會(huì)導(dǎo)致寧蕪礦集區(qū)下方Moho面呈上隆特征,這已經(jīng)被二維的寬頻地震接收函數(shù)結(jié)果所證實(shí)(史大年等,2012; Shi et al., 2013).縱測(cè)線的寬角折射地震結(jié)果顯示礦集區(qū)下方Moho呈現(xiàn)整體上隆,局部凹陷的特征(徐濤等, 2014).三維Moho面深度特征同樣顯示,寧蕪礦集區(qū)下方Moho面整體偏淺,為32~34 km左右(圖6).布格重力異常結(jié)果顯示,寧蕪礦集區(qū)下方整體為正異常(圖7),約為0~10 mGal,通常情況下對(duì)應(yīng)Moho面隆起特征.區(qū)域重力異常反演及反射地震結(jié)果等也顯示了這樣的特征.
圖6 聯(lián)合縱剖面和非縱剖面獲得的Moho面深度
圖7 Moho面深度區(qū)域?qū)?yīng)的布格重力異常分布
從Moho面的深度結(jié)構(gòu)可以看出,在郯廬斷裂東側(cè),Moho深度的變化基本上平行于成礦帶的NE-SW走向(圖6);布格重力異常結(jié)果(圖7)呈現(xiàn)同樣的清晰特征.不僅如此,主要反映上地幔流變特征的SKS分裂特征也顯示,成礦帶附近快波偏振方向呈現(xiàn)NE-SW向(Shi et al., 2013).上述結(jié)果支持了在總體NW-SE擠壓下,長(zhǎng)江中下游成礦帶地殼和上地幔由于受到華北克拉通的阻擋,在板塊邊界發(fā)生了切向(垂直擠壓應(yīng)力方向)流動(dòng)變形,而上地殼仍然發(fā)生NW-SE向的褶皺或沖斷變形(呂慶田等, 2014).
郯廬斷裂帶在中國(guó)東部綿延數(shù)千公里,中生代以來(lái),上地殼的走滑達(dá)500余公里(Zhu et al., 2009).早白堊世巖漿巖的巖石學(xué)和地球化學(xué)研究,反映它們既有殼源的信息,又有幔源的信息,指示走滑期的郯廬斷裂帶可能已切入了殼幔邊界(牛漫蘭等, 2002).新生代中國(guó)東部最大規(guī)模的玄武巖噴發(fā)帶的出現(xiàn), 反映郯廬斷裂帶此時(shí)已切入了上地幔, 構(gòu)成了幔源玄武巖噴發(fā)的通道(朱光等, 2004a, 2004b).垂直反射地震剖面顯示郯廬斷裂下方Moho存在一定的錯(cuò)斷(呂慶田等, 2014; Lü et al., 2015).寬頻地震剖面接收函數(shù)結(jié)果(Shi et al., 2013)和寬角反射/折射地震剖面(徐濤等, 2014)均顯示Moho面在郯廬斷裂下方深度最深,達(dá)36公里左右.寬角折射地震剖面的二維速度結(jié)構(gòu)還顯示,在整個(gè)地殼內(nèi)郯廬斷裂東西兩側(cè)的速度結(jié)構(gòu)相差較大(徐濤等, 2014).不僅如此,研究區(qū)內(nèi)三維Moho面深度(圖6)以及布格重力異常結(jié)果(圖7)同樣顯示了郯廬斷裂兩側(cè)的Moho面深度變化較大.因此,我們推測(cè),地表近陡立的郯廬斷裂,深部可能切穿到了Moho面深度.
(1)聯(lián)合縱測(cè)線和非縱測(cè)線寬角反射/折射地震數(shù)據(jù),獲得了長(zhǎng)江中下游成礦帶及鄰區(qū)的Moho面結(jié)構(gòu).結(jié)果顯示,寧蕪礦集區(qū)下方Moho面呈上隆特征,支持長(zhǎng)江中下游地區(qū)成礦模式中增厚巖石圈發(fā)生拆沉、軟流圈的上隆及底侵作用等動(dòng)力學(xué)過(guò)程.Moho面平行于成礦帶走向的變化趨勢(shì),顯示長(zhǎng)江中下游成礦帶地殼和上地幔在板塊邊界發(fā)生了NE-SW向的流動(dòng)變形.郯廬斷裂帶兩側(cè)的Moho面深度變化較大,這表明地表近陡立的郯廬斷裂,深部可能切穿到Moho面深度.我們期望通過(guò)聯(lián)合縱剖面和非縱剖面的觀測(cè)資料,利用最小的代價(jià),實(shí)現(xiàn)長(zhǎng)江中下游成礦帶及鄰區(qū)的三維地殼結(jié)構(gòu)探測(cè).
(2)本文獲得的Moho面的深度結(jié)構(gòu)信息,為進(jìn)一步的三維速度結(jié)構(gòu)反演提供了初始的Moho面深度約束,是得到精確三維速度結(jié)構(gòu)成像的重要條件.
致謝 謹(jǐn)以此文紀(jì)念中國(guó)科學(xué)院地質(zhì)與地球物理研究所張忠杰研究員(1964—2013).感謝中國(guó)地震局物探中心及中國(guó)科學(xué)院地質(zhì)與地球物理研究所參加野外地震數(shù)據(jù)采集工作的所有人員;感謝王夫運(yùn)研究員、史大年研究員、田小波研究員、劉寶峰副研究員的指導(dǎo)和幫助.
Bai Z M, Wang C Y. 2006. Crustal P-wave velocity structure in Lower Yangtze region: Reinterpretation of Fuliji-Fengxian deep seismic sounding profile.ChineseScienceBulletin, 51(19): 2391-2400, doi: 10.1007/s11434-006-2115-z.
Bai Z M, Zhang Z J, Wang Y H. 2007. Crustal structure across the Dabie-Sulu orogenic belt revealed by seismic velocity profiles.J.Geophys.Eng., 4(4): 436-442, doi: 10.1088/1742-2132/4/4/009.
Cerveny V. 2001. Seismic Ray Theory. Cambridge University Press.
Chang Y F, Dong S W, Huang D Z. 1996. On tectonics of “Poly-basement with one cover” in Middle-Lower Yangtze Craton China.VolcanologyandMineralResources, 17(1-2): 1-15 (in Chinese with English abstract).
Chang Y F, Liu X P, Wu Y C. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River (in Chinese). Beijing: Geological Publishing House, 1-379.
Chang Y F, Zhou T F, Fan Y. 2012. Polygenetic compound mineralization and tectionic evolution: Study in the Middle-Lower Yangtze River Valley metallogenic belt.ActaPetrologicaSinica(in Chinese), 28(10): 3067-3075.
Chen J F, Yan J, Xie Z, et al. 2001. Nd and Sr isotopic compositions of igneous rocks from the lower Yangtze region in eastern China: constraints on sources.PhysicsandChemistryoftheEarth,PartA:SolidEarthandGeodesy, 26(9-10): 719-731, doi: 10.1016/S1464-1895(01)00122-3.
Chen J F, Jahn B M. 1998. Crustal evolution of Southeastern China: Nd and Sr isotropic evidence.Tectonophysics, 284(1-2): 101-133, doi: 10.1016/S0040-1951(97)00186-8.
Chen L, Zheng T Y, Xu W W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration.J.Geophys.Res., 111(B9), doi: 10.1029/2005JB003974.
Dong S W, Gao R, Cong B L, et al. 2004. Crustal structure of the southern Dabie ultrahigh-pressure orogen and Yangtze foreland from deep seismic reflection profiling.TerraNova, 16: 319-324.
Dong S W, Li T D, Lü Q T, et al. 2013. Progress in deep lithospheric exploration of the continental China: A review of the SinoProbe.Tectonophysics, 606: 1-13, doi: 10.1016/j.tecto.2013.05.038.
Hou Z Q, Pan X F, Yang Z M, et al. 2007. Porphyry Cu-(Mo-Au) Deposits no Related to Oceanic-Slab Subduction: Examples from Chinese Porphyry Deposits in Continental Settings.Geoscience, 21(2): 332-351, doi: 10.3969/j.issn.1000-8527.2007.02.019.
Jiang G M, Zhang G B, Lü Q T, et al. 2013. 3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics.Tectonophysics, 606, 36-47, doi:/10.1016/j.tecto.2013.03.026.
Jiang G M, Zhang G B, Lü Q T, et al. 2014. Deep geodynamics of mineralization beneath the Middle-Lower Reaches of Yangtze River: Evidence from teleseismic tomography.ActaPetrologicaSinica(in Chinese), 30(4): 907-917.
Liang F, Lü Q T, Yan J Y, et al. 2014. Deep structure of Ningwu volcanic basin in the Middle and Lower Reaches of Yangtze River: Insights from reflection seismic data.ActaPetrologicaSinica(in Chinese), 30(4): 941-956.
Ling M X, Wang F Y, Ding X, et al. 2009. Cretaceous ridge subduction along the lower Yangtze river belt, Eastern China.EconomicGeology, 104(2): 303-321, doi: 10.2113/gsecongeo.104.2.303.
Lü Q T, Hou Z Q, Yang Z S, et al. 2004. The underplating and dynamics evolution model of the Mid-Lower Yangtze region: Constraints from geophysical data.ScienceinChina(SeriesD), 34(9): 783-794, doi: 10.3321/j.issn: 1006-9267.2004.09.001.
Lü Q T, Chang Y F, SinoProbe-03 Team. 2011. Crustal structure and three-dimensional deep exploration technology for mineral resources: A introduction to SinoProbe-03 Project.ActaGeoscienticaSinica(in Chinese), 32(Suppl. 1): 49-64, doi: 10.3975/cagsb.2011.s1.04.
Lü Q T, Qi G, Yan J Y. 2013a. 3D geological model of Shizishan ore field constrained by gravity and magnetic interactive modeling: A case history.Geophysics, 78(1): B25-B35.
Lü Q T, Yan J Y, Shi D N, et al. 2013b. Reflection seismic imaging of the Lujiang-Zongyang volcanic basin, YangtzeMetallogenic Belt: An insight into the crustal structure and geodynamicsof an ore district.Tectonophysics, 606: 60-77, dio:10.1016/j.tecto.2013.04.006.
Lü Q T, Dong S W, Shi D N, et al. 2014. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze Metallogenic Belt: A review from SinoProbe.ActaPetrologicaSinica(in Chinese), 30(4): 889-906.
Lü Q T, Shi D N, Liu Z D, et al. 2015. Crustal structure and geodynamic of the Middle and Lower Reaches of Yangtze metallogenic belt and neighboring areas: Insights from deep seismic reflection profiling.J.AsianEarthSci., doi: 10.1016/j.jseaes.2015.03.022.
Mao J W, Wang Y T, Lehmann B, et al. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications.OreGeologyReviews, 29(3-4): 307-324, doi: 10.1016/j.oregeorev.2005.11.001.
Niu M L, Zhu G, Liu G S, et al. 2002. Tectonic setting and deep processes of Mesozoic magmatic activity in the middle-southern part of the Tan-Lu fault zone.ChineseJ.Geol., 37(4): 393-404, doi: 10.3321/j.issn:0563-5020.2002.04.002 (in Chinese).
Pan Y M, Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits.OreGeologyReviews, 15(4): 177-242, doi: 10.1016/S0169-1368(99)00022-0.
Qiang J K, Tang J T, Wang J Y, et al. 2014. Magnetotelluric structure along Huainan-Liyang profile.ActaPetrologicaSinica(in Chinese), 30(4): 957-965.
Shi D N, Lü Q T, Xu W Y, et al. 2012. Crustal structure beneath the mid-lower yangtze metallogenic belt and its adjacent regions in eastern China-Evidences from P-wave receiver function imaging for a MASH metallization process?ActaGeologicaSinica, 86(3): 389-399, doi: 10.3969/j.issn.0001-5717.2012.03.004 (in Chinese).
Shi D N, Lü Q T, Xu W Y, et al. 2013. Crustal structure beneath the middle-lower Yangtze metallogenic belt in East China: Constraints from passive source seismic experiment on the Mesozoic intra-continental mineralization.Tectonophysics, 606: 48-59, doi: 10.1016/j.tecto.2013.01.012.
Song C Z, Zhang H, Ren S L, et al. 2011. Transform tectonic node of the Middle and Lower Reaches of the Yangtze River and analysis of regional metallogenic setting.ActaGeologicaSinica(in Chinses), 85(5): 778-788.
Song C Z, Zhu G, Wang D X, et al. 2000. Evolution of the Chuhe fault in Jiangsu and Anhui and tectonic setting.RegionalGeologyofChina(in Chinese), 19(4): 367-374, doi: 10.3969/j.issn.1671-2552.2000.04.006.
Sun W D, Ling M X, Yang X Y, et al. 2010. Ridge subduction and porphyry copper gold mineralization:Anoverview.Sci.China(EarthSci.), 53(4): 475-484.
Teng J W, Sun K Z, Xiong S B, et al. 1985. Explosion seismological study for velocity distribution and structure of the crust and upper mantle from Maanshan to Qidong of the southern parts of China.ChineseJournalofGeophysics, 28(2): 155-169 (in Chinese with English abstract).
Wang Q, Xu J F, Zhao Z H, et al. 2004. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent.GeochemicalJournal(in Chinese), 38: 417-434.
Wang Q, Wyman D A, Xu J F, et al. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization.Lithos, 89(3-4): 424-446, doi:10.1016/j.lithos.2005.12.010.
Wang Q, Zhao Z H, Xiong X L, et al. 2001. Melting of the underplated basaltic lower crust: Evidence from the Shaxi adakitic sodic quartz diorite-porphyrites, Anhui Province, China.Geochimica, 30(4): 353-362, doi: 10.3321/j.issn: 0379-1726.2001.04.008.
Wang Y, Deng J F, Ji G Y. 2004. A perspective on the geotectionic setting of early Cretaceous adakite-like rocks in the Lower Reaches of Yangtze River and its significance for copper-gold mineralization.ActaPetrologicaSinica, 20(2): 297-314, doi: 10.3321/j.issn: 1000-0569.2004.02.011.
Xu J F, Shinjo R, Defant M J, et al. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?Geology, 30(12): 1111-1114, doi: 10.1130/0091-7613(2002)030.
Xu J F, Wang Q, Xu Y G, et al. 2001. Geochemistry of Anjishan intermediate-acid intrusive rocks in Ningzhen area: Constraint to origin of the magma with HREE and Y depletion.ActaPetrologicaSinica, 17(4): 576-584, doi: 10.3321/j.issn:1000-0569.2001.04.008.
Xu T, Xu G M, Gao E G, et al. 2004. Block modeling and shooting ray tracing in complex 3-D media.ChineseJ.Geophys. (in Chinese), 47(6): 1118-1126, doi: 10.3321/j.issn: 0001-5733.2004.06.027.
Xu T, Xu G M, Gao E G, et al. 2006. Block modeling and segmentally iterative ray tracing in complex 3D media.Geophysics, 71: T41-T51, doi: 10.1190/1.2192948.
Xu T, Zhang Z J, Gao E G, et al. 2010. Segmentally Iterative Ray Tracing in Complex 2D and 3D Heterogeneous Block Models.Bull.Seismol.Soc.Am., 100(2): 841-850, doi: 10.1785/0120090155.
Xu T, Li F, Wu ZB, et al. 2014. A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models.Tectonophysics, 627: 72-81.
Xu T, Zhang Z J, Tian X B, et al. 2014. Crustal structure beneath the Middle-Lower Yangtze metallogenic belt and its surrounding areas: Constraints from active source seismic experiment along the Lixin to Yixing profile in East China.ActaPetrologicaSinica(in Chinses), 30(4): 918-930.
Yan J Y, Lü Q T, Meng G X, et al. 2011. Tectonic framework research of the Lower and Middle Yangtze metallogenic belt based on gravity and magnetic multi-scale edge detection.ActaGeologicaSinica(in Chinese), 85(5): 900-914.
Yang Z W, Zhang K, Yan J Y, et al. 2012. A preliminary study on deep structure of Ningwu ore district and its western marginal area.ChineseJ.Geophys. (in Chinese), 55(12): 4160-4168, doi: 10.6038/j.issn.0001-5733.2012.12.028.
Zhang Q, Wang Y, Liu W, et al. 2002. Adakite: its characteristics and implications.GeologicalBulletinofChina(in Chinese), 21: 431-435, doi: 10.3969/j.issn.1671-2552.2002.07.012.
Zhang Q, Wang Y, Qian Q, et al. 2001. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China.ActaPetrologicaSinica(in Chinese), 17: 236-244, doi: 10.3321/j.issn:1000-0569.2001.02.008.
Zhang Y Q, Lü Q T, Teng J W, et al. 2014. Discussion on the crustal density structure and deep mineralization background in the middle-lower Yangtze metallogenic belt and its surrounding areas: Constraints from the gravity field.ActaPetrologicaSinica(in Chinese), 30(4): 931-940.
Zhang Z J, Badal J, Li Y K, et al. 2005. Crust-upper mantle seismic velocity structure across Southeastern China.Tectonophysics, 395(1-2): 137-157, doi: 10.1016/j.tecto.2004.08.008.
Zhang Z J, Wang Y H. 2007. Crustal structure and contact relationship revealed from deep seismic sounding data in South China.Phys.EarthPlanet.Int., 165(1-2): 114-126, doi: 10.1016/j.pepi.2007.08.005.
Zhou T F, Fan Y, Yuan F. 2008. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area.ActaPetrologicaSinica(in Chinese), 24(8): 1665-1678.
Zhou T F, Fan Y, Yuan F, et al. 2012. Progress of geological study in the Middle-Lower Yangtze River Valley metallogenic belt.ActaPetrologicaSinica(in Chinese), 28(10): 3051-3066.
Zhu G, Wang D X, Liu G S, et al. 2004a. Evolution of the Tan-Lu fault zone and its responses to plate movements in west Pacific basin.ChineseJournalofGeology(ScientiaGeologicaSinica), 39(1): 36-49, doi: 10.3321/j.issn: 0563-5020.2004.01.005 (in Chinese).
Zhu G, Wang Y S, Niu M L, et al. 2004b. Synorogenic movement of the Tan-Lu fault zone.EarthScienceFrontiers, 11(3): 169-181, doi: 10.3321/j.issn: 1005-2321.2004.03.018.
Zhu G, Wang Y S, Liu G S, et al. 2005.40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China.JournalofStructuralGeology, 27(8): 1379-1398, doi: 10.1016/j.jsg.2005.04.007.
Zhu G, Liu G S, Niu M L, et al. 2009. Syncollisional transform faulting of the Tan-Lu fault zone, East China.Int.J.EarthSci. (GeolRundsch), 98(1): 135-155, doi: 10.1007/s00531-007-0225-8.
附中文參考文獻(xiàn)
常印佛, 董樹(shù)文, 黃德志. 1996. 論中-下?lián)P子“一蓋多底”格局與演化. 火山地質(zhì)與礦產(chǎn), 17(1-2): 1-15.
常印佛, 劉湘培, 吳言昌. 1991. 長(zhǎng)江中下游銅鐵成礦帶. 北京:地質(zhì)出版社, 1-379.
常印佛, 周濤發(fā), 范裕. 2012. 復(fù)合成礦與構(gòu)造轉(zhuǎn)換—以長(zhǎng)江中下游成礦帶為例. 巖石學(xué)報(bào), 28(10): 3067-3075.
侯增謙, 潘小菲, 楊志明等. 2007. 初論大陸環(huán)境斑巖銅礦. 現(xiàn)代地質(zhì), 21(2): 332-351, doi: 10.3969/j.issn.1000-8527.2007.02.019.
江國(guó)明, 張貴賓, 呂慶田等. 2014. 長(zhǎng)江中下游地區(qū)成礦深部動(dòng)力學(xué)機(jī)制: 遠(yuǎn)震層析成像證據(jù). 巖石學(xué)報(bào), 30(4): 907-917.
呂慶田, 侯增謙, 楊竹森等. 2004. 長(zhǎng)江中下游地區(qū)的底侵作用及動(dòng)力學(xué)演化模式: 來(lái)自地球物理資料的約束. 中國(guó)科學(xué)(D輯), 34(9): 783-794, doi: 10.3321/j.issn: 1006-9267.2004.09.001.呂慶田, 常印佛, SinoProbe-03項(xiàng)目組. 2011. 地殼結(jié)構(gòu)與深部礦產(chǎn)資源立體探測(cè)技術(shù)實(shí)驗(yàn)-SinoProbe-03項(xiàng)目介紹. 地球?qū)W報(bào), 32(增刊I): 49-64, doi: 10.3975/cagsb.2011.s1.04.
呂慶田, 董樹(shù)文, 史大年等. 2014.長(zhǎng)江中下游成礦帶巖石圈結(jié)構(gòu)與成礦動(dòng)力學(xué)模型-深部探測(cè)(SinoProbe)綜述. 巖石學(xué)報(bào), 30(4): 889-906.
梁鋒, 呂慶田, 嚴(yán)加永等. 2014. 長(zhǎng)江中下游寧蕪火山巖盆地深部結(jié)構(gòu)特征: 來(lái)自反射地震的認(rèn)識(shí). 巖石學(xué)報(bào), 30(4): 941-956.
牛漫蘭, 朱光, 劉國(guó)生.2002. 郯廬斷裂帶中南段中生代巖漿活動(dòng)的構(gòu)造背景與深部過(guò)程. 地質(zhì)科學(xué), 37(4): 393-404.
強(qiáng)建科, 湯井田, 王顯瑩等. 2014.淮南—溧陽(yáng)大地電磁剖面與地質(zhì)結(jié)構(gòu)分析. 巖石學(xué)報(bào), 30(4): 957-965.
史大年, 呂慶田, 徐文藝等. 2012. 長(zhǎng)江中下游成礦帶及鄰區(qū)地殼結(jié)構(gòu)-MASH成礦過(guò)程的P波接收函數(shù)成像證據(jù)?地質(zhì)學(xué)報(bào), 86(3): 389-399, doi: 10.3969/j.issn.0001-5717.2012.03.004.宋傳中, 張華, 任升蓮等. 2011. 長(zhǎng)江中下游轉(zhuǎn)換構(gòu)造結(jié)與區(qū)域成礦背景分析. 地質(zhì)學(xué)報(bào), 85(5): 778-788.
宋傳中, 朱光, 王道軒等. 2000. 蘇皖境內(nèi)滁河斷裂的演化與大地構(gòu)造背景. 中國(guó)區(qū)域地質(zhì), 19(4): 367-374, doi: 10.3969/j.issn.1671-2552.2000.04.006.
孫衛(wèi)東, 凌明星, 楊曉勇等. 2010. 洋脊俯沖與斑巖銅金礦成礦. 中國(guó)科學(xué)(地球科學(xué)), 40(2): 127-137.
滕吉文, 孫克忠, 熊紹柏等. 1985. 中國(guó)東部馬鞍山—常熟—啟東地帶地殼與上地幔結(jié)構(gòu)和速度分布的爆炸地震研究. 地球物理學(xué)報(bào), 28(2): 155-169.
王強(qiáng), 趙振華, 熊小林等. 2001. 底侵玄武質(zhì)下地殼的熔融:來(lái)自安徽沙溪adakite質(zhì)富鈉石英閃長(zhǎng)玢巖的證據(jù). 地球化學(xué), 30(4): 353-362, doi: 10.3321/j.issn: 0379-1726.2001.04.008.
汪洋, 鄧晉福, 姬廣義. 2004. 長(zhǎng)江中下游地區(qū)早白堊世埃達(dá)克質(zhì)巖的大地構(gòu)造背景及其成礦意義. 巖石學(xué)報(bào), 20(2): 297-314, doi: 10.3321/j.issn: 1000-0569.2004.02.011.
許繼峰, 王強(qiáng), 徐義剛等. 2001. 寧鎮(zhèn)地區(qū)中生代安基山中酸性侵入巖的地球化學(xué): 虧損重稀土和釔的巖漿產(chǎn)生的限制. 巖石學(xué)報(bào), 17(4): 576-584, doi: 10.3321/j.issn:1000-0569.2001.04.008.徐濤, 徐果明, 高爾根等. 2004. 三維復(fù)雜介質(zhì)的塊狀建模和試射射線追蹤. 地球物理學(xué)報(bào), 47(6): 1118-1126, doi: 10.3321/j.issn: 0001-5733.2004.06.027.
徐濤, 張忠杰, 田小波等. 2014. 長(zhǎng)江中下游成礦帶及鄰區(qū)地殼速度結(jié)構(gòu):來(lái)自利辛—宜興寬角地震資料的約束. 巖石學(xué)報(bào),30(4): 918-930.嚴(yán)加永, 呂慶田, 孟貴祥等. 2011. 基于重磁多尺度邊緣檢測(cè)的長(zhǎng)江中下游成礦帶構(gòu)造格架研究. 地質(zhì)學(xué)報(bào), 85(5): 900-914.
楊振威, 張昆, 嚴(yán)加永等. 2012. 寧-蕪礦集區(qū)及其西緣深部結(jié)構(gòu)初探. 地球物理學(xué)報(bào), 55(12): 4160-4168, doi: 10.6038/j.issn.
0001-5733.2012.12.028.
張旗, 王焰, 錢(qián)青等. 2001. 中國(guó)東部燕山期埃達(dá)克巖的特征及其構(gòu)造-成礦意義. 巖石學(xué)報(bào), 17(2): 236-244, doi: 10.3321/j.issn:1000-0569.2001.02.008.張旗, 王焰, 劉偉等. 2002. 埃達(dá)克巖的特征及其意義. 地質(zhì)通報(bào), 21(7): 431-435, doi: 10.3969/j.issn.1671-2552.2002.07.012.張永謙, 呂慶田, 滕吉文等.2014. 長(zhǎng)江中下游及鄰區(qū)的地殼密度結(jié)構(gòu)與深部成礦背景探討—來(lái)自重力學(xué)的約束. 巖石學(xué)報(bào),30(4): 931-940.
周濤發(fā), 范裕, 袁峰. 2008. 長(zhǎng)江中下游成礦帶成巖成礦作用研究進(jìn)展. 巖石學(xué)報(bào), 24(8): 1665-1678.
周濤發(fā), 范裕, 袁峰等. 2012. 長(zhǎng)江中下游成礦帶地質(zhì)與礦產(chǎn)研究進(jìn)展. 巖石學(xué)報(bào), 28(10): 3051-3066.
朱光, 王道軒, 劉國(guó)生等. 2004a. 郯廬斷裂帶的演化及其對(duì)西太平洋板塊運(yùn)動(dòng)的響應(yīng). 地質(zhì)科學(xué), 39(1): 36-49, doi: 10.3321/j.issn: 0563-5020.2004.01.005.
朱光, 王勇生, 牛漫蘭等. 2004b. 郯廬斷裂帶的同造山運(yùn)動(dòng). 地學(xué)前緣, 11(3): 169-181, doi: 10.3321/j.issn: 1005-2321.2004.03.018.
(本文編輯 劉少華)
3D Moho depth beneath the middle-lower Yangtze metallogenic belt and its surrounding areas: Insight from the wide angle seismic data
ZHANG Ming-Hui1,2, XU Tao1,3, Lü Qing-Tian4,5, BAI Zhi-Ming1, WU Cheng-Long1,2, WU Zhen-Bo1,2, TENG Ji-Wen1
1StatekeyLaboratoryofLithosphericEvolution,InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing100029,China2UniversityofChineseAcademyofSciences,Beijing100049,China3CASCenterforExcellenceinTibetanPlateauEarthSciences,Beijing100101,China4InstituteofGeophysicalandGeochemicalExploration,ChineseAcademyofGeologicalSciences,HebeiLangfang065000,China5ChinaDeepExplorationCenter-SinoProbeCenter,ChineseAcademyofGeologicalSciences,Beijing100037,China
To understand the formation and the tectonic processes of the Mesozoic Middle Lower Yangtze metallogenic belt(MLYMB), the SinoProbe-03-02 program conducted a 450 km long in-line controlled-source seismic experiment with a 400 km long off-line data collection across the Ning-wu ore-district. We deal with the off-line seismic data using normal moveout correction and time-depth conversion in order to obtain the off-line Moho depth. Using the Moho depth derived both from in-line and off-line seismic data, we construct a Moho depth map in the Middle-Lower Yangtze metallogenic belt and its surrounding areas. The results show that the Moho depth is about 32~34 km beneath the Ning-Wu ore-district, shallower than that beneath the Hefei basin in North China which is about 34~35 km. The variation tendency of Moho depth coincides with the Bouguer gravity anomaly well. The uplifting characteristic of Moho depth in Ning-Wu ore-district supports the model of lithosphere delamination, asthenosphere welling, and mantle-derived magmatic underplating during the formation of MLYMB. The variation of Moho beneath metallogenic belt parallels the strike of the MLYMB. It supports the tangential flow deformation in NE-SW direction in the plate boundary of the crust and mantle. On both sides of Tanlu fault zone, the depth of the Moho changes greatly, which indicates that the Tanlu fault may extend to the mantle.
Middle-lower Yangtze metallogenic belt; Moho depth; Wide angle seismic data; In-line; Off-line
國(guó)家深部探測(cè)專項(xiàng)第3項(xiàng)目(SinoProbe-03),地質(zhì)調(diào)查項(xiàng)目(1212011220243)和國(guó)家自然科學(xué)基金(41174075,41274070,41474068)聯(lián)合資助.
張明輝,女,1990年生,博士研究生,主要從事地震射線理論及殼幔結(jié)構(gòu)成像研究. E-mail: zhangmh1990@mail.iggcas.ac.cn
10.6038/cjg20151203.
10.6038/cjg20151203
P631
2015-05-06,2015-10-18收修定稿
張明輝,徐濤,呂慶田等. 2015. 長(zhǎng)江中下游成礦帶及鄰區(qū)三維Moho面結(jié)構(gòu):來(lái)自人工源寬角地震資料的約束.地球物理學(xué)報(bào),58(12):4360-4372,
Zhang M H, Xu T, Lü Q T, et al. 2015. 3D Moho depth beneath the middle-lower Yangtze metallogenic belt and its surrounding areas: Insight from the wide angle seismic data.ChineseJ.Geophys. (in Chinese),58(12):4360-4372,doi:10.6038/cjg20151203.