彭 艷,謝海棠,孫 紅,2,曾 櫻,朱瓊妮,李泰霖,王 果,朱院山
(1.中南大學(xué)湘雅醫(yī)院臨床藥理研究所,湖南 長(zhǎng)沙 410008;中南大學(xué)臨床藥理研究所,遺傳藥理學(xué)湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 長(zhǎng)沙 410078;2.福建醫(yī)科大學(xué)省立臨床學(xué)院藥學(xué)部,福建 福州 350001; 3.皖南醫(yī)學(xué)院弋磯山醫(yī)院臨床藥學(xué)部,安徽省藥物臨床評(píng)價(jià)中心,安徽 蕪湖 241001)
人長(zhǎng)鏈非編碼RNA基因H19克隆、表達(dá)載體構(gòu)建及對(duì)MCF-7細(xì)胞增殖的影響
彭 艷1,謝海棠3,孫 紅1,2,曾 櫻1,朱瓊妮1,李泰霖1,王 果1,朱院山1
(1.中南大學(xué)湘雅醫(yī)院臨床藥理研究所,湖南 長(zhǎng)沙 410008;中南大學(xué)臨床藥理研究所,遺傳藥理學(xué)湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 長(zhǎng)沙 410078;2.福建醫(yī)科大學(xué)省立臨床學(xué)院藥學(xué)部,福建 福州 350001; 3.皖南醫(yī)學(xué)院弋磯山醫(yī)院臨床藥學(xué)部,安徽省藥物臨床評(píng)價(jià)中心,安徽 蕪湖 241001)
目的 克隆人長(zhǎng)鏈非編碼RNA H19基因,構(gòu)建表達(dá)載體,研究H19表達(dá)對(duì)MCF-7增殖的影響作用。方法 制備乳腺癌MCF-7細(xì)胞總RNA,RT-PCR擴(kuò)增長(zhǎng)鏈非編碼RNA H19全長(zhǎng)序列,分子克隆至pcDNA3.1(-)真核表達(dá)載體;分別轉(zhuǎn)染HEK-293T和COS 7細(xì)胞并行Real-time qPCR驗(yàn)證載體構(gòu)建是否成功;轉(zhuǎn)染H19表達(dá)載體入MCF-7細(xì)胞株,轉(zhuǎn)染0、24和48 h后行MTS檢測(cè)H19表達(dá),同時(shí)設(shè)計(jì)siRNA小分子片段干擾H19的表達(dá),觀察對(duì)MCF-7細(xì)胞增殖活性的影響。結(jié)果 成功克隆和構(gòu)建了hH19-pcDNA3.1(-)表達(dá)載體;轉(zhuǎn)染入MCF-7細(xì)胞48h后,H19過(guò)表達(dá),MTS檢測(cè)H19表達(dá)載體組吸光度明顯高于空載體組和空白對(duì)照組;而轉(zhuǎn)染H19 siRNA小分子片段后能干擾其表達(dá),同時(shí)抑制細(xì)胞增殖。 結(jié)論 H19過(guò)表達(dá)能夠促進(jìn)乳腺癌MCF-7細(xì)胞增殖。
長(zhǎng)鏈非編碼RNA;H19基因;基因克隆;瞬時(shí)轉(zhuǎn)染;HEK-293T細(xì)胞;COS-7細(xì)胞;MCF-7細(xì)胞
長(zhǎng)鏈非編碼RNA(long non-coding RNA,lncRNA)定義為一類(lèi)長(zhǎng)度大于200nt、但不編碼產(chǎn)生蛋白質(zhì)的RNA轉(zhuǎn)錄產(chǎn)物[1-2],研究表明lncRNA與多種類(lèi)型的腫瘤發(fā)生發(fā)展有著密切聯(lián)系,已成為近年來(lái)的研究熱點(diǎn)之一[3]。人lncRNA基因H19位于人染色體11p15.5,全長(zhǎng)2.3kb,是最先被報(bào)道的lncRNA基因之一[4]。同時(shí)該基因?yàn)樽钤绨l(fā)現(xiàn)的印記基因之一,其父系基因印記,母系基因表達(dá)。H19基因進(jìn)化上高度保守,胚胎發(fā)育期高表達(dá),嬰兒出生后在大多數(shù)組織表達(dá)下調(diào),僅在骨骼肌和心肌中有少量表達(dá)[5-7]。近年研究表明,H19與腫瘤具有密切關(guān)聯(lián),在不同的癌癥中作用不一致,在某些腫瘤中表現(xiàn)為促進(jìn)腫瘤發(fā)展,但在另外一些腫瘤中則表現(xiàn)為抑癌基因功能。在大多數(shù)腫瘤中,例如乳腺癌、膀胱癌、食道癌、胃癌、肝癌和轉(zhuǎn)移肝癌中H19高表達(dá),表現(xiàn)為促進(jìn)腫瘤的生長(zhǎng)[8-13];而在結(jié)直腸癌和胚胎性腫瘤細(xì)胞株中H19的表達(dá)抑制了腫瘤生長(zhǎng)[13-15]。近期研究表明,H19基因的表達(dá)還可能與腫瘤化療耐藥的調(diào)控機(jī)制相關(guān),例如在多柔比星耐藥的肝癌HepG2細(xì)胞中,H19表達(dá)上調(diào),并通過(guò)降低MDR1基因啟動(dòng)子甲基化水平從而上調(diào)p-糖蛋白表達(dá)而產(chǎn)生多藥耐藥[16]。為進(jìn)一步探討H19表達(dá)對(duì)乳腺癌的發(fā)生、發(fā)展以及多柔比星化療耐藥的作用,本文克隆了該基因并構(gòu)建了H19真核表達(dá)載體,并轉(zhuǎn)染MCF-7細(xì)胞,過(guò)表達(dá)和干擾H19,探討H19表達(dá)增加和降低對(duì)MCF-7細(xì)胞增殖的影響。本文的工作為我們后續(xù)研究H19在乳腺癌發(fā)生,發(fā)展以及化療耐藥過(guò)程中的作用和分子機(jī)制奠定了實(shí)驗(yàn)基礎(chǔ)。
1.1 材料
1.1.1 實(shí)驗(yàn)細(xì)胞及主要試劑 MCF-7、HEK-293T和COS 7細(xì)胞系均為本研究所凍存;限制性?xún)?nèi)切酶Bam HⅠ、HindⅢ、BbvcⅠ及T4連接酶購(gòu)自NEB公司;總RNA提取試劑盒和無(wú)內(nèi)毒素質(zhì)粒提取試劑盒購(gòu)自O(shè)mega公司;膠純化回收試劑盒、pGEM-T easy載體和MTS試劑購(gòu)自Promega公司;胎牛血清購(gòu)自Hyclone公司;RPMI 1640(高糖)、DMEM(高糖)、胰酶、OPTI-MEM、DPBS和脂質(zhì)體LipofectamineTM2000購(gòu)自Life Technologies公司;LA Taq DNA聚合酶、GC Buffer、DNA分子量標(biāo)準(zhǔn)品、逆轉(zhuǎn)錄試劑盒、Real-time qPCR試劑盒購(gòu)自TaKaRa公司;DH5α超級(jí)感受態(tài)細(xì)菌購(gòu)自北京全式金公司;無(wú)水乙醇、氯仿等有機(jī)試劑均為國(guó)產(chǎn)分析純;pcDNA3.1(-)空載體由本研究所屈健博士提供;siRNA H19小分子片段由廣州銳博公司合成。引物由上海博尚生物技術(shù)有限公司合成。
1.1.2 主要儀器 PCR儀為Eppendorf公司產(chǎn)品;凝膠電泳儀及成像系統(tǒng)為Bio-Rad公司產(chǎn)品;Real-time qPCR儀為Roche公司產(chǎn)品;微量分光光度計(jì)為NanoDrop公司產(chǎn)品;熒光倒置顯微鏡為Nikon公司產(chǎn)品。
1.2 方法
1.2.1 細(xì)胞培養(yǎng) HEK-293T細(xì)胞和COS 7細(xì)胞培養(yǎng)基為含10%胎牛血清的DMEM高糖培養(yǎng)基,MCF-7細(xì)胞培養(yǎng)基為含10%胎牛血清的RPMI 1640高糖培養(yǎng)基,3株細(xì)胞的培養(yǎng)條件均為37℃,5%CO2。
1.2.2 hH19基因全長(zhǎng)序列克隆 根據(jù)Gen Bank數(shù)據(jù)庫(kù)hH19標(biāo)準(zhǔn)序列NR_002196.1設(shè)計(jì)引物,因該RNA序列長(zhǎng)2.3kb,故進(jìn)行分段克隆。在上下游片段正向擴(kuò)增引物中均引入BamH Ⅰ切點(diǎn),在下游片段反向引物中均引入Hind Ⅲ切點(diǎn),引物序列及說(shuō)明見(jiàn)Tab 1。試劑盒制備MCF-7細(xì)胞總RNA,取1 μg總RNA用隨機(jī)引物行逆轉(zhuǎn)錄。50 μL PCR體系:上下游引物(10 μmol·L-1)各2 μL,2×GC Buffer 25 μL,dNTPs(2.5 mmol·L-1each)8 μL,LA Taq DNA聚合酶 0.5 μL,逆轉(zhuǎn)錄產(chǎn)物2 μL,ddH2O 補(bǔ)足50 μL。循環(huán)條件:94℃預(yù)變性1 min;94℃變性30s,60℃退火30 s,72℃ 延伸2 min,30個(gè)循環(huán);72℃ 終末延伸5 min;產(chǎn)物保存于4℃。1%瓊脂糖凝膠電泳分離擴(kuò)增產(chǎn)物并行純化回收,產(chǎn)物連入pGEM-T easy載體,轉(zhuǎn)化DH5α超級(jí)感受態(tài)細(xì)胞,行藍(lán)白斑篩選,挑取白色克隆,經(jīng)T7和SP6通用引物對(duì)PCR鑒定后,制備插入片段陽(yáng)性克隆質(zhì)粒,進(jìn)行測(cè)序驗(yàn)證。
1.2.3 構(gòu)建人H19表達(dá)載體 BamH Ⅰ+Hind Ⅲ消化測(cè)序驗(yàn)證正確的hH19上游片段-T easy質(zhì)粒以及pcDNA3.1(-)載體,分別純化回收目的片段。連接線(xiàn)性化載體和hH19上游片段,轉(zhuǎn)化DH5α感受態(tài)細(xì)胞,T7和BGH通用引物對(duì)行菌液PCR鑒定,得到插入片段陽(yáng)性克隆,命名為hH19上游片段-pcDNA 3.1(-)。BbvC Ⅰ+Hind Ⅲ消化H19上游片段-pcDNA 3.1(-)質(zhì)粒和hH19下游片段-T easy質(zhì)粒,連接線(xiàn)性化表達(dá)載體和H19下游片段,轉(zhuǎn)化感受態(tài)細(xì)胞,挑克隆,雙酶切鑒定,得到包含完整,正確hH19基因序列的hH19-pcDNA3.1(-)表達(dá)載體。用無(wú)內(nèi)毒素試劑盒大量制備質(zhì)粒。
Tab 1 Primers used in the present study
1.2.4 hH19表達(dá)載體瞬轉(zhuǎn)HEK-293T和COS-7細(xì)胞及qPCR檢測(cè) HEK-293T和COS-7細(xì)胞分別消化成單細(xì)胞懸液,2×105細(xì)胞接種1個(gè)6孔板孔。按照LipofectamineTM2000試劑盒說(shuō)明書(shū)進(jìn)行轉(zhuǎn)染操作,hH19表達(dá)載體質(zhì)粒用量為4.0 μg,LipofectamineTM2000用量為10 μL,并設(shè)置只加等量轉(zhuǎn)染試劑組和pcDNA3.1(-)空載體組作為對(duì)照。各組細(xì)胞轉(zhuǎn)染24 h后提取總RNA,隨機(jī)引物行逆轉(zhuǎn)錄。Real-time qPCR檢測(cè)hH19表達(dá),GAPDH為內(nèi)對(duì)照。20 μL qPCR體系:2×SYBR Premix Dimer Eraser 10 μL,上下游引物(10 μmol·L-1) 各0.6 μL,cDNA 2 μL,ddH2O補(bǔ)足20 μL。循環(huán)參數(shù):95℃,30 s;95℃,5 s,55℃,30 s,72℃,30 s,40次循環(huán);最后65℃,15 s以及溶解曲線(xiàn)檢測(cè)。細(xì)胞瞬轉(zhuǎn)與H19表達(dá)檢測(cè)實(shí)驗(yàn)重復(fù)3次。
1.2.5 過(guò)表達(dá)H19對(duì)MCF-7細(xì)胞增殖的影響以及qPCR檢測(cè)H19 mRNA表達(dá) MCF-7細(xì)胞以1×104細(xì)胞接種于1個(gè)96孔板孔,待細(xì)胞貼壁后轉(zhuǎn)染hH19-pcDNA3.1(-)載體至細(xì)胞,并設(shè)置pcDNA3.1(-)空載體組和轉(zhuǎn)染試劑組作為對(duì)照,轉(zhuǎn)染0、24、48 h后,吸除孔內(nèi)培養(yǎng)基,每孔加入含有MTS試劑的培養(yǎng)基40 μL,37℃培養(yǎng)30 min后檢測(cè)每孔吸光度。MCF-7細(xì)胞以2×105細(xì)胞接種于1個(gè)6孔板孔,待細(xì)胞貼壁后轉(zhuǎn)染hH19-pcDNA3.1(-)載體至細(xì)胞,并設(shè)置pcDNA3.1(-)空載體組作為對(duì)照,轉(zhuǎn)染24、48 h后提取總RNA,隨機(jī)引物行逆轉(zhuǎn)錄。Real-time qPCR檢測(cè)hH19表達(dá),GAPDH為內(nèi)對(duì)照。細(xì)胞轉(zhuǎn)染、MTS檢測(cè)和qPCR檢測(cè)實(shí)驗(yàn)重復(fù)3次,每次重復(fù)時(shí)每組設(shè)置3個(gè)復(fù)孔。
1.2.6 siRNA H19小分子片段干擾H19表達(dá)后對(duì)MCF-7細(xì)胞增殖的影響以及qPCR檢測(cè)H19 mRNA表達(dá) MCF-7細(xì)胞以1×104細(xì)胞接種于1個(gè)96孔板孔,待細(xì)胞貼壁后轉(zhuǎn)染siRNA H19小分子片段至細(xì)胞,并設(shè)置siRNA H19反義鏈和1條無(wú)意義的小分子片段作為對(duì)照,轉(zhuǎn)染24 h后,吸除孔內(nèi)培養(yǎng)基,每孔加入含有MTS試劑的培養(yǎng)基40 μL,37℃培養(yǎng)30min后檢測(cè)每孔吸光度。MCF-7細(xì)胞以2×105細(xì)胞接種于1個(gè)6孔板孔,待細(xì)胞貼壁后轉(zhuǎn)染siRNA H19小分子片段至細(xì)胞,并設(shè)置siRNA H19反義鏈和1條無(wú)意義的小分子片段作為對(duì)照,轉(zhuǎn)染24 h后提取總RNA,隨機(jī)引物行逆轉(zhuǎn)錄。Real-time qPCR檢測(cè)hH19表達(dá),GAPDH為內(nèi)對(duì)照。細(xì)胞轉(zhuǎn)染、MTS檢測(cè)和qPCR檢測(cè)實(shí)驗(yàn)重復(fù)3次,每次重復(fù)時(shí)每組設(shè)置3個(gè)復(fù)孔。
2.1 hH19基因克隆與序列測(cè)定以cDNA為模板,分別用引物對(duì)F1/R1和F2/R2 擴(kuò)增,得到與預(yù)期片段大小相符的特異性片段(Fig 1A)。切膠純化回收目的片段,并與pGEM-T easy載體連接,插入陽(yáng)性的重組質(zhì)粒 H19上游片段-pGEM-T easy和H19下游片段-pGEM-T easy經(jīng)酶切鑒定正確(Fig 1B)。測(cè)序結(jié)果顯示,載體中H19基因上游片段擴(kuò)增長(zhǎng)1417 bp、下游片段擴(kuò)增長(zhǎng)1162 bp與已知的NCBI基因庫(kù)中人H19(NR_002196.1)序列一致。
2.2 hH19-pcDNA3.1(-)表達(dá)載體構(gòu)建H19上游片段-pGEM-T easy經(jīng)BamH Ⅰ+Hind Ⅲ雙酶切,與同樣雙酶切線(xiàn)性化的pcDNA3.1(-)載體連接,得到的表達(dá)載體H19上游片段-pcDNA3.1(-)載體;再將H19下游片段-pGEM-T easy載體和H19上游片段-pcDNA3.1(-)載體分別行經(jīng)BbvC Ⅰ+Hind Ⅲ雙酶切后連接,從而將H19下游片段插入至H19上游片段-pcDNA3.1(-)載體中,得到完整的hH19-pcDNA3.1(-)表達(dá)載體。經(jīng)BamH Ⅰ+Hind Ⅲ雙酶切鑒定(Fig 1C)和測(cè)序鑒定,確認(rèn)載體構(gòu)建成功。
2.3 Real-time qPCR檢測(cè)轉(zhuǎn)染后HEK-293T細(xì)胞和COS-7細(xì)胞中H19基因表達(dá)利用陽(yáng)離子脂質(zhì)體將hH19-pcDNA3.1(-)表達(dá)載體和對(duì)照組pcDNA3.1(-)空載體分別轉(zhuǎn)染至HEK-293T細(xì)胞和COS-7細(xì)胞。轉(zhuǎn)染24 h后,行Real-time qPCR檢測(cè)各組中H19表達(dá),HEK-293T細(xì)胞和COS-7細(xì)胞轉(zhuǎn)染組的H19表達(dá)水平相對(duì)未轉(zhuǎn)染組分別提高352和820倍(Fig 2A)。qPCR產(chǎn)物經(jīng)電泳檢測(cè)顯示產(chǎn)物條帶特異,片段大小與預(yù)期結(jié)果相符,產(chǎn)物特異(Fig 1D),進(jìn)一步測(cè)序結(jié)果確認(rèn)為qPCR擴(kuò)增產(chǎn)物為H19基因片段。證明所構(gòu)建的H19表達(dá)載體轉(zhuǎn)染真核細(xì)胞內(nèi)后可正常表達(dá)。
Fig 1 Agarose gel electrophoresis pictures of H19 expression vector construction
A: Cloning of H19 gene by PCR and agarose gel electrophoresis result. M—DNA maker; 1—PCR product of H19 up gene; 2—PCR product of H19 down gene. B: Restriction analysis of pGEM-T easy-H19 up and pGEM-T easy-H19 down and agarose gel electrophoresis result. M—DNA maker; 1,2—Digestion of pGEM-T easy-H19 up by BamH I+Hind III; 3,4—Digestion of pGEM-T easy-H19 down by BamH I+Hind III. C: Restriction analysis of pcDNA3.1(-)-H19 and agarose gel electrophoresis result. M—DNA maker; 2—Digestion of pcDNA3.1(-)-H19 by BamH I+Hind III; 3—Digestion of pcDNA3.1(-)by BamH I+Hind III. D: Identification of real-time PCR specificity primer for GAPDH gene by PCR and agarose gel electrophoresis result. 1—DNA maker; 2—Real time PCR specificity primer for GAPDH gene.
2.4 過(guò)表達(dá)H19基因?qū)CF-7細(xì)胞增殖的影響轉(zhuǎn)染H19表達(dá)載體到MCF-7細(xì)胞,24和48 h后qPCR均能檢測(cè)到高表達(dá)的H19 mRNA,且差異有統(tǒng)計(jì)學(xué)意義(Fig 2B)。但H19過(guò)表達(dá)24 h后對(duì)細(xì)胞增殖的影響差異無(wú)統(tǒng)計(jì)學(xué)意義,而到48 h后對(duì)細(xì)胞增殖的影響差異有統(tǒng)計(jì)學(xué)意義,實(shí)驗(yàn)結(jié)果表明,H19可以促進(jìn)MCF-7細(xì)胞的增殖(Fig 2C)。
Fig 2 Results of H19 expression vector transfected into cells
A: Relative expression level of H19 mRNA in HEK-293T and COS-7 transfected with recombinant plasmid pcDNA3.1(-)-H19. none —transfected cells; pcDNA3.1(-)—transfected with empty plasmid; pcDNA3.1(-)-H19—transfected with expression vector plasmid pcDNA3.1(-)-H19. B: Relative expression level of H19 mRNA in MCF-7 transfected with recombinant plasmid pcDNA3.1(-)-H19.*P<0.05vspcDNA3.1(-); C: The influence on the proliferation of H19 expression vector plasmid transfected into MCF-7.*P<0.05vspcDNA3.1(-).
Fig 3 Results of H19 siRNA interference fragment transfected into cells
A: Relative expression level of H19 mRNA in MCF-7 transfected with H19 siRNA interference fragment. Non control—cells without H19 oligonucleotides transfection; siRNA H19 (sense)—sense H19 oligonucleotides transfection; siRNA H19 (antisense) —antisense H19 oligonucleotides transfection.*P<0.05vssiRNA H19(antisense) and non control; B: The influence on the proliferation of H19 siRNA interference fragment transfected into MCF-7.*P<0.05vssiRNA H19(antisense) and non control.
2.5 siRNA 小分子片段干擾H19基因?qū)CF-7細(xì)胞增殖的影響轉(zhuǎn)染H19 siRNA小分子干擾片段到MCF-7細(xì)胞,24 h后qPCR檢測(cè)到H19被干擾70%左右,差異具有統(tǒng)計(jì)學(xué)意義(Fig 3A)。H19干擾24 h后觀察到能夠抑制細(xì)胞增殖且差異具有統(tǒng)計(jì)學(xué)意義,實(shí)驗(yàn)結(jié)果表明,干擾H19可以抑制MCF-7細(xì)胞的增殖(Fig 3B)。
近年來(lái)的研究表明,H19與腫瘤的發(fā)生發(fā)展及轉(zhuǎn)移有著密切的聯(lián)系,如:在肺癌和肝癌中發(fā)現(xiàn)H19和Slug相互作用促使腫瘤細(xì)胞由上皮細(xì)胞向間質(zhì)細(xì)胞轉(zhuǎn)移,從而增加其侵襲能力[17];在卵巢癌中,敲除H19能夠使其癌細(xì)胞生長(zhǎng)速度減慢[18];而在胃癌細(xì)胞和胃癌組織中,H19的表達(dá)都明顯增加,有學(xué)者認(rèn)為H19的上調(diào)促使細(xì)胞增殖同時(shí)伴隨著部分p53的失活[19],另外有學(xué)者也認(rèn)為H19能直接上調(diào)ISM1或者通過(guò)miR-675抑制CALN1的表達(dá)來(lái)促使胃癌的增殖、遷移、侵襲和轉(zhuǎn)移[20]。另外在肝癌細(xì)胞、肺癌細(xì)胞和乳腺癌耐藥細(xì)胞(MCF-7/AdrVp)中相對(duì)于其親本細(xì)胞均檢測(cè)到了高表達(dá)的H19,表明H19與腫瘤細(xì)胞多藥耐藥密切相關(guān)[21]。
為了能更深入的探討H19基因與腫瘤細(xì)胞的關(guān)系,本實(shí)驗(yàn)克隆了H19基因,并構(gòu)建了H19的真核表達(dá)載體,用脂質(zhì)體介導(dǎo)轉(zhuǎn)染入HEK-239T細(xì)胞和COS-7細(xì)胞,發(fā)現(xiàn)在HEK-293T細(xì)胞和COS-7細(xì)胞中H19基因的表達(dá)極低,轉(zhuǎn)染后表達(dá)量分別升高352和820倍(與轉(zhuǎn)染的空載體相比較),能夠滿(mǎn)足進(jìn)一步的實(shí)驗(yàn)需要。然后在腫瘤細(xì)胞MCF-7細(xì)胞過(guò)表達(dá)和干擾H19的表達(dá),發(fā)現(xiàn)過(guò)表達(dá)H19后能夠促進(jìn)腫瘤細(xì)胞MCF-7細(xì)胞的增殖,而干擾H19的表達(dá)則抑制其增殖。我們發(fā)現(xiàn)轉(zhuǎn)染H19表達(dá)載體24 h后就檢測(cè)到了H19上調(diào)并且比48 h上調(diào)得多,但是24 h對(duì)細(xì)胞的增殖影響不明顯,而48 h后能明顯促進(jìn)細(xì)胞增殖,且具有統(tǒng)計(jì)學(xué)意義。初步推測(cè)H19可能不是直接影響細(xì)胞增殖,而是通過(guò)調(diào)控其下游的元件來(lái)影響細(xì)胞增殖,而這種影響存在時(shí)間差異,因此我們?cè)贖19過(guò)表達(dá)24 h后即檢測(cè)到了其上調(diào),但48 h才觀察到了明顯的細(xì)胞增殖。而siRNA小片段干擾,在24 h就檢測(cè)到了H19表達(dá)下調(diào)并且明顯抑制細(xì)胞的增殖,初步推斷siRNA小片段干擾的效率高,不到24 h就干擾了H19從而調(diào)控下游元件抑制細(xì)胞增殖。而且H19干擾后能抑制細(xì)胞增殖,干擾時(shí)間太長(zhǎng),細(xì)胞都死亡,因此我們實(shí)驗(yàn)中只做了24 h的時(shí)間點(diǎn)。
綜上所述,本文成功的克隆了H19基因,構(gòu)建了H19的真核表達(dá)載體,高效轉(zhuǎn)染HEK-293T細(xì)胞和COS-7細(xì)胞并檢測(cè)到H19基因的表達(dá)。同時(shí)轉(zhuǎn)染入MCF-7細(xì)胞中發(fā)現(xiàn)H19能夠促進(jìn)細(xì)胞的增殖,而干擾H19能抑制細(xì)胞增殖,為下一步探討H19對(duì)乳腺癌的影響提供思路和奠定基礎(chǔ)。
[1] Gibb E A, Brown C J, Lam W L. The functional role of long non-coding RNA in human carcinomas[J].MolCancer, 2011, 10(1): 38-44.
[2] Lipovich L, Johnson R, Lin C Y. MacroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA[J].BiochimBiophysActa, 2010, 1799(9): 597-15.
[3] Huarte M, Rinn J L. Large non-coding RNAs: missing links in cancer[J].HumMolGenet, 2010, 19(R2): R152-61.
[4] Brannan C I, Dees E C, Ingram R S,Tilghman S M. The product of the H19 gene may function as an RNA[J].MolCellBiol, 1990, 10(1): 28-36.
[5] Castle J C, Armour C D, L?wer M, et al. Digital genome-wide ncRNA expression, including SnoRNAs, across 11 human tissues using polyA-neutral amplification[J].PLoSOne, 2010, 5(7): 1779-87.
[6] Poirier F, Chan C T, Tinmons P M, et al. The murine H19 gene is activated during embryonic stem cell differentiationinvitroand at the time of implantation in the developing embryo[J].Development, 1991, 113(4): 1105-14.
[7] Lustig O, Ariel I, Ilan J, et al. Expression of the imprinted gene H19 in the human fetus[J].MolReprodDev, 1994, 38(3): 239-46.
[8] Song H, Sun W, Ye G, et al. Long non-coding RNA expression profile in human gastric cancer and its clinical significances[J].JTranslMed, 2013, 11: 225-35.
[9] Hibi K, Nakamura H, Hirai A, et al. Loss of H19 imprinting in esophageal cancer[J].CancerRes, 1996, 56(3): 480-2.
[10] Fellig Y, Ariel I, Ohana P, et al. H19 expression in hepatic metastases from a range of human carcinomas[J].JClinPathol, 2005, 58(10): 1064-8.
[11] Matouk I J, DeGroot N, Mezan S, et al. The H19 non-coding RNA is essential for human tumor growth[J].PLoSOne, 2007, 2(9): 845-60.
[12] Berteaux N, Lottin S, Monté D, et al. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1[J].JBiolChem, 2005, 280(33): 29625-36.
[13] Yoshimizu T, Miroqlio A, Ripoche M A, et al. The H19 locus actsinvivoas a tumor suppressor[J].ProcNatlAcadSciUSA, 2008, 105(34): 12417-22.
[14] Hao Y, Crenshaw T, Moulton T, et al. Tumour-suppressor activity of H19 RNA[J].Nature, 1993, 365(6448): 764-7.
[15] Colnot S, Niwa-Kawakita M, Hamard G, et al. Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers[J].LabInvest, 2004, 84(12): 1619-30.
[16] Tsang W P,Kwok T T. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells[J].Oncogene, 2007, 26(33): 4877-81.
[17] Matouk I J, Raveh E, Abu-lail R, et al. Oncofetal H19 RNA promotes tumor metastasis[J].BiochimBiophysActa, 2014, 1843(7): 1414-26.
[18] Medrzycki M.Histone H1.3 suppresses H19 noncoding RNA expression and cell growth of ovarian cancer cells[J].CancerRes, 2014, 74(20): 1158-93.
[19] Yang F, Bi J, Xue X, et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells[J].FEBSJ, 2012, 279(17): 3159-65.
[20] Li H, Yu B, Li J, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer[J].Oncotarget, 2014, 5(8): 2318-29.
[21] Doyle L A, Yang W, Rishi A K, et al. H19 gene overexpression in atypical multidrug-resistant cells associated with expression of a 95-kilodalton membrane glycoprotein[J].CancerRes, 1996, 56(13): 2904-7.
Constructing an expression vector for human lncRNA H19 and the effect of its overexpression on MCF-7 cell proliferation
PENG Yan1, XIE Hai-tang3,SUN Hong1,2, ZENG Ying1, ZHU Qiong-ni1,LI Tai-lin1, WANG Guo1, ZHU Yuan-shan1
(1.DeptofClinicalPharmacology,XiangyaHospital,CentralSouthUniversity,Changsha410008,China;InstituteofClinicalPharmacology,CentralSouthUniversity,HunanKeyLaboratoryofPharmacogenetics,Changsha410078,China;2.DeptofPharmacy,ProvincialClinicalCollegeofFujianMedicalUniversity,FujianProvincialHospital,Fuzhou350001,China;3.InstituteofClinicalPharmacyandPharmacology,YijishanHospitalofWannanMedicalCollege,WuhuAnhui241001,China)
Aims To construct an expression vector of human lncRNA H19, and to determine the effect of H19 overexpression on MCF-7 cell proliferation. Methods Total RNA was extracted from MCF-7 cells, and the full-length of H19 lncRNA was amplified by RT-PCR and subcloned into pcDNA3.1 (-) expression vector. The constructed H19 expression vector was transfected into HEK-293T and COS-7 cells and the H19 lncRNA expression was evaluated by real-time PCR. Following the transfection of H19 expression vector into MCF-7 cells for 0, 24h and 48h and H19 siRNA interference fragment into MCF-7 cells for 24h, MCF-7 cell proliferation was determined by MTS assay. Results A hH19-pcDNA3.1 (-) expression vector was successfully constructed. At Forty-eight hours after the transfection with H19 expression vector in to MCF-7 cells, cell proliferation was significantly increased in the transfected group compared to those without transfection and to those transfected with a negative control vector, while twenty-four hours after the transfection with H19 siRNA interference fragment into MCF-7 cells, cell proliferation was significantly decreased in the transfected group compared to those transfected with a negative control vector. Conclusion Ectopic overexpression of H19 lncRNA can promote breast cancer MCF-7 cell proliferation.
lncRNA; H19 gene; gene cloning; transient transfection; HEK-293T; COS-7; MCF-7
時(shí)間:2015-3-16 15:41 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/34.1086.R.20150316.1541.004.html
2014-11-10,
2014-12-10
國(guó)家自然科學(xué)基金資助項(xiàng)目(No 81072706、81173134、81403021);湖南省科技計(jì)劃項(xiàng)目 (No 2013FJ3036);中南大學(xué)特殊人才基金
彭 艷(1990-),女,碩士研究生,研究方向:遺傳藥理學(xué)和臨床藥理學(xué),Tex:0731-84805380, E-mail:pengyan902@126.com; 王 果(1973-),男,博士,副教授,碩士生導(dǎo)師,研究方向:遺傳藥理學(xué)和臨床藥理學(xué),通訊作者,Tex:0731-84805380,E-mail: 207082@csu.edu.cn。
10.3969/j.issn.1001-1978.2015.04.023
A
1001-1978(2015)04-0555-06
R329.24;R342.2;R394.2;R737.902.2