高士博,王擺,董穎,高杉,蔣經(jīng)偉,孫紅娟,殷旭旺,周遵春,*
1. 大連海洋大學(xué),大連 116023 2. 遼寧省海洋水產(chǎn)科學(xué)研究院,大連 116023
苯系物對(duì)仿刺參catalase基因表達(dá)及酶活性的影響
高士博1,2,王擺2,#,董穎2,高杉2,蔣經(jīng)偉2,孫紅娟2,殷旭旺1,周遵春2,*
1. 大連海洋大學(xué),大連 116023 2. 遼寧省海洋水產(chǎn)科學(xué)研究院,大連 116023
以仿刺參(Apostichopus japonicus)為受試生物,采用半靜水式試驗(yàn)方法,設(shè)置3種不同濃度(1/5、1/25、1/125的96 h-LC50)的苯、甲苯、乙基苯、鄰-二甲苯、間-二甲苯和對(duì)-二甲苯處理健康仿刺參,檢測(cè)仿刺參過氧化氫酶(CAT)基因在呼吸樹、腸組織中的表達(dá)和酶活性變化情況。結(jié)果發(fā)現(xiàn):在各苯系物處理組的仿刺參呼吸樹和腸組織中,cat基因的轉(zhuǎn)錄表達(dá)變化顯著;苯、甲苯、乙基苯、鄰-二甲苯對(duì)呼吸樹中CAT活性具有誘導(dǎo)作用,其中乙基苯的誘導(dǎo)倍數(shù)最高,為12.0~19.8倍;6種苯系物對(duì)腸組織中CAT活性具有抑制作用,抑制程度大小順序?yàn)椋亨?二甲苯>乙基苯>對(duì)-二甲苯>甲苯>間-二甲苯>苯。表明苯系物對(duì)仿刺參呼吸樹、腸具有氧化脅迫作用,可能造成2種組織的氧化損傷。相關(guān)性分析表明:苯系物處理后,仿刺參腸組織中cat mRNA相對(duì)表達(dá)倍數(shù)與CAT活性變化呈顯著正相關(guān);仿刺參腸和呼吸樹中cat mRNA相對(duì)表達(dá)倍數(shù)變化呈顯著正相關(guān)。以上結(jié)果為苯系物對(duì)仿刺參的生物毒性評(píng)價(jià)提供了基礎(chǔ)數(shù)據(jù)。
苯系物(BTEX);仿刺參;氧化損傷;過氧化氫酶(CAT);呼吸樹;腸
苯系物(BTEX)中的苯(Benzene)是已知的致癌物,甲苯(Toluene)和乙基苯(Ethyl benzene)具有致畸致突變作用,二甲苯(Xylene)具有致畸作用[1]。苯系物作為全球生產(chǎn)和使用最為廣泛的50種化合物之一,由于海上石油開發(fā)、石油運(yùn)輸,海洋溢油及沿海石油化工企業(yè)的迅猛發(fā)展,造成苯系物入海量增加,具有較高生物毒性的苯系物引發(fā)的近岸海洋生態(tài)危害日益引起社會(huì)和學(xué)者廣泛關(guān)注。苯系物是石油中水溶性單環(huán)芳烴的重要組分[2-3],據(jù)報(bào)道,巴西福塔拉薩沿岸表層海水6種苯系物的平均含量為4.86 μg·L-1[4]。浙江舟山潮間帶沉積物中二甲苯含量曾經(jīng)高達(dá)40.24~124.45 mg·kg-1,造成近岸海洋底棲環(huán)境苯系物污染[5]。因此,研究近岸海洋環(huán)境中苯系物對(duì)海洋底棲生物的影響十分必要。仿刺參(Apostichopus japonicus)是黃、渤海重要底棲生物類群,主要攝食底泥中細(xì)菌、底棲硅藻和有機(jī)質(zhì)碎屑[6-7],作為我國重要海水增養(yǎng)殖品種之一,其生物學(xué)數(shù)據(jù)基本完備、并且取材方便,是海洋底棲環(huán)境污染物生物毒性評(píng)價(jià)的理想受試生物。
生物體應(yīng)對(duì)污染物脅迫造成生物體內(nèi)超氧自由基(·O2·-)產(chǎn)生速率上升和H2O2含量增加而導(dǎo)致的氧化脅迫或氧化損傷主要表現(xiàn)為抗氧化酶對(duì)活性氧的清除能力[8-9]。生物體內(nèi)存在多種抗氧化酶系統(tǒng),其中,過氧化氫酶(Catalase, CAT)是一種重要的抗氧化酶,能將生物體內(nèi)H2O2轉(zhuǎn)化為H2O和O2,通過清除過量的H2O2保護(hù)組織細(xì)胞免遭生物體病變和環(huán)境脅迫造成的氧化損傷[10-12],可作為指示污染物脅迫的重要生理生化指標(biāo)[13-14]。前期研究發(fā)現(xiàn)苯系物導(dǎo)致仿刺參體內(nèi)脂質(zhì)過氧化損傷[15]。仿刺參的過氧化氫酶基因(cat)編碼500個(gè)氨基酸,蛋白分子量56.56 kDa,屬于單功能酶,在仿刺參抗氧化和免疫應(yīng)答中發(fā)揮重要作用,其表達(dá)存在組織差異,在腸中表達(dá)量最高,呼吸樹次之,體壁中表達(dá)量最低[16]。因此,本文選擇仿刺參為受試生物,研究6種苯系物對(duì)仿刺參呼吸樹、腸組織中cat基因表達(dá)及酶活性的影響,為開展苯系物對(duì)海洋底棲生物毒性評(píng)價(jià)提供基礎(chǔ)數(shù)據(jù)。
1.1 儀器與試劑
儀器:Mx3005pTM實(shí)時(shí)熒光定量PCR儀(美國Stratagene),NanoPhotometer微量核酸蛋白分析儀(德國Implen),多功能酶標(biāo)儀(瑞士Tecan),CT15RE型臺(tái)式微量高速離心機(jī)(日本Hitachi)。
藥品和試劑:組織RNA常溫保存液(TaKaRa),Trizol試劑(TaKaRa),PrimeScriptTMRT reagent Kit (TaKaRa),SYBR PrimeScriptTMRT-PCR Kit II (TaKaRa),過氧化氫酶(CAT)測(cè)試盒(南京建成),苯、甲苯、乙基苯、鄰-二甲苯、間-二甲苯、對(duì)-二甲苯和二甲基亞砜(DMSO)均為分析純(中國國藥有限公司)。
1.2 仿刺參的處理及取樣
仿刺參(A. japonicus)為遼寧省海洋水產(chǎn)科學(xué)研究院引育種中心培育的幼參,體重(10±2) g,馴養(yǎng)1周后,選取健康幼參用于試驗(yàn)。
6種苯系物的處理濃度設(shè)置為1/5、1/25和1/125的96 h-LC50(見表1),分別對(duì)應(yīng)苯(B1、B2、B3)、甲苯(T1、T2、T3)、乙基苯(E1、E2、E3)、鄰-二甲苯(O1、O2、O3)、間-二甲苯(M1、M2、M3)、對(duì)-二甲苯(P1、P2、P3)處理組,同時(shí)設(shè)置空白對(duì)照組(C),各處理組設(shè)置3個(gè)平行。配置1 000倍母液,在玻璃缸中配制15 L實(shí)驗(yàn)溶液,每個(gè)缸中加5~6只幼參,試驗(yàn)條件:水溫15 ℃,鹽度30,pH 8.0,間斷性充氧,確保溶解氧大于4.5 mg·L-1,避光。根據(jù)預(yù)實(shí)驗(yàn)結(jié)果,取各處理組12 h的仿刺參3只,于冰上取仿刺參呼吸樹、腸組織樣品,RNA樣品放于RNA保存液(TaKaRa),4 ℃過夜,-20 ℃保存?zhèn)溆?,蛋白樣品放?.1 mol·L-1PBS緩沖液,-20 ℃保存?zhèn)溆谩?/p>
表1 6種苯系物濃度設(shè)置(mg·L-1)Table 1 Concentration gradients of six BTEXs experimental treatments (mg·L-1)
Trizol法分別提取仿刺參呼吸樹、腸組織的總RNA,電泳檢測(cè)RNA的完整性,微量核酸蛋白分析儀檢測(cè)RNA的純度和濃度。
1.3 實(shí)時(shí)定量PCR
仿刺參呼吸樹、腸組織中cat mRNA實(shí)時(shí)定量PCR參照高杉等實(shí)驗(yàn)方法[16-17]。分別取各處理組和空白對(duì)照組呼吸樹、腸組織900 ng總RNA用PrimeScriptTMRT reagent Kit (TaKaRa)進(jìn)行反轉(zhuǎn)錄。使用Mx3005pTM實(shí)時(shí)熒光定量PCR儀,采用SYBR PrimeScriptTMRT-PCR Kit II進(jìn)行實(shí)時(shí)定量PCR。
cat基因的引物序列:
cat-F:5’-GTGAAGTTCTACACAGAGGATGGCA-3’;
cat-R:5’-CTTCT GGGTGTGGATGAAACTGG-3’。
內(nèi)參基因Cytb的引物序列:
Cytb-F:5’-TGAGCCGCAAC AGTAATC-3’;
Cytb-R:5’-AAGGGAAAAGGAAGTGAAAG-3’。
反應(yīng)條件:95 ℃,30 s;95 ℃,10 s,55 ℃,25 s,72 ℃,25 s,40個(gè)循環(huán)。采用384 v.2 (REST) 軟件計(jì)算仿刺參呼吸樹、腸組織中cat mRNA相對(duì)表達(dá)倍數(shù)[17]。
1.4 仿刺參呼吸樹、腸CAT活性測(cè)定
仿刺參呼吸樹、腸組織CAT活性測(cè)定采用南京建成生物研究所的CAT測(cè)試盒測(cè)定。
CAT (U·mg-1prot)活性定義為:每毫克組織蛋白酶分解1 μmol的H2O2的量為一個(gè)活性單位(U)。
1.5 數(shù)據(jù)統(tǒng)計(jì)分析
采用SPSS 17.0 軟件,在P=0.05的置信水平對(duì)cat mRNA相對(duì)表達(dá)倍數(shù)變化和CAT活性變化情況進(jìn)行ANOVA分析,并用Origin 7.5軟件作圖(在以下柱形圖中,*,**分別表示:與對(duì)照相比,P<0.05,P<0.01)。SPSS 17.0 軟件對(duì)仿刺參呼吸樹、腸組織中cat mRNA相對(duì)表達(dá)倍數(shù)變化與CAT活性進(jìn)行相關(guān)性分析(表中*表示相關(guān)性顯著,P<0.05)。
圖1 苯系物對(duì)仿刺參呼吸樹cat mRNA相對(duì)表達(dá)倍數(shù)變化的影響Fig. 1 The effects of BTEXs on the relative fold changes of cat mRNA in A. japonicus respiratory tree
2.1 苯系物對(duì)仿刺參呼吸樹cat mRNA相對(duì)表達(dá)倍數(shù)變化及CAT活性的影響
6種苯系物對(duì)仿刺參呼吸樹cat mRNA相對(duì)表達(dá)倍數(shù)變化的影響見圖1。各濃度苯系物處理組的呼吸樹cat mRNA表達(dá)倍數(shù)變化顯著。苯、對(duì)-二甲苯處理組的呼吸樹cat mRNA表達(dá)顯著下調(diào),呈顯著劑量-效應(yīng)關(guān)系,其中,高濃度苯處理組的下調(diào)倍數(shù)為35.7倍;而甲苯、乙基苯、鄰-二甲苯、間-二甲苯與呼吸樹cat mRNA表達(dá)倍數(shù)變化呈現(xiàn)非單調(diào)性劑量—效應(yīng)關(guān)系。其中,高濃度鄰-二甲苯處理組的呼吸樹cat mRNA表達(dá)顯著上調(diào),上調(diào)倍數(shù)為1.3倍,中、低濃度的極顯著下調(diào),下調(diào)倍數(shù)分別為6.5、29.4倍;與之相反,高濃度甲苯、乙基苯、間-二甲苯處理組的呼吸樹cat mRNA表達(dá)顯著下調(diào),下調(diào)倍數(shù)分別為1.1、1.7、4.1倍,中、低濃度處理組的極顯著上調(diào),中濃度甲苯處理組的上調(diào)倍數(shù)為6.2倍。
6種苯系物對(duì)仿刺參呼吸樹CAT活性的影響結(jié)果見圖2。與對(duì)照相比,苯系物對(duì)仿刺參呼吸樹CAT活性主要表現(xiàn)為誘導(dǎo)作用。各濃度苯、甲苯和乙基苯處理組呼吸樹CAT活性顯著上升,隨著處理濃度升高,CAT活性增強(qiáng),呈顯著劑量-效應(yīng)關(guān)系,其中乙基苯的誘導(dǎo)倍數(shù)最高,為12.0~19.8倍。
2.2 苯系物對(duì)仿刺參腸cat mRNA相對(duì)表達(dá)倍數(shù)變化及CAT活性的影響
6種苯系物對(duì)仿刺參腸cat mRNA相對(duì)表達(dá)倍數(shù)變化的影響結(jié)果見圖3。各濃度苯系物處理組的腸cat mRNA表達(dá)倍數(shù)變化顯著,均表現(xiàn)為非單調(diào)性的劑量-效應(yīng)關(guān)系。高濃度苯和對(duì)-二甲苯處理組的腸cat mRNA表達(dá)極顯著上調(diào),上調(diào)倍數(shù)分別為9.8倍和11.4倍,中、低濃度苯和對(duì)-二甲苯處理組腸cat mRNA表達(dá)極顯著下調(diào);各濃度甲苯處理組腸catmRNA表達(dá)極顯著上調(diào),上調(diào)倍數(shù)在1.9~18.8倍之間;高、中濃度乙基苯處理組腸cat mRNA表達(dá)顯著下調(diào),低濃度乙基苯處理組的極顯著上調(diào),上調(diào)倍數(shù)為31.3倍;各濃度鄰-二甲苯處理組腸cat mRNA表達(dá)極顯著下調(diào),下調(diào)倍數(shù)在6.4~52.6倍之間;高濃度間-二甲苯處理組腸cat mRNA表達(dá)極顯著下調(diào),下調(diào)倍數(shù)為1.7倍,中濃度處理組的極顯著上調(diào),上調(diào)倍數(shù)為2.0倍。
6種苯系物對(duì)仿刺參腸CAT活性的影響結(jié)果見圖4。苯系物對(duì)仿刺參腸CAT活性具有抑制作用。與對(duì)照組相比,高濃度乙基苯處理組腸CAT活性下降了75.21%;各濃度鄰-二甲苯和對(duì)-二甲苯處理組腸CAT活性顯著下降,鄰-二甲苯對(duì)腸CAT活性抑制率為48.75%~70.17%;對(duì)-二甲苯對(duì)腸CAT活性抑制率為35.31%~67.11%。6種苯系物對(duì)腸CAT活性抑制程度順序?yàn)椋亨?二甲苯>乙基苯>對(duì)-二甲苯>甲苯>間-二甲苯>苯。
圖2 苯系物對(duì)仿刺參呼吸樹CAT活性的影響Fig. 2 The effects of BTEXs on the CAT activities of A. japonicus respiratory tree
圖4 苯系物對(duì)仿刺參腸CAT活性的影響Fig. 4 The effects of BTEXs on the CAT activities of A. japonicus intestine
2.3 仿刺參腸、呼吸樹cat mRNA相對(duì)表達(dá)倍數(shù)變化與CAT活性相關(guān)性分析
6種苯系物處理后,仿刺參腸、呼吸樹cat mRNA相對(duì)表達(dá)倍數(shù)變化與CAT活性的相關(guān)性見表2。苯系物處理后,仿刺參腸組織中cat mRNA相對(duì)表達(dá)倍數(shù)變化與CAT活性變化呈顯著正相關(guān);仿刺參腸和呼吸樹中cat mRNA相對(duì)表達(dá)倍數(shù)變化呈顯著正相關(guān);而呼吸樹中cat mRNA相對(duì)表達(dá)倍數(shù)變化與CAT活性變化,腸組織中cat mRNA相對(duì)表達(dá)倍數(shù)變化與呼吸樹CAT活性變化之間均無顯著相關(guān)性。
污染物脅迫可促使機(jī)體細(xì)胞的酶系統(tǒng)和非酶系統(tǒng)反應(yīng),通過還原產(chǎn)生活性氧和氧自由基,造成生物體內(nèi)活性氧含量增加,打破生物體內(nèi)活性氧代謝平衡,如不及時(shí)清除會(huì)導(dǎo)致氧化損傷[18]。生物體內(nèi)存在2種活性氧清除機(jī)制,即酶清除系統(tǒng)和非酶清除系統(tǒng)[8]。CAT是酶清除系統(tǒng)的重要組分,能將細(xì)胞內(nèi)H2O2催化分解為H2O和O2,避免細(xì)胞、組織遭受氧化損傷。目前,污染物對(duì)生物CAT活性及其基因表達(dá)的影響研究主要集中于重金屬、持久性有機(jī)污染物[8-9, 19-21],而有關(guān)苯系物對(duì)海洋生物CAT活性及其基因表達(dá)的影響尚未見報(bào)道。本研究中,經(jīng)過6種苯系物處理后,仿刺參呼吸樹、腸組織中cat mRNA相對(duì)表達(dá)倍數(shù)變化呈不同程度的上調(diào)或下調(diào);與對(duì)照組相比,6種苯系物對(duì)呼吸樹CAT活性主要表現(xiàn)為誘導(dǎo)作用,對(duì)腸CAT活性表現(xiàn)為抑制作用,表明苯系物造成仿刺參呼吸樹和腸組織的氧化脅迫。這與前期相關(guān)研究結(jié)論相似,6種苯系物處理導(dǎo)致仿刺參體腔液中丙二醛含量顯著變化,引起仿刺參體內(nèi)脂質(zhì)過氧化損傷[15]。陳蕓燕等[22〗研究發(fā)現(xiàn),2.30 mg·L-1亞硝酸氮可以誘導(dǎo)仿刺參體壁CAT活性增加,11.50和57.50 mg·L-1亞硝酸氮顯著抑制體壁CAT活性,表現(xiàn)為非單調(diào)性劑量-效應(yīng)關(guān)系。氨氮脅迫可導(dǎo)致仿刺參氧化損傷,降低其免疫力,增加細(xì)菌的易感性[23]。本文實(shí)驗(yàn)結(jié)果表明,6種苯系物處理造成仿刺參體內(nèi)呼吸樹、腸2種組織的氧化脅迫和氧化損傷。
表2 仿刺參腸、呼吸樹cat mRNA相對(duì)表達(dá)倍數(shù)變化與CAT活性的相關(guān)性Table 2 Correlation between relative fold changes of cat mRNA and CAT activity in A. japonicus respiratory tree and intestine
在仿刺參不同組織中,cat基因在腸組織中表達(dá)量最高,呼吸樹次之[16]。而呼吸樹CAT活性卻高于腸的[24]。苯系物處理后,腸中cat mRNA相對(duì)表達(dá)倍數(shù)變化程度略大于呼吸樹中的,苯系物對(duì)呼吸樹CAT活性影響表現(xiàn)為誘導(dǎo)作用,對(duì)腸CAT活性影響表現(xiàn)為抑制作用。仿刺參腸管壁由粘膜層、粘膜下層、肌層和外膜組成,富含蛋白酶、脂酶、非特異性脂酶和堿性磷酸酶[25],主要消化攝食的底泥、硅藻、微生物和有機(jī)碎屑;呼吸樹由泄殖腔壁分出的兩支樹枝狀分管,由體腔上皮、肌肉血腔和內(nèi)皮層組成,通過泄殖腔泵水、排水進(jìn)行體內(nèi)外的氣體交換[26-27]。苯系物對(duì)仿刺參cat mRNA相對(duì)表達(dá)量和CAT活性影響的組織差異可能與苯系物進(jìn)入仿刺參暴露途徑以及呼吸樹、腸的生物學(xué)結(jié)構(gòu)和功能有關(guān)。
苯系物處理后,仿刺參呼吸樹cat mRNA相對(duì)表達(dá)倍數(shù)變化和CAT活性呈現(xiàn)不同的變化趨勢(shì);腸的cat mRNA相對(duì)表達(dá)倍數(shù)變化和CAT活性呈相似的變化趨勢(shì)。CAT的抗氧化能力是在其基因轉(zhuǎn)錄成mRNA,再表達(dá)合成蛋白質(zhì),并形成一定的空間結(jié)構(gòu)后才能發(fā)揮作用[8]。Gon?alves-Soares等[28]研究發(fā)現(xiàn),100 μg·kg-1微囊藻(Microcystis aeruginosa)毒素導(dǎo)致凡納濱對(duì)蝦(Litopenaeus vannamei)CAT活性顯著上升,為空白對(duì)照組的1.5倍,而cat基因表達(dá)卻顯著下調(diào),為對(duì)空白照組的0.26倍。Li等[29]研究發(fā)現(xiàn)3~24 mg·kg-1呋喃西林暴露,導(dǎo)致海洋纖毛蟲—扇形游仆蟲(Euplotes vannus) 的CAT活性與cat基因轉(zhuǎn)錄水平呈現(xiàn)不同動(dòng)態(tài)變化趨勢(shì)。污染物脅迫后cat轉(zhuǎn)錄水平和蛋白水平不同變化趨勢(shì),可能與污染物脅迫導(dǎo)致cat基因翻譯后蛋白的氧化修飾有關(guān),氧化的CAT蛋白可能是特異的過氧化物氧化蛋白酶的攻擊目標(biāo)[30]。通過比較發(fā)現(xiàn)仿刺參2種組織cat基因轉(zhuǎn)錄水平對(duì)苯系物處理的響應(yīng)比CAT活性水平的更為敏感。這與Li等[29]研究結(jié)論相似,呋喃西林脅迫后,扇形游仆蟲cat基因轉(zhuǎn)錄水平比CAT活性水平更敏感。Trasvia-Arenas等[31]研究發(fā)現(xiàn),缺氧脅迫和再充氧條件下凡納濱對(duì)蝦鰓組織中cat基因轉(zhuǎn)錄水平比CAT活性變化更為敏感。
不同苯系物處理后,仿刺參呼吸樹和腸組織中cat mRNA相對(duì)表達(dá)倍數(shù)和CAT活性變化,表現(xiàn)為不同類型的劑量-效應(yīng)關(guān)系,即單調(diào)的正相關(guān)性或負(fù)相關(guān)性,及非單調(diào)的相關(guān)性。瞿建宏等[21]研究發(fā)現(xiàn)羅非魚肝臟組織CAT活性與苯酚暴露濃度之間存在劑量-效應(yīng)正相關(guān)性,而肌肉組織CAT活性與苯酚之間表現(xiàn)為非單調(diào)的劑量-效應(yīng)關(guān)系。陳蕓燕等[22]研究報(bào)道亞硝酸氮暴露與仿刺參體壁CAT活性表現(xiàn)為非單調(diào)性劑量-效應(yīng)關(guān)系。Li等[29]研究發(fā)現(xiàn)呋喃西林暴露與扇形游仆蟲的CAT活性呈非單調(diào)性劑量效應(yīng)關(guān)系,而與cat mRNA相對(duì)表達(dá)量呈劑量效應(yīng)正相關(guān)性。有關(guān)污染物脅迫后,海洋無脊椎動(dòng)物cat基因轉(zhuǎn)錄和CAT活性動(dòng)態(tài)變化趨勢(shì)的分子機(jī)制尚有待于深入研究和探討。
苯、甲苯、乙基苯和二甲苯屬于非極性麻醉型化合物,其毒性可以用辛醇—水分配系數(shù)(log Kow)確定[32-34]。苯系物對(duì)仿刺參急性致死作用表現(xiàn)為二甲苯>乙基苯>甲苯>苯,與苯系物log Kow值呈顯著的相關(guān)性。前期研究發(fā)現(xiàn),6種苯系物對(duì)球等鞭金藻(Isochrysis galbana)和新月菱形藻(Nitzschia closterium)生長抑制作用與其log Kow值有較好的相關(guān)性[35]。范亞維等[33]和周啟星等[34]研究發(fā)現(xiàn),甲苯、乙基苯和二甲苯對(duì)斑馬魚(Brachydanio rerio)、大型溞(Daphnia magna)和霍甫水絲蚓(Limnodrilus hoffmeisteri)急性致死作用與3種苯系物log Kow值呈顯著的相關(guān)性。而6種苯系物log Kow值與仿刺參2種組織cat基因轉(zhuǎn)錄、CAT活性之間不存在顯著的相關(guān)性。在亞致死濃度下,苯系物對(duì)仿刺參的氧化脅迫作用可能是導(dǎo)致仿刺參死亡的因素之一。
[1] 李學(xué)峰, 周啟星. BTEX的環(huán)境質(zhì)量標(biāo)準(zhǔn)研究進(jìn)展[J]. 生態(tài)學(xué)雜志, 2011, 30(2): 369-375
Li X F, Zhou Q X. Environmental quality standard of BTEX: A review [J]. Chinese Journal of Ecology, 2011, 30(2): 369-375 (in Chinese)
[2] Mazzeo D E C, Fernandes T C C, Marin-Morales M A. Cellular damages in the Allium cepa test system, caused by BTEX mixture prior and after biodegradation process [J]. Chemosphere, 2011, 85(1): 13-18
[3] 白紅妍, 韓彬, 陳軍輝, 等. 靜態(tài)頂空氣相色譜-質(zhì)譜聯(lián)用法快速測(cè)定海水中13種苯系物[J]. 色譜, 2012, 30(5): 474-479
Bai H Y, Han B, Chen J H, et al. Rapid determination of benzene series in seawater by gas chromatography- mass spectrometry with static headspace extraction [J]. Chinese Journal of Chromatography, 2012, 30(5): 474-479 (in Chinese)
[4] Cavalcante R M, de Andrade M V F, Marins R V, et al. Development of a headspace-gas chromatography (HS-GC-PID-FID) method for the determination of VOCs in environmental aqueous matrices: Optimization, verification and elimination of matrix effect and VOC distribution on the Fortaleza Coast, Brazil [J]. Microchemical Journal, 2010, 96(2): 337-343
[5] 朱四喜, 周唯, 楊紅麗, 等. 浙江舟山潮間帶沉積物中二甲苯的檢測(cè)[J]. 廣東化工, 2010, 37(2): 125-127
Zhu S X, Zhou W, Yang L H, et al. Determination of xylene in interdial sediments in Zhoushan, Zhejiang Province [J]. Guangdong Chemical Industry, 2010, 37(2): 125-127 (in Chinese)
[6] 張寶琳, 孫道元, 吳耀泉. 靈山島淺海巖礁區(qū)刺參(Apostichopus japonicus)食性初步分析[J]. 海洋科學(xué), 1995, 3: 11-13
Zhang B L, Sun D Y, Wu Y Q, et al. Preliminary analysis on the feeding habit of Apostichopus japonicus in the Rocky Coast Water off Lingshan Island [J]. Marine Science, 1995, 3: 11-13 (in Chinese)
[7] 劉曉威, 姜森顥, 周一兵, 等. 大連地區(qū)仿刺參養(yǎng)殖池塘底棲硅藻生產(chǎn)狀況的周年變化研究[J]. 水產(chǎn)科學(xué), 2013, 31(11): 679-682
Liu X W, Jiang S H, Zhou Y B, et al. Annual changes in production of benthic diatoms in sea cucumber Apostichopus japonicus culture ponds in Dalian [J]. Fiheries Science, 2013, 31(11): 679-682 (in Chinese)
[8] 趙士誠, 孫靜文, 馬有志, 等. 鎘對(duì)玉米幼苗活性氧代謝, 超氧化物歧化酶和過氧化氫酶活性及其基因表達(dá)的影響[J]. 中國農(nóng)業(yè)科學(xué), 2008, 41(10): 3025-3032
Zhao S C, Sun J W, Ma Y Z, et al. Effects of cadmium on reactive oxygen species metabolism, activities and gene expressions of superoxide dismutase and catalase in maize (Zea Mays) seedling [J]. Scientia Agricultura Sinica, 2008, 41(10): 3025-3032 (in Chinese)
[9] 羅立新, 孫鐵珩, 靳月華. 鎘脅迫下小麥葉中超氧陰離子自由基的積累[J]. 環(huán)境科學(xué)學(xué)報(bào), 1998, 18(5): 495-499
Luo L X, Sun T H, Jin Y H. Accumulation of superoxide radical in wheat leaves under cadmium stress [J]. Acta Scientiae Circumstantiae, 1998, 18(5): 495-499 (in Chinese)
[10] Ho Y S, Xiong Y, Ma W, et al. Mice lacking catalase develop normally but show difntial sensitivity to oxidant tissue injury [J]. The Journal of Biological Chemistry, 2004, 279: 32804-32812
[11] Bai J, Rodriguez A M, Melendez J A, et al. Overexpression of catalase in cytosolic or mitochondrial compartment protects HepG2 cells against oxidative injury [J]. Journal of Biological Chemistry, 1999, 274(37): 26217-26224
[12] Bai J, Cederbaum A I. Catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents by accelerating the degradation of p53 [J]. Journal of Biological Chemistry, 2003, 278(7): 4660-4667
[13] Roma L P, Bosqueiro J R, Cunha D A, et al. Protection of insulin-producing cells against toxicity of dexamethasone by catalase overexpression [J]. Free Radical Biology and Medicine, 2009, 47(10): 1386-1393
[14] Chi Z, Liu R, Zhang H. Potential enzyme toxicity of oxytetracycline to catalase [J]. Science of the Total Environment, 2010, 408(22): 5399-5404
[15] 姜北, 劉薇, 周遵春, 等. 苯系物對(duì)仿刺參體內(nèi)脂質(zhì)過氧化程度的影響[J]. 水產(chǎn)科學(xué), 2014, 33(1): 15-21
Jiang B, Liu W, Zhou Z Z, et al. Effects of benzene, toluene, ethyl benzene, and xylene (BTEX) on lipid peroxidation in sea cucumber Apostichopus japonicus [J]. Fiheries Science, 2014, 33(1): 15-21 (in Chinese)
[16] 高杉, 周遵春, 董穎, 等. 仿刺參過氧化氫酶基因全長 cDNA 的克隆及表達(dá)分析[J]. 中國農(nóng)業(yè)科技導(dǎo)報(bào), 2014, 16(2): 127-134
Gao S, Zhou Z Z, Dong Y, et al. Full-length cDNA cloning and expression analysis of catalase gene from sea cucumber (Apostichopus japonicus) [J]. Journal of Agricultural Science and Technology, 2014, 16(2): 127-134 (in Chinese)
[17] Sun H, Zhou Z, Dong Y, et al. Identification and expression analysis of two Toll-like receptor genes from sea cucumber (Apostichopus japonicus) [J]. Fish & Shellfish Immunology, 2013, 34(1): 147-158
[18] Winston G W, Di Giulio R T. Prooxidant and antioxidant mechanisms in aquatic organisms [J]. Aquatic Toxicology, 1991, 19(2): 137-161
[19] 趙元鳳, 呂景才. 鎘污染對(duì)鰱魚超氧化物歧化酶和過氧化氫酶活性的影響[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2002, 10(3): 267-271
Zhao Y F, Lv J C. Effect of cadmium on activities of superoxide dismutase and catalase in Aristchthys nobilis [J]. Journal of Agricultural Biotechnology, 2002, 10(3): 267-271 (in Chinese)
[20] Romero-Puertas M C, Corpas F J, Rodríguez-Serrano M, et al. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants [J]. Journal of Plant Physiology, 2007, 164(10): 1346-1357
[21] 瞿建宏, 陳家長, 胡庚東, 等. 苯酚脅迫下羅非魚組織中過氧化氫酶與谷胱甘肽-S-轉(zhuǎn)移酶的動(dòng)態(tài)變化[J]. 生態(tài)環(huán)境, 2006, 15(4): 687-692
Qu J H, Chen J C, Hu G Q, et al. Dynamic changes of catalase and glutathione-S-transferase in the different tissues of tilapia exposed to phenol [J]. Ecology and Environment, 2006, 15(4): 687-692 (in Chinese)
[22] 陳蕓燕, 田相利, 于曉, 等. 亞硝酸氮脅迫對(duì)刺參體壁非特異性免疫能力及 HSP70 表達(dá)的影響[J]. 中國海洋大學(xué)學(xué)報(bào): 自然科學(xué)版, 2013, 43(11): 35-42
Chen Y Y, Tian X L, Yu X, et al. Effect of nitrite stress on non-specific immune response and HSP70 expression of sea cucumber Apostichopus japonicus [J]. Periodical of Ocean University of China, 2013, 43(11): 35-42 (in Chinese)
[23] 劉洪展, 鄭風(fēng)榮, 孫修勤, 等. 氨氮脅迫對(duì)刺參幾種免疫酶活性的影響[J]. 海洋科學(xué), 2012, 36(8): 47-52
Liu H Z, Zhen F R, Sun X Q, et al. Effect of exposure to ammonia nitrogen stress on immune enzyme of holothurian Apostichopus japonicus [J]. Marine Science, 2012, 36(8): 47-52 (in Chinese)
[24] Zang Y, Tian X, Dong S, et al. Growth, metabolism and immune responses to evisceration and the regeneration of viscera in sea cucumber, Apostichopus japonicus [J]. Aquaculture, 2012, 358: 50-60
[25] 崔龍波, 董志寧. 仿刺參消化系統(tǒng)的組織學(xué)和組織化學(xué)研究[J]. 動(dòng)物學(xué)雜志, 2000, 35(6): 2-4
Cui L B, Dong Z N. Histological and histochemical studies on the digestive system of Apostichopus japonicus [J]. Chinese Journal of Zoology, 2000, 35(6): 2-4 (in Chinese)
[26] 劉曉云, 包振民, 范瑞青, 等. 刺參呼吸樹的超微結(jié)構(gòu)觀察與研究[J]. 海洋科學(xué), 2005, 29(12): 25-30
Liu X Y, Bao Z M, Fan R Q, et al. Ultrastructural observation and study on the respiratory trees of Apostichopus japonicus [J]. Marine Science, 2005, 29(12): 25-30 (in Chinese)
[27] 王吉橋, 田相利. 刺參養(yǎng)殖生物學(xué)新進(jìn)展[M]. 北京: 海洋出版社, 2012: 22, 225-236
[28] Gon?alves-Soares D, Zanette J, Yunes J S, et al. Expression and activity of glutathione-S-transferases and catalase in the shrimp Litopenaeus vannamei inoculated with a toxic Microcystis aeruginosa strain [J]. Marine Environmental Research, 2012, 75: 54-61
[29] Li J, Zhou L, Lin X, et al. Characterizing dose-responses of catalase to nitrofurazone exposure in model ciliated protozoan Euplotes vannus for ecotoxicity assessment: Enzyme activity and mRNA expression [J]. Ecotoxicology and Environmental Safety, 2014, 100: 294-302
[30] Romero-Puertas M C, Palma J M, Gómez M, et al. Cadmium causes the oxidative modification of proteins in pea plants [J]. Plant, Cell & Environment, 2002, 25(5): 677-686
[32] Schultz T W, Sinks G D, Bearden A P. QSAR in Aquatic Toxicology: A Mechanism of Action Approach Comparing Toxic Potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri [M]. Taylor & Francis, 1998: 51-109
[33] 范亞維, 周啟星, 王媛媛, 等. 水體BTEX 污染對(duì)大型溞和霍普水絲蚓的毒性效應(yīng)及水環(huán)境安全評(píng)價(jià)[J]. 環(huán)境科學(xué)學(xué)報(bào), 2009, 29(7): 1485-1490
Fan Y W, Zhou Q X, Wang Y Y, et al. Toxic effects of BTEX in water on Daphnia magna and Limnodrilus hoffmeisteri and safety assessment of the aquatic environment [J]. Acta Scientiae Circumstantiae, 2009, 29(7): 1485-1490 (in Chinese)
[34] 范亞維, 周啟星. 水體甲苯、乙苯和二甲苯對(duì)斑馬魚的毒性效應(yīng)[J]. 生態(tài)毒理學(xué)報(bào), 2009, 4(1): 136-141
Fan Y W, Zhou Q X. Toxic effects of toluene, ethylbenzene and xylene in waters on zebrafish Brachydanio rerio [J]. Asian Journal of Ecotoxicology, 2009, 4(1): 136-141 (in Chinese)
[35] 王擺, 高士博, 董穎. 6 種苯系物對(duì)球等鞭金藻和新月菱形藻的生長抑制[J]. 生態(tài)毒理學(xué)報(bào), 2014, 9(2): 233-238
Wang B, Gao S B, Dong Y, et al. Inhibitory effect of six kinds of BTEXs on growth of the chrysophyceae Isochrysis galbana and the diatom Nitzschia closterium [J]. Asian Journal of Ecotoxicology, 2014, 9(2): 233-238 (in Chinese)
◆
The Effects of BTEXs on thecatalaseGene Expression and Catalase Activities in Respiratory Tree and Intestine of Sea CucumberApostichopusjaponicus
Gao Shibo1,2, Wang Bai2,#, Dong Ying2, Gao Shan2, Jiang Jingwei2, Sun Hongjuan2, Yin Xuwang1, Zhou Zunchun2,*
1. Dalian Ocean University, Dalian 116023, China 2. Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
5 September 2014 accepted 2 December 2014
The present study is aimed to evaluate the effects of BTEXs on the activities of catalase (CAT) and relative fold changes of cat gene in respiratory tree and intestine of sea cucumber Apostichopus japonicus. Three different concentrations (1/5, 1/25, 1/125 of 96-LC50) of benzene, toluene, ethyl benzene, o-, m-, p-xylene were selected to treat the healthy sea cucumber individuals using semi-static water experimental method. The results showed that the fold changes of cat gene in respiratory tree and intestine were remarkably changed in different BTEXs treatment groups. The activities of CAT in respiratory tree were induced in benzene, toluene, ethyl benzene and o-xylene treatment groups, and the highest relative folds (12.0~19.8 fold) were found in ethyl benzene treatment group. The activities of CAT in intestine were inhibited in BTEXs treatment groups, and the activities in descending order were o-xylene, ethyl benzene, p-xylene, toluene, m-xylene and benzene treatment groups. This suggested that BTEXs have oxidative stress on the respiratory tree and intestine of A. japonicus, and might have oxidative damage on the two tissues. Correlation analysis showed that CAT activities was remarkably positive correlated with the relative fold changes of cat gene in intestine, which was also remarkably positive correlated with that of respiratory tree. These results will provide the basic data for toxic assessment of BTEXs on the sea cucumber A. japonicus.
BTEX; Apostichopus japonicus; oxidative damage; CAT; respiratory tree; intestine
海洋公益性行業(yè)科研經(jīng)費(fèi)專項(xiàng)項(xiàng)目(201205012-7);大連市科學(xué)技術(shù)基金(2012J21DW029);遼寧省海洋與漁業(yè)廳項(xiàng)目(201301)
高士博(1987-),男,碩士,研究方向?yàn)楹Q笊鷳B(tài)毒理學(xué),E-mail: 392083670@qq.com;
*通訊作者(Corresponding author), E-mail: zunchunz@hotmail.com
10.7524/AJE.1673-5897.20140905001
2014-09-05 錄用日期:2014-12-02
1673-5897(2015)2-297-09
Q89; X55
A
周遵春(1967-),男,海洋生物學(xué)博士,研究員,主要研究方向海洋生物學(xué),發(fā)表學(xué)術(shù)論文80余篇。
王擺(1981-),男,海洋生物學(xué)博士,副研究員,主要研究方向?yàn)楹Q笊鷳B(tài)毒理學(xué),發(fā)表學(xué)術(shù)論文20余篇。
# 共同通訊作者(Co-corresponding author),E-mail: wangbai1980@hotmail.com
高士博, 王擺, 董穎, 等. 苯系物對(duì)仿刺參catalase基因表達(dá)及酶活性的影響[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(2): 297-305
Gao S B, Wang B, Dong Y, et al. The effects of BTEXs on the catalase gene expression and catalase activities in respiratory tree and intestine of sea cucumber Apostichopus japonicus [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 297-305(in Chinese)