国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于反向傳播神經(jīng)網(wǎng)絡(luò)的退化紅壤區(qū)杉木樹干液流模擬

2015-06-12 12:36:10涂潔劉琪璟危駿胡良
關(guān)鍵詞:液流杉木樹干

涂潔, 劉琪璟, 危駿, 胡良

(1.南昌工程學(xué)院生態(tài)與環(huán)境科學(xué)研究所,南昌 330099;2.北京林業(yè)大學(xué)林學(xué)院,北京 100083)

基于反向傳播神經(jīng)網(wǎng)絡(luò)的退化紅壤區(qū)杉木樹干液流模擬

涂潔1*, 劉琪璟2, 危駿1, 胡良1

(1.南昌工程學(xué)院生態(tài)與環(huán)境科學(xué)研究所,南昌 330099;2.北京林業(yè)大學(xué)林學(xué)院,北京 100083)

以江西退化紅壤區(qū)杉木人工林為研究對象,采用MATLAB工具箱中的log-sigmoid型函數(shù)(tansig)為神經(jīng)元作用函數(shù),以空氣溫度、空氣相對濕度、平均凈輻射、水汽壓虧缺為輸入變量,液流速率為輸出變量,運(yùn)用貝葉斯正則化算法和Levenberg-Marquardt算法對4 000組氣象數(shù)據(jù)和液流數(shù)據(jù)進(jìn)行網(wǎng)絡(luò)訓(xùn)練和檢驗(yàn),構(gòu)建拓?fù)浣Y(jié)構(gòu)為4-10-1的杉木樹干液流反向傳播(back propagation, BP)神經(jīng)網(wǎng)絡(luò)模型。結(jié)果表明:在2種算法下訓(xùn)練樣本和檢驗(yàn)樣本模型輸出值與實(shí)測值之間線性回歸的擬合程度均較高,回歸方程的相關(guān)系數(shù)在0.93以上;訓(xùn)練樣本的擬合精度分別為83.57%和83.06%,檢驗(yàn)樣本的仿真精度分別為82.87%和82.15%。說明該網(wǎng)絡(luò)模型能夠很好地反映液流速率與氣象因子之間的非線性函數(shù)關(guān)系,可為杉木人工林的可持續(xù)經(jīng)營和林地水資源的科學(xué)管理提供有效手段。

杉木; 樹干液流; 貝葉斯正則化算法; Levenberg-Marquardt算法; 反向傳播神經(jīng)網(wǎng)絡(luò)

SummaryCunninghamialanceolatais commonly considered to be one of the most important tree species for forest restoration and reconstruction in subtropical area of China, owing to its advantages of rapid growth, good quality and high yield per unit area. However, they also consume certain amount of water during the course of growth and play roles of ecological benefits. Therefore, quantitative research on tree water consumption characteristics by transpiration has become a hot issue in the field of tree physiological ecology in recent years.

Taking theC.lanceolataplantation in degraded red soil of Jiangxi Province as the research object, the log-sigmoid type function (tansig) of MATLAB toolbox was selected as the transmission function for the role of neurons. Four main factors including air temperature, relative air humidity, average net radiation and vapor pressure deficit were chosen as the input variables, and the sap flow velocity was selected as the output variable, to train and examine the neural network model with Bayesian regularization algorithm and Levenberg-Marquardt algorithm. The optimum network model ofC.lanceolatasap flow velocity was built with the topological structure of 4-10-1.

Based on Bayesian regularization algorithm and Levenberg-Marquardt algorithm, good fitting results were obtained from the linear regression between predictive and measured values, with correlation coefficients both higher than 0.93. The fitting accuracies of training samples were 83.57% and 83.06%, and the simulation accuracies of testing samples were 82.87% and 82.15%, respectively.

In conclusion, the BP network model can well reflect the non-linear relationship between the meteorological factors and the sap flow velocity, thus may provide an effective tool for sustainable developing strategy ofC.lanceolataplantations and scientific management of the associated water resource in the future.

杉木(Cunninghamialanceolata)是我國南方亞熱帶地區(qū)重要的造林樹種,具有生長快、材質(zhì)好、單產(chǎn)高等優(yōu)點(diǎn),在該區(qū)植被恢復(fù)重建中占有十分重要的地位。長期以來對杉木的研究主要集中在生物量及生產(chǎn)力[1-2]、凋落物分解及養(yǎng)分歸還[3-4]、土壤理化性質(zhì)[5-6]、土壤微生物[7-8]、土壤呼吸[9-10]以及水文生態(tài)效益[11]等方面,而對杉木液流速率與環(huán)境因子相關(guān)性的報(bào)道較少[12-13]。已有的對液流速率與環(huán)境因子二者之間關(guān)系的描述基本上以線性回歸方程為主[12,14-15],這些模型通常假定生物與環(huán)境的關(guān)系都是平滑、連續(xù)的線性多項(xiàng)式關(guān)系,不能全面反映其非線性關(guān)系。反向傳播(back propagation, BP)神經(jīng)網(wǎng)絡(luò)是采用BP算法訓(xùn)練權(quán)值的多層前饋網(wǎng)絡(luò),是迄今為止應(yīng)用最多的一種非線性函數(shù)逼近方法,可以很好地解決傳統(tǒng)概率函數(shù)模型適用范圍窄、模型實(shí)用性差等問題,非常適合解決林業(yè)問題。Foody等[16]、King等[17]通過對BP神經(jīng)網(wǎng)絡(luò)與其他方法模擬效果的比較發(fā)現(xiàn),BP神經(jīng)網(wǎng)絡(luò)更具優(yōu)勢。目前,BP神經(jīng)網(wǎng)絡(luò)在林業(yè)領(lǐng)域的應(yīng)用研究大多圍繞林木生物量[18]、森林碳蓄積[19]、林分直徑分布[20]以及林分固碳釋氧效益[21]等方面展開,但對于樹干液流的報(bào)道仍不多見。朱建剛等[22]成功利用BP神經(jīng)網(wǎng)絡(luò)建立了油松、側(cè)柏的液流預(yù)測網(wǎng)絡(luò)模型,預(yù)測精度較高,能夠用于實(shí)際預(yù)測。

本研究選擇退化紅壤區(qū)優(yōu)勢樹種杉木為研究對象,以熱擴(kuò)散探針法對樹干液流的測定結(jié)果為目標(biāo)向量,以其主要影響因子——空氣溫度(air temperature, Ta)、空氣相對濕度(relative air humidity, RH)、平均凈輻射(average net radiation, ANR)、水汽壓虧缺(vapor pressure deficit, VPD)為輸入變量,不依賴任何現(xiàn)有數(shù)學(xué)函數(shù)式進(jìn)行模擬,在MATLAB 7.0軟件平臺(tái)上利用嵌套的貝葉斯正則化和Levenberg-Marquardt(L-M)2種算法進(jìn)行網(wǎng)絡(luò)訓(xùn)練,構(gòu)建杉木樹干液流BP神經(jīng)網(wǎng)絡(luò)模型,以期實(shí)現(xiàn)從多特征氣象要素到樹干液流速率之間的非線性函數(shù)關(guān)系映射,為退化紅壤區(qū)杉木人工林的科學(xué)經(jīng)營和林地水資源的有效管理提供更為有效的技術(shù)方法。

1 材料與方法

1.1 試驗(yàn)地概況

試驗(yàn)地位于江西省泰和縣中國科學(xué)院千煙洲試驗(yàn)站區(qū)內(nèi)(26°44′48″ N,115°04′01″ E),樣地設(shè)在站區(qū)1985年前后營造的針闊混交風(fēng)景林內(nèi),具體情況參見文獻(xiàn)[23]。

1.2 樣本數(shù)據(jù)采集

根據(jù)TDP探頭的長度和被測木具有代表性的原則,選取生長良好、樹干通直、沒有被擠壓的3株杉木[胸徑(22.9±0.8) cm]安裝液流計(jì)。在被測木樹干1.3 m處安裝TDP探針(型號(hào)TDP-30,Dynamax公司,美國),另一端與數(shù)據(jù)采集器(型號(hào)DT-50,Data Taker公司,澳大利亞)連接。采用自動(dòng)氣象站記錄空氣溫度、風(fēng)速、風(fēng)向、降水、土壤含水量和土壤溫度(土層深度分別為10 cm、20 cm和50 cm)、空氣相對濕度、平均凈輻射等環(huán)境因子,數(shù)據(jù)采集與液流計(jì)同步(數(shù)據(jù)采集間隔為5 min,每30 min記錄1次)。此外,采用水汽壓虧缺綜合表達(dá)空氣溫度與空氣相對濕度的協(xié)同效應(yīng)[24]。

樹干液流速率(v)由Granier經(jīng)驗(yàn)公式計(jì)算得到。

(1)

式中:ΔT為2個(gè)探針間的溫差;ΔTmax為連續(xù)7~10 d所測液流數(shù)據(jù)中的最大值[25]。

2 網(wǎng)絡(luò)模型的構(gòu)建

2.1 樣本數(shù)據(jù)的預(yù)處理

為了得到最優(yōu)的預(yù)測結(jié)果,選取2007年4—12月的液流數(shù)據(jù)和氣象數(shù)據(jù),利用SPSS 16.0軟件中的皮爾遜(Pearson)雙尾相關(guān)分析法對氣象因子與液流速率進(jìn)行偏相關(guān)分析。結(jié)果發(fā)現(xiàn),液流速率與平均凈輻射(ANR)、空氣溫度(Ta)、水汽壓虧缺(VPD)呈顯著正相關(guān),與空氣相對濕度(RH)呈顯著負(fù)相關(guān)(表1)。說明液流速率與這4個(gè)氣象因子具有較好的生態(tài)學(xué)同步性。因此,本文將空氣溫度、空氣相對濕度、平均凈輻射、水汽壓虧缺作為輸入變量,液流速率作為輸出變量,組建BP神經(jīng)網(wǎng)絡(luò)液流模型的初始樣本數(shù)據(jù)集,具體數(shù)據(jù)統(tǒng)計(jì)格式見表2。在數(shù)據(jù)采集過程中,由于設(shè)備有時(shí)會(huì)受到外界干擾或人為操作失誤等因素的影響,因此文中參照文獻(xiàn)[26]中提到的無量綱判別參數(shù)P來判斷試驗(yàn)監(jiān)測數(shù)據(jù)中的異常值,實(shí)現(xiàn)對原始數(shù)據(jù)的篩選。將經(jīng)預(yù)處理后得到的4 000組有效數(shù)據(jù)隨機(jī)均分成2組,其中2 000組數(shù)據(jù)作為訓(xùn)練樣本,余下的2 000組作為檢驗(yàn)樣本。

表 1 杉木液流速率與氣象因子的偏相關(guān)分析

Table 1 Partial correlation analysis between sap flow velocity ofC.lanceolataand meteorological factors

控制變量Controlvariables分析變量Analysisvariables偏相關(guān)系數(shù)Partialcorrelationcoefficient4月April7月July10月OctoberTa,RH,VPDANR0.487**0.775**0.512**RH,VPD,ANRTa0.872**0.830**0.747**Ta,ANR,VPDRH-0.977**-0.781**-0.928**Ta,ANR,RHVPD0.901**0.702**0.926**

Ta:空氣溫度;RH:空氣相對濕度;VPD:水汽壓虧缺;ANR:平均凈輻射。**表示在P<0.01水平顯著相關(guān)。

Ta: Air temperature; RH: Air relative humidity; VPD: Vapor pressure deficit; ANR: Average net radiation. Double asterisks (**) indicate significant correlation at the 0.01 probability level (Duncan’s multiple range test).

表2 杉木液流預(yù)測初始樣本數(shù)據(jù)集

由于數(shù)據(jù)采集中各因素、各指標(biāo)的量綱或數(shù)量級(jí)不同,為了更好地反映各因素間的相互關(guān)系,充分發(fā)揮BP神經(jīng)網(wǎng)絡(luò)的預(yù)測功能,提高其輸出精度,模型訓(xùn)練之前需對具體對象的實(shí)測數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,以提高模型的泛化能力。BP神經(jīng)網(wǎng)絡(luò)通常采用的神經(jīng)元作用函數(shù)是S形函數(shù),以雙曲正切函數(shù)tansig為例,tansig函數(shù)在[-1,1]這一區(qū)間具有最大斜率,因此需要將表2中的數(shù)據(jù)都?xì)w一化到[-1,1]范圍內(nèi),其計(jì)算公式為

(2)

式中:X、X′分別為變量歸一化前、后的數(shù)值;Xmax為某一變量中的最大值;Xmin為某一變量中的最小值。

2.2 網(wǎng)絡(luò)結(jié)構(gòu)參數(shù)的確定

網(wǎng)絡(luò)結(jié)構(gòu)參數(shù)包括網(wǎng)絡(luò)層數(shù)、每層節(jié)點(diǎn)數(shù)、每層神經(jīng)元的作用函數(shù)、網(wǎng)絡(luò)訓(xùn)練方法和學(xué)習(xí)速率等。當(dāng)隱含層的神經(jīng)元激活函數(shù)采用S形函數(shù),且神經(jīng)元個(gè)數(shù)足夠多時(shí),BP神經(jīng)網(wǎng)絡(luò)能映射出任意復(fù)雜的非線性函數(shù)關(guān)系。文中輸入層節(jié)點(diǎn)數(shù)為4,輸出層節(jié)點(diǎn)數(shù)為1。隱含層節(jié)點(diǎn)數(shù)一般通過設(shè)置較少的節(jié)點(diǎn)數(shù)進(jìn)行網(wǎng)絡(luò)訓(xùn)練確定,測試網(wǎng)絡(luò)的逼近誤差,然后逐漸增加節(jié)點(diǎn)數(shù),直到測試誤差不再有明顯的減小為止?!霸囧e(cuò)法”訓(xùn)練結(jié)果表明,當(dāng)隱含層節(jié)點(diǎn)數(shù)為10時(shí),網(wǎng)絡(luò)的逼近效果最好。因此,樹干液流BP神經(jīng)網(wǎng)絡(luò)模型的拓?fù)浣Y(jié)構(gòu)為4-10-1。網(wǎng)絡(luò)的學(xué)習(xí)速率設(shè)置為0.1,最小誤差0.000 1,迭代次數(shù)1 000。前期采用SPSS 16.0軟件對數(shù)據(jù)的預(yù)處理發(fā)現(xiàn),采用線性模型對數(shù)據(jù)擬合無法得到理想的收斂結(jié)果,因此,本文神經(jīng)網(wǎng)絡(luò)模型中每層神經(jīng)元作用函數(shù)均采用tansig函數(shù)。

貝葉斯正則化算法和L-M算法是神經(jīng)網(wǎng)絡(luò)訓(xùn)練中2種常用的方法。貝葉斯正則化法通過修正神經(jīng)網(wǎng)絡(luò)的訓(xùn)練性能函數(shù)來提高其推廣能力,對內(nèi)存量的需求不大,但訓(xùn)練速度較慢。L-M法由于避免了直接計(jì)算赫賽矩陣,對于中等規(guī)模的BP神經(jīng)網(wǎng)絡(luò)有最快的收斂速度,但需要較大的內(nèi)存量。本文對2種算法都進(jìn)行了分析與測試。

在貝葉斯正則化算法中,網(wǎng)絡(luò)性能函數(shù)經(jīng)改進(jìn)變?yōu)槿缦滦问剑?/p>

MSEREG=γ·MSE+(1-γ)·MSW,

(3)

(4)

式中:MSEREG為改進(jìn)后的函數(shù);γ為比例系數(shù);MSE為均方差;MSW為網(wǎng)絡(luò)連接權(quán)值的均方誤差;N為樣本數(shù);ti為期望輸出誤差;ai為網(wǎng)絡(luò)實(shí)際輸出誤差。

由式(4)可知,貝葉斯正則化算法不僅能保證網(wǎng)絡(luò)訓(xùn)練誤差盡可能小,而且使網(wǎng)絡(luò)的有效權(quán)值盡可能少,大大減少了發(fā)生過度訓(xùn)練的機(jī)會(huì)。而且貝葉斯正則化算法可以在網(wǎng)絡(luò)訓(xùn)練過程中自適應(yīng)地調(diào)節(jié)γ的大小,并使其達(dá)到最優(yōu)。

L-M算法是高斯-牛頓法的改進(jìn)形式,既有高斯牛頓法的局部收斂性,又有梯度下降法的全局特性,在收斂速度和訓(xùn)練精度方面明顯優(yōu)越于共軛梯度法、動(dòng)量梯度法和變學(xué)習(xí)率法。

設(shè)W(k)為第k次迭代的網(wǎng)絡(luò)權(quán)值向量,維數(shù)為M,新的權(quán)值向量W(k+1)可根據(jù)下面的規(guī)則求得:

W(k+1)=W(k)+ΔW(k)。

(5)

設(shè)誤差指標(biāo)函數(shù)為

(6)

設(shè)e(W)=[e1(W),e2(W),…,ei(W)]T,

ΔW=-[JT(W)J(W)+μI]-1J(W)e(W)。

(7)

式中:N為輸出向量維數(shù);ei(W)為誤差;ti為期望的網(wǎng)絡(luò)輸出向量;ai為實(shí)際的網(wǎng)絡(luò)輸出向量;W為網(wǎng)絡(luò)權(quán)值和閥值組成的向量;ΔW為權(quán)值增量;J(W)為Jacobian矩陣;μ為比例系數(shù)(>0);I為單位矩陣。

在實(shí)際操作中,μ是一個(gè)試探性的參數(shù),對于給定的μ,如果求得的ΔW能使誤差指標(biāo)函數(shù)E(W)降低,則μ降低;反之,則μ增加。用式(7)修改一次權(quán)值需要求M階的代數(shù)方程,L-M算法的復(fù)雜度計(jì)算公式為O=M3/6(M為網(wǎng)絡(luò)中權(quán)值數(shù)目),若M很大,則計(jì)算量和存儲(chǔ)量都非常大。然而,每次迭代效率顯著提高,可大大改善其整體性能,特別是在精度要求高時(shí)。

3 模型檢驗(yàn)與分析

3.1 模型預(yù)測精度

對于模型預(yù)測精度的檢驗(yàn),通常采用模型輸出值與實(shí)測值之間線性回歸的擬合程度來表征。將實(shí)測值作為被解釋變量,預(yù)測值作為解釋變量,建立一元線性回歸方程y=ax+b。如果模型預(yù)測值與實(shí)測值線性關(guān)系顯著、回歸方程合理,則a越接近1,b值越接近0,說明預(yù)測值與實(shí)測值之間吻合度越高。圖1為液流速率實(shí)測值與預(yù)測值之間的線性回歸分布情況。從圖1中不難看出,液流速率BP神經(jīng)網(wǎng)絡(luò)模型的輸出結(jié)果與實(shí)測結(jié)果在上述4種情況下都較好地符合了y=x的分布。

對BP神經(jīng)網(wǎng)絡(luò)模型總體訓(xùn)練結(jié)果進(jìn)行分析,其中,線性回歸方程的參數(shù)估計(jì)按照公式(8)計(jì)算得到,相關(guān)系數(shù)(r)由公式(9)計(jì)算得到。

(8)

(9)

從表3中可以看出,當(dāng)隱含層節(jié)點(diǎn)數(shù)選擇為10左右時(shí),無論是訓(xùn)練樣本還是測試樣本,采用貝葉斯正則化算法和L-M法都能得到較好的線性回歸結(jié)果,回歸方程的相關(guān)系數(shù)均在0.93以上。運(yùn)用2種算法對訓(xùn)練樣本進(jìn)行網(wǎng)絡(luò)訓(xùn)練,擬合精度分別為83.57%和83.06%,將檢驗(yàn)樣本代入液流BP神經(jīng)網(wǎng)絡(luò)模型進(jìn)行檢驗(yàn),仿真精度分別為82.87%和82.15%。由此可以證明,該BP網(wǎng)絡(luò)模型符合精度檢驗(yàn)要求,能夠較準(zhǔn)確地反映實(shí)際液流速率變化規(guī)律。

A:訓(xùn)練樣本用貝葉斯正則化算法訓(xùn)練得到的結(jié)果;B:訓(xùn)練樣本用L-M方法訓(xùn)練得到的結(jié)果;C:檢驗(yàn)樣本用貝葉斯正則化算法訓(xùn)練得到的結(jié)果;D:檢驗(yàn)樣本用L-M方法訓(xùn)練得到的結(jié)果。A: Training results of training samples by Bayesian regularization algorithm; B: Training results of training samples by Levenberg-Marquardt algorithm; C: Training results of testing samples by Bayesian regularization algorithm; D: Training results of testing samples by Levenberg-Marquardt algorithm.

表3 BP神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練結(jié)果統(tǒng)計(jì)

3.2 模型泛化能力

模型泛化能力檢驗(yàn)一般通過比較訓(xùn)練樣本與測試樣本的回歸檢驗(yàn)實(shí)現(xiàn)。當(dāng)訓(xùn)練樣本與測試樣本的模型輸出與實(shí)測結(jié)果的線性回歸擬合程度相當(dāng)或稍大時(shí),表明該網(wǎng)絡(luò)模型具有較好的泛化能力。圖2為樣本數(shù)據(jù)集中隨機(jī)24 h液流速率的模型輸出結(jié)果與實(shí)測結(jié)果。從中可以看出,運(yùn)用2種算法進(jìn)行網(wǎng)絡(luò)訓(xùn)練得出的擬合值、仿真值均能很好地逼近實(shí)測值。因此,該BP神經(jīng)網(wǎng)絡(luò)模型具有較好的泛化能力。

A:訓(xùn)練樣本模型輸出與實(shí)測結(jié)果擬合情況;B:測試樣本模型輸出與實(shí)測結(jié)果擬合情況。A: Fitting results between predictive output of training samples and measured values; B: Fitting results between predictive output of testing samples and measured values.

4 討論與結(jié)論

4.1 本文將BP神經(jīng)網(wǎng)絡(luò)模型與SPSS相關(guān)性法相結(jié)合,確定了4個(gè)主要影響因子(平均凈輻射、空氣溫度、水汽壓虧缺、空氣相對濕度)為輸入變量,液流速率為輸出變量,在模型訓(xùn)練前對所有樣本數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,每層神經(jīng)元的作用函數(shù)均采用tansig函數(shù),采用MATLAB工具箱中提供的貝葉斯正則化算法和L-M法反向傳播2種算法進(jìn)行網(wǎng)絡(luò)訓(xùn)練,構(gòu)建了拓?fù)浣Y(jié)構(gòu)為4-10-1的樹干液流BP神經(jīng)網(wǎng)絡(luò)模型。從模型的檢驗(yàn)結(jié)果可以看出,訓(xùn)練樣本與測試樣本的模型輸出與實(shí)測結(jié)果的線性回歸擬合程度相當(dāng),回歸方程的相關(guān)系數(shù)在0.93以上。訓(xùn)練樣本的擬合精度達(dá)83%以上,檢驗(yàn)樣本的仿真精度達(dá)82%以上。因此,在2種算法下建立的BP神經(jīng)網(wǎng)絡(luò)模型均表現(xiàn)出較高的預(yù)測精度和網(wǎng)絡(luò)泛化能力,實(shí)現(xiàn)了從多特征氣象要素到液流速率之間的非線性函數(shù)關(guān)系映射,可以作為對傳統(tǒng)樹干液流模型建模方法的一種補(bǔ)充。

4.2 該樹干液流BP神經(jīng)網(wǎng)絡(luò)模型是根據(jù)一定自然條件下的試驗(yàn)結(jié)果建立的,有其相應(yīng)的適用范圍,對于不同地區(qū)、不同樹種、不同結(jié)構(gòu)林分的研究以及更多因素的考慮是今后探討的方向。雖然神經(jīng)網(wǎng)絡(luò)非線性映射能力很好,但其固有的缺點(diǎn)需要不斷改進(jìn),目前已有一些新的算法用來改進(jìn)網(wǎng)絡(luò)的訓(xùn)練過程,如泛化改進(jìn)算法[27-28]、遺傳算法[29]。此外,朱建剛等[22]研究認(rèn)為雖然應(yīng)用BP神經(jīng)網(wǎng)絡(luò)建立的植物液流預(yù)測模型具有較好的預(yù)測性能,但神經(jīng)網(wǎng)絡(luò)為黑箱模型,不能解釋液流傳輸?shù)臋C(jī)制。

致謝 感謝中國科學(xué)院地理科學(xué)與資源研究所生態(tài)系統(tǒng)網(wǎng)絡(luò)觀測與模擬重點(diǎn)實(shí)驗(yàn)室千煙洲生態(tài)站工作人員為本文基礎(chǔ)數(shù)據(jù)收集提供的幫助。

[1] 侯振宏,張小全,徐德應(yīng),等.杉木人工林生物量和生產(chǎn)力研究.中國農(nóng)學(xué)通報(bào),2009,25(5):97-103.

Hou Z H, Zhang X Q, Xu D Y,etal. Study on biomass and productivity of Chinese fir plantation.ChineseAgriculturalScienceBulletin, 2009,25(5):97-103. (in Chinese with English abstract)

[2] 康冰,劉世榮,蔡道雄,等.南亞熱帶杉木生態(tài)系統(tǒng)生物量和碳素積累及其空間分布特征.林業(yè)科學(xué),2009,45(8):147-153.

Kang B, Liu S R, Cai D X,etal. Characteristics of biomass, carbon accumulation and its spatial distribution inCunninghamialanceolataforest ecosystem in low subtropical area.ScientiaSilvaeSinicae, 2009,45(8):147-153. (in Chinese with English abstract)

[3] 寧曉波,項(xiàng)文化,王光軍,等.湖南會(huì)同連作杉木林凋落物量20年動(dòng)態(tài)特征.生態(tài)學(xué)報(bào),2009,29(9):5122-5129.

Ning X B, Xiang W H, Wang G J,etal. Litterfall production and dynamic for twenty years of a successive replantingCunninghamialanceolataplantation at Huitong, Hunan.ActaEcologicaSinica, 2009,29(9):5122-5129. (in Chinese with English abstract)

[4] 張慧玲,宋新章,張智婷,等.UV-B輻射對杉木凋落葉分解的影響.應(yīng)用生態(tài)學(xué)報(bào),2011,22(4):845-850.

Zhang H L, Song X Z, Zhang Z T,etal. Effects of UV-B radiation on the decomposition ofCunninghamialanceolataleaf litter.ChineseJournalofAppliedEcology, 2011,22(4):845-850. (in Chinese with English abstract)

[5] 李平,鄭阿寶,阮宏華,等.蘇南丘陵不同林齡杉木林土壤活性有機(jī)碳變化特征.生態(tài)學(xué)雜志,2011,30(4):778-783.

Li P, Zhen A B, Ruan H H,etal. Variation of soil liable organic carbon in different age Chinese fir plantations in south Jiangsu.ChineseJournalofEcology, 2011,30(4):778-783. (in Chinese with English abstract)

[6] 王丹,戴偉,王兵,等.不同發(fā)育階段杉木林土壤有機(jī)碳變化特征及影響因素.林業(yè)科學(xué)研究,2009,22(5):667-671.

Wang D, Dai W, Wang B,etal. The variation characteristics of soil organic carbon and its influence factor in different developing stages of Chinese fir plantations.ForestResearch, 2009,22(5):667-671. (in Chinese with English abstract)

[7] 夏志超,孔垂華,王朋,等.杉木人工林土壤微生物群落結(jié)構(gòu)特征.應(yīng)用生態(tài)學(xué)報(bào),2012,23(8):2135-2140.

Xia Z C, Kong C H, Wang P,etal. Characteristics of soil microbial community structure inCuuuinghamialanceolataplantation.ChineseJournalofAppliedEcology, 2012,23(8):2135-2140. (in Chinese with English abstract)

[8] 袁穎紅,樊后保,李輝信,等.模擬氮沉降對杉木人工林土壤微生物的影響.林業(yè)科學(xué),2012,48(9):8-14.

Yuan Y H, Fan H B, Li H X,etal. Effects of simulated nitrogen deposition on soil microorganism in a Chinese fir plantation.ScientiaSilvaeSinicae, 2012,48(9):8-14. (in Chinese with English abstract)

[9] 王光軍,田大倫,閆文德,等.改變凋落物輸入對杉木人工林土壤呼吸的短期影響.植物生態(tài)學(xué)報(bào),2009,33(4) 739-747.

Wang G J, Tian D L, Yan W D,etal. Effects of aboveground litter exclusion and addition on soil respiration in aCuuuinghamialanceolataplantation in China.ChineseJournalofPlantEcology, 2009,33(4) 739-747. (in Chinese with English abstract)

[10] 王丹,王兵,戴偉,等.杉木生長及土壤特性對土壤呼吸速率的影響.生態(tài)學(xué)報(bào),2011,31(3):680-688.

Wang D, Wang B, Dai W,etal. Effects of tree growth and soil properties on soil respiration rate in Chinese fir plantations.ActaEcologicaSinica, 2011,31(3):680-688. (in Chinese with English abstract)

[11] 周麗麗,蔡麗平,馬祥慶,等.不同發(fā)育階段杉木人工林凋落物的生態(tài)水文功能.水土保持學(xué)報(bào),2012,16(5):249-253.

Zhou L L, Cai L P, Ma X Q,etal. Eco-hydrological function in different developing stages of Chinese fir.JournalofSoilandWaterConservation, 2012,16(5):249-253. (in Chinese with English abstract)

[12] 趙仲輝,康文星,田大倫,等.湖南會(huì)同杉木液流變化及其與環(huán)境因子的關(guān)系.林業(yè)科學(xué),2009,45(7):127-132.

Zhao Z H, Kang W X, Tian D L,etal. Sap flow rate and its relationship with environmental factors of Chinese fir plantation in Huitong, Hunan Province.ScientiaSilvaeSinicae, 2009,45(7):127-132. (in Chinese with English abstract)

[13] 史梅娟,鄭懷舟,王健,等.3種優(yōu)勢樹種深秋樹干液流特征與環(huán)境因子的關(guān)系.福建師范大學(xué)學(xué)報(bào):自然科學(xué)版,2010,26(3):57-61.

Shi M J, Zheng H Z, Wang J,etal. Sap flow velocities and its relationship with environmental factors in stems of three dominant tree species in late autumn.JournalofFujianNormalUniversity:NaturalScienceEdition, 2010,26(3):57-61. (in Chinese with English abstract)

[14] 王文杰,孫偉,邱嶺,等.不同時(shí)間尺度下興安落葉松樹干液流密度與環(huán)境因子的關(guān)系.林業(yè)科學(xué),2012,48(1):77-84.

Wang W J, Sun W, Qiu L,etal. Relations between stem sap flow density ofLarixgmeliniiand environmental factors under different temporal scale.ScientiaSilvaeSinicae, 2012,48(1):77-84. (in Chinese with English abstract)

[15] 池波,蔡體久,滿秀玲,等.大興安嶺北部興安落葉松樹干液流規(guī)律及影響因子分析.北京林業(yè)大學(xué)學(xué)報(bào),2013,35(4):21-26.

Chi B, Cai T J, Man X L,etal. Effects of influencing factors on stem sap flow inLarixgmeliniiin northern Da Hinggan Mountains, northeastern China.JournalofBeijingForestryUniversity, 2013,35(4):21-26. (in Chinese with English abstract)

[16] Foody G M, Boyd D S, Cutler M E J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions.RemoteSensingofEnvironment, 2003,85(4):463-474.

[17] King S L, Bennett K P, List S. Modeling noncatastrophic individual tree mortality using logistic regression neural networks and support vector methods.ComputersandElectronicsinAgriculture, 2000,27(1/2/3):401-406.

[18] 王軼夫,孫玉軍,郭孝玉.基于BP神經(jīng)網(wǎng)絡(luò)的馬尾松立木生物量模型研究.北京林業(yè)大學(xué)學(xué)報(bào),2013,35(2):17-21.

Wang Y F, Sun Y J, Guo X Y. Single-tree biomass modeling ofPinusmassonianabased on BP neural network.JournalofBeijingForestryUniversity, 2013,35(2):17-21. (in Chinese with English abstract)

[19] 許煒敏,陳友飛,陳明華,等.基于BP神經(jīng)網(wǎng)絡(luò)的杉木林蓄積量估測研究.福建林學(xué)院學(xué)報(bào),2012,32(4):310-315.

Xu W M, Chen Y F, Chen M H,etal. Research on the estimation of Chinese fir volume based on BP neural networks.JournalofFujianCollegeofForestry, 2012,32(4):310-315. (in Chinese with English abstract)

[20] 黃家榮,孟憲宇,關(guān)毓秀.馬尾松人工林直徑分布神經(jīng)網(wǎng)絡(luò)模型研究.北京林業(yè)大學(xué)學(xué)報(bào),2006,28(1):28-31.

Hung J R, Meng X Y, Guan Y X. Neural network models of diameter distribution forPinusmassonianaplantations.JournalofBeijingForestryUniversity, 2006,28(1):28-31. (in Chinese with English abstract)

[21] 樊彥國,侯春玲,朱浩,等.基于BP神經(jīng)網(wǎng)絡(luò)的鹽漬土鹽分遙感反演模型研究.地理與地理信息科學(xué),2010,26(6):24-27.

Fan Y G, Hou C L, Zhu H,etal. Research on salinity inversion from remote sensing of saline soil based on BP neural network.GeographyandGeo-InformationScience, 2010,26(6):24-27. (in Chinese with English abstract)

[22] 朱建剛,余新曉,陳麗華.預(yù)測植物瞬態(tài)液流的BP神經(jīng)網(wǎng)絡(luò)模型.林業(yè)科學(xué),2010,46(1):152-157.

Zhu J G, Yu X X, Chen L H. A BP neural network model for forecasting transient sap flow.ScientiaSilvaeSinicae, 2010,46(1):152-157. (in Chinese with English abstract)

[23] 涂潔,裴青寶,王輝民,等.江西退化紅壤區(qū)楓香液流特征及其與氣象因子的關(guān)系.浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2013,39(5):575-581.

Tu J, Pei Q B, Wang H M,etal. Sap flow characteristics ofLiquidambarformosanaHance and its relationships with meteorological factors in Jiangxi degraded red soil region.JournalofZhejiangUniversity:AgricultureandLifeSciences, 2013,39(5):575-581. (in Chinese with English abstract)

[24] Campbell G S, Norman J M.AnIntroductiontoEnvironmentalBiophysics. Berlin: Springer-verlag Press, 1998:40-45.

[25] Lu P, Urban L, Zhao P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: Theory and practice.ActaBotanicaSinica, 2004,46(6):631-646.

[26] 李海濤,向樂,夏軍,等.應(yīng)用熱擴(kuò)散技術(shù)對亞熱帶紅壤區(qū)濕地松人工林樹干邊材液流的研究.林業(yè)科學(xué),2006,42(10):31-38.

Li H T, Xiang L, Xia J,etal. Applying the heat dissipation technique to study the sap flow ofPinuselliottiiinthe red earth area of subtropical China.ScientiaSilvaeSinicae, 2006,42(10):31-38. (in Chinese with English abstract)

[27] 琚存勇,蔡體久.用泛化改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)估測森林蓄積量.林業(yè)科學(xué),2006,42(12):59-62.

Ju C Y, Cai T J. Forest volume estimate based on Bayesian regularization back propagation neural network.ScientiaSilvaeSinicae, 2006,42(12):59-62. (in Chinese with English abstract)

[28] 汪少華,張茂震,趙平安,等.基于TM影像、森林資源清查數(shù)據(jù)和人工神經(jīng)網(wǎng)絡(luò)的森林碳空間分布模擬.生態(tài)學(xué)報(bào),2011,31(4):998-1008.

Wang S H, Zhang M L, Zhao P A,etal. Modelling the spatial distribution of forest carbon stocks with artificial neural network based on TM images and forest inventory data.ActaEcologicaSinica, 2011,31(4):998-1008. (in Chinese with English abstract)

[29] 桂凌,張征,閆國振,等.基于遺傳神經(jīng)網(wǎng)絡(luò)的鄂爾多斯沙棘水土保持功能評價(jià).干旱區(qū)資源與環(huán)境,2012,26(7):136-140.

Gui L, Zhang Z, Yan G Z,etal. Evaluation on soil and water conservation function of seabuckthorn forest in Ordos with genetic algorithms and artificial neural networks.JournalofAridLandResourcesandEnvironment, 2012,26(7):136-140. (in Chinese with English abstract)

Sap flow simulation ofCunninghamialanceolatain degraded red soil region based on back propagation neural network. Journal of Zhejiang University (Agric. & Life Sci.), 2015,41(2):205-212

Tu Jie1*, Liu Qijing2, Wei Jun1, Hu Liang1

(1.ResearchInstituteofEcology&EnvironmentalSciences,NanchangInstituteofTechnology,Nanchang330099,China; 2.DepartmentofForestSciences,BeijingForestryUniversity,Beijing100083,China)

Cunninghamialanceolata; sap flow; Bayesian regularization algorithm; Levenberg-Marquardt algorithm; back propagation neural network

國家自然科學(xué)基金(31260172);江西省高等學(xué)校大學(xué)生創(chuàng)新創(chuàng)業(yè)計(jì)劃項(xiàng)目(201311319039).

2014-05-19;接受日期(Accepted):2014-09-29;網(wǎng)絡(luò)出版日期(Published online):2015-03-20

S 718

A

*通信作者(Corresponding author):涂潔,E-mail:tujie8058@163.com

URL:http://www.cnki.net/kcms/detail/33.1247.S.20150320.1937.005.html

猜你喜歡
液流杉木樹干
為什么樹干不是方的?
軍事文摘(2021年16期)2021-11-05 08:49:16
杉木黃化病的防治技術(shù)措施研究
杉木萌芽更新關(guān)鍵技術(shù)
杉木育苗化學(xué)防除雜草技術(shù)
一種全釩液流電池并網(wǎng)控制系統(tǒng)的仿真設(shè)計(jì)
為什么要在樹干上刷白漿
為什么要在樹干上刷白漿
為什么要在樹干上刷一層白漿
杉木半同胞24年生優(yōu)良家系選擇
H2-Fe3+/Fe2+氧化還原液流電池初步研究
九江县| 昆山市| 应城市| 南宁市| 赫章县| 靖江市| 贺兰县| 天柱县| 利津县| 文安县| 巴东县| 玛沁县| 农安县| 安丘市| 北京市| 东港市| 宝山区| 舒兰市| 永丰县| 邵武市| 民权县| 漳平市| 休宁县| 贵溪市| 大石桥市| 衡山县| 陆河县| 嘉定区| 英超| 南木林县| 五峰| 平罗县| 金川县| 万山特区| 汕头市| 观塘区| 泾川县| 竹山县| 永丰县| 五河县| 蕲春县|