張正哲,金仁村,程雅菲,周煜璜,布阿依·謝姆古麗
(1 杭州師范大學(xué)生命與環(huán)境科學(xué)學(xué)院,浙江 杭州 310036;2 杭州師范大學(xué)生態(tài)系統(tǒng)保護(hù)與恢復(fù)杭州市重點(diǎn)實(shí)驗(yàn)室,浙江 杭州 310036)
厭氧氨氧化(anaerobic ammonium oxidation,Anammox)工藝因其無需外加有機(jī)碳源、脫氮負(fù)荷高、運(yùn)行費(fèi)用低、占地空間小等優(yōu)點(diǎn)[1-2],已被公認(rèn)為是目前最經(jīng)濟(jì)的生物脫氮工藝之一。近年來,國內(nèi)外對厭氧氨氧化工藝的研究取得了大量的實(shí)驗(yàn)室成果。但是,一方面由于厭氧氨氧化菌(anaerobic ammonium oxidizing bacteria,AnAOB)生長緩慢(倍增時間長達(dá)11 天)、細(xì)胞產(chǎn)率低[m(VSS)/m(NH4+-N)=0.11g/g)、對環(huán)境條件敏感[3],另一方面由于實(shí)際廢水成分復(fù)雜,常含有AnAOB 的抑制物質(zhì),限制了厭氧氨氧化工藝在實(shí)際工程中的大規(guī)模應(yīng)用。因此,有必要對近年來國內(nèi)外厭氧氨氧化工藝的應(yīng)用實(shí)例和經(jīng)驗(yàn)進(jìn)行系統(tǒng)總結(jié),推動該工藝的進(jìn)一步工業(yè)化應(yīng)用,使之在污水脫氮處理領(lǐng)域發(fā)揮更積極的作用。本文介紹了AnAOB 的生物多樣性和厭氧氨氧化工藝形式的多樣性,重點(diǎn)綜述了厭氧氨氧化技術(shù)在處理各類廢水中的實(shí)驗(yàn)室研究和工程應(yīng)用情況。
迄今為止,已發(fā)現(xiàn)的AnAOB 有6 屬18 種(表1 ), 構(gòu)成了獨(dú)立的厭氧氨氧化菌科(Anammoxaceae),并且AnAOB 廣泛存在于自然生態(tài)系統(tǒng)中,如海洋沉積物[4]、淡水沉積物[5]、油田[6]、厭氧海洋盆地[7]、氧極小區(qū)[8]、紅樹林地區(qū)[9]、海洋冰塊[10]、淡水湖[11]以及海底熱泉[12]等。AnAOB的生態(tài)分布多樣性是由自身的代謝多樣性決定的,也正因如此,厭氧氨氧化在全球氮素循環(huán)中扮演重要角色,將其應(yīng)用于不同水質(zhì)含氮廢水的治理也具有與生俱來的優(yōu)勢和不可估量的潛力。
基于厭氧氨氧化原理的工藝形式紛繁多樣,包括分體式(兩級系統(tǒng))和一體式(單級系統(tǒng))兩種。一體式有CANON(completely autotrophic nitrogen removal over nitrite)、OLAND(oxygen limited autotrophic nitrification and denitrification)、DEAMOX(denitrifying ammonium oxidation)、DEMON(aerobic deammonification)、SNAP(simultaneous partial nitrification,anammox and denitrification)、SNAD(single-stage nitrogen removal using anammox and partial nitritation)等工藝;分體式主要有SHARON(single reactor for high activity ammonia removal over nitrite)-anammox 工藝。隨著工程經(jīng)驗(yàn)越來越豐富,一體化系統(tǒng)正日益得到青睞。相比而言,一體式工藝的基建成本較低,占地面積較小,更易運(yùn)行,可避免亞硝酸鹽抑制。但是一體化工藝啟動時間較長,反應(yīng)器內(nèi)微生物間的生態(tài)關(guān)系復(fù)雜,經(jīng)受負(fù)荷沖擊時易失穩(wěn)(詳見表2)。總之,這兩類工藝各有利弊,應(yīng)用時需根據(jù)水質(zhì)、場地、管理水平等具體情況,做到“因地制宜,因水制宜,量(水)質(zhì)裁藝,因人而異”。
表1 AnAOB 的生物多樣性
表2 一體式和分體式厭氧氨氧化工藝的運(yùn)行條件比較
隨著厭氧氨氧化工程的普及,到2014 年末,全球范圍內(nèi)的厭氧氨氧化工程超過了100 座[28]。其中大部分工程坐落于歐洲,也正日益風(fēng)靡亞洲和南美洲。表3 列出了一些代表性工程實(shí)例。
目前,厭氧氨氧化生物脫氮技術(shù)已經(jīng)成功應(yīng)用于處理多種實(shí)際廢水,包括高氨氮、低碳氮比的污泥液、廁所水、垃圾滲濾液等。其中,應(yīng)用最多的無疑是污泥消化液和污泥壓濾液的處理,而該技術(shù)在制革、半導(dǎo)體、食品加工等工業(yè)廢水和垃圾滲濾液處理方面的推廣也逐步展開,但針對焦化、制藥、養(yǎng)殖、石化等高氨氮工業(yè)廢水處理領(lǐng)域應(yīng)用仍相對較少。
污泥消化液和污泥壓濾液是典型的低碳氮比廢水,且pH 值一般為7.0~8.5,溫度一般為30~37℃,基本處于AnAOB 生長的最佳溫度范圍內(nèi)。
van Dongen 等[35]首先在實(shí)驗(yàn)室中探究了短程硝化-厭氧氨氧化工藝處理荷蘭Dokhaven 污水處理廠消化污泥上清液的可行性,取得了顯著的脫氮效果,有超過80%氨氮被轉(zhuǎn)化為氮?dú)?。后來瑞士Fux等[36]又利用來自于兩個不同市政污水處理廠的消化液對短程硝化-厭氧氨氧化工藝進(jìn)行了中試研究,采用1600L 的序批式反應(yīng)器(sequencing batch reactor,SBR)、進(jìn)水氨氮620~650mg/L、pH 值為7.3~7.5、溫度26~28℃時,氮容積負(fù)荷率(nitrogen loading rate,NLR)最高可達(dá)0.65kgN/(m3·d),總氮去除率(nitrogen removal efficiency,NRE)達(dá)92%,同時污泥產(chǎn)量也較低[36]。在此基礎(chǔ)上,2002 年,研究人員直接將反應(yīng)器放大,建成了世界上第一套生產(chǎn)性的短程硝化-厭氧氨氧化組合反應(yīng)器,該工藝已經(jīng)在Dokhaven 污水處理廠正式運(yùn)行,厭氧氨氧化反應(yīng)器容積70m3,處理量為750kgN/d[32]。此后,采用厭氧氨氧化工藝處理污泥液的工程開始風(fēng)靡歐洲。
表3 厭氧氨氧化工程應(yīng)用實(shí)例
污泥液因其水溫高、水量小、高氨氮、低碳氮比的水質(zhì)特點(diǎn)成為了厭氧氨氧化工藝最初的處理對象。到目前為止,全球約75%的厭氧氨氧化工程裝置是用于處理污泥液的,厭氧氨氧化工藝在該領(lǐng)域已發(fā)展成熟且工程經(jīng)驗(yàn)豐富[28],但仍存在一些迫切需要解決的技術(shù)難題,如厭氧消化出水中硫化物對厭氧氨氧化反應(yīng)系統(tǒng)的影響、氮氧化物的產(chǎn)生環(huán)節(jié)和減排措施等。
垃圾滲濾液是一種成分復(fù)雜的廢水,具有有機(jī)物濃度高、重金屬等有毒物質(zhì)含量高、水質(zhì)變化大、氨氮含量高、可生化性差等特點(diǎn)。其氨氮濃度一般小于3000mg/L,在成熟的垃圾填埋場則為500~2000mg/L,而且隨著堆放時間的增加,濃度會越來越高,甚至超過10000mg/L。而厭氧氨缺失的現(xiàn)象早期也是在處理廢物填埋場滲濾液的生物轉(zhuǎn)盤中發(fā)現(xiàn)的[37],這使得厭氧氨氧化應(yīng)用于垃圾滲濾液的處理成為了可能。
Liang 等[38-39]采用“短程硝化-厭氧氨氧化-土壤滲濾”串聯(lián)工藝處理城市垃圾填埋場的垃圾滲濾液,經(jīng)過166 天運(yùn)行,氨氮、總氮和COD 的平均去除率分別達(dá)到了97%、87%和89%,充分說明了該聯(lián)合工藝的可行性,并且厭氧氨氧化對于降解垃圾滲濾液中的腐殖酸具有貢獻(xiàn)。Liu 等[40]采用短程硝化-厭氧氨氧化工藝處理稀釋后的垃圾滲濾液厭氧出水,成功穩(wěn)定運(yùn)行70 天,并且氨氮和亞硝氮去除率保持93%以上。目前厭氧氨氧化工藝處理垃圾滲濾液的研究相對較多,普遍采用的是短程硝化-厭氧氨氧化工藝,并且研究者在不斷嘗試各種組合技術(shù),比如與反硝化[41-42]、高級氧化[43]、土壤滲濾[38]的聯(lián)用。這主要是因?yàn)闈B濾液中含有較多重金屬等有毒物質(zhì),一定程度上抑制了厭氧氨氧化活性,為了獲得穩(wěn)定的運(yùn)行性能不便直接進(jìn)入到厭氧氨氧化反應(yīng)器中,所以不同年齡的垃圾滲濾液中這些抑制性物質(zhì)對微生物的抑制作用(對一體式和分體式)、菌群影響和調(diào)控對策還有待進(jìn)一步研究。
畜禽養(yǎng)殖廢水成分復(fù)雜、水質(zhì)水量波動大、COD 濃度較高且存在部分有機(jī)氮[44],傳統(tǒng)硝化-反硝化處理這類高氨氮養(yǎng)殖廢水時,存在著能耗高、脫氮效果差、需要補(bǔ)充碳源、投加堿等缺點(diǎn),而厭氧氨氧化工藝有望成為養(yǎng)殖廢水脫氮的備選工藝。
Hwang 等[45]采用SHARON-厭氧氨氧化工藝處理碳氮比為1.26 的豬場廢水厭氧消化液,短程硝化采用SBR 反應(yīng)器,厭氧氨氧化采用升流式厭氧污泥床(up-flow anaerobic sludge blanket,UASB)反應(yīng)器,在進(jìn)水氨氮和亞硝氮濃度(以N 計(jì),下同)分別為213mg/L 和323mg/L 時,最終出水氨氮和亞硝氮濃度分別為92mg/L 和77mg/L,濃度仍然較高,可能因?yàn)榉磻?yīng)器中生物量較少。Yamamoto 等[46]研究了SHARON-厭氧氨氧化工藝處理豬場廢水消化液的長期穩(wěn)定性,厭氧氨氧化反應(yīng)器經(jīng)220 天的運(yùn)行后達(dá)到穩(wěn)定,平均NRE 和氮容積去除率(nitrogen removal rate,NRR)分別為55%和0.22kg/(m3·d)[46]。
現(xiàn)階段應(yīng)用厭氧氨氧化工藝處理豬場廢水厭氧消化液的研究,普遍存在著NRR 偏低、運(yùn)行不穩(wěn)定等問題,而且廢水中的有機(jī)物、重金屬、抗生素等成分可能會對AnAOB 產(chǎn)生抑制,因此應(yīng)側(cè)重于工藝優(yōu)化改造方面的研究,尋求抑制障礙消除對策。
味精廢水具有懸浮物濃度高、COD 高、生化需氧量(biochemical oxygen demand,BOD)高、NH4+-N高、SO42-高、pH 值低(2 左右)等特點(diǎn)[47],處理難度大、成本高,是難以治理的工業(yè)廢水之一。
陳旭良等[48]研究了厭氧氨氧化工藝處理味精廢水的可行性,經(jīng)過71 天的運(yùn)行成功啟動了厭氧氨氧化反應(yīng)器,最高NRR 達(dá)到0.457kg/(m3·d),但當(dāng)進(jìn)水濃度相對較高時,反應(yīng)器去除效果波動較大。Shen 等[49]研究了不同污泥源富集AnAOB 對啟動味精工業(yè)廢水處理系統(tǒng)的影響,接種污泥取自垃圾滲濾液處理廠、市政污水處理廠和味精廢水處理廠,經(jīng)過360 天運(yùn)行,最大比厭氧氨氧化活性分別為0.11kg/(kgVSS·d)、0.09kg/(kgVSS·d)和0.16kg/(kgVSS·d),證明了活性污泥經(jīng)長期馴化可啟動厭氧氨氧化工藝來處理味精廢水。目前,通遼梅花味精廢水Ⅰ期工程厭氧氨氧化反應(yīng)器容積高達(dá)6600m3,是迄今世界上規(guī)模最大的厭氧氨氧化工程。但是味精廢水中高濃度硫酸鹽(5000~5500mg/L)產(chǎn)生強(qiáng)大的滲透壓會大大降低污水處理單元中微生物的活性,而且硫酸鹽經(jīng)硫酸鹽還原菌作用還會轉(zhuǎn)化為硫化氫,其對AnAOB 存在顯著的抑制,所以一般不采用厭氧氨氧化直接處理,只是用于后續(xù)處理(比如反硝化+短程硝化-厭氧氨氧化或厭氧消化+短程硝化-厭氧氨氧化等)。因此,這些污染物在整個聯(lián)合工藝中的變化及對后續(xù)厭氧氨氧化工藝的影響還有待研究。
焦化廢水含有大量的氨氮、有機(jī)物、酚、氰、硫氰化物、焦油及多環(huán)芳烴等污染物[50],毒性大,可生化性差。Toh 等[50]率先研究了厭氧氨氧化工藝應(yīng)用于焦化廢水脫氮的可行性,雖然一開始從實(shí)際焦化廢水中富集AnAOB 并未成功,但是接種市政污泥后取得了成功。苯酚濃度從50mg/L 逐步升至500mg/L,經(jīng)過15 個月的馴化和富集,最大NRR為0.062kg/(m3·d),是馴化前反應(yīng)器NRR 的1.5 倍。試驗(yàn)表明,經(jīng)馴化后的AnAOB 在苯酚濃度320~330mg/L 時(焦化廢水苯酚濃度的平均水平),厭氧氨氧化活性仍然存在,反應(yīng)器NRR 約為0.12kg/(m3·d)。因此,厭氧氨氧化工藝處理焦化廢水潛力巨大,但是焦化廢水中含有的酚[51]、氰化物、硫化物[52]、硫氰化物、難以生物降解的焦油、嘧啶等雜環(huán)化合物以及聯(lián)苯、萘等多環(huán)芳香化合物對厭氧氨氧化工藝的作用還有待進(jìn)一步探索。
目前能源和成本效益以及可持續(xù)發(fā)展逐漸演變?yōu)槲鬯幚硇袠I(yè)的標(biāo)桿,隨著我國城鎮(zhèn)化步伐的不斷推進(jìn),城市生活污水的再生利用和能源回收日益成為研究焦點(diǎn)。城市生活污水所蘊(yùn)藏的能量主要來自有機(jī)碳、氮氮、磷酸鹽,據(jù)估計(jì)其能量每人分別約為23W、6W、0.8W[53],而自養(yǎng)型厭氧氨氧化工藝的應(yīng)用有望使城市污水廠實(shí)現(xiàn)能源自給[54]。
對于非熱帶和亞熱帶地區(qū)的市政污水來說,較低的水溫(8~15℃)對于厭氧氨氧化工藝的運(yùn)行仍是一個巨大的挑戰(zhàn)。Hu 等[55]采用一體式短程硝化-厭氧氨氧化工藝,原先25℃下運(yùn)行的SBR(5L)只用了10 天就適應(yīng)了12℃的低溫環(huán)境,并在該溫度條件下穩(wěn)定運(yùn)行了300 多天,沒有亞硝酸鹽積累且NRE 超過90%。同時,該研究還證明,高負(fù)荷反應(yīng)器的污泥可作為低溫低氨氮市政污水厭氧氨氧化反應(yīng)器的接種污泥。本文作者課題組[56]的研究表明,實(shí)驗(yàn)室規(guī)模35℃下運(yùn)行的厭氧氨氧化反應(yīng)器,可通過逐步降溫馴化、菌種流加或添加低溫保護(hù)劑(甜菜堿)等方法使得反應(yīng)器在9.1℃時的NRR 高達(dá)6.61kg/(m3·d)。近來,Lotti 等[57]研究證明顆粒污泥形態(tài)的AnAOB 能在市政主流污水條件下(10~20℃)生長,而且能形成新的顆粒污泥,有效持留在污泥流化床反應(yīng)器中。目前,常溫和低溫下厭氧氨氧化工藝已有一定的研究基礎(chǔ),中試(4m3,19℃±1℃)研究也已取得階段性的成功,有望使污水處理廠實(shí)現(xiàn)能量自給[58]。但是實(shí)際工程中如何在低溫和低基質(zhì)濃度條件下維持氨氧化菌(ammoniaoxidizing bacteria,AOB)和AnAOB 對亞硝酸鹽氧化菌(nitrite-oxidizing bacteria,NOB)的競爭優(yōu)勢,提高低溫下的菌體活性、實(shí)現(xiàn)低基質(zhì)濃度下的菌體擴(kuò)增、高流速下的菌體持留等問題仍是有待突破的瓶頸。
糞便污水為城市生活污水貢獻(xiàn)了近一半的有機(jī)物和大部分的氮磷營養(yǎng)物負(fù)荷。Vlaeminck 等[59]采用生物轉(zhuǎn)盤探究了OLAND 工藝處理厭氧消化后的糞便污水的可行性,經(jīng)過2.5 個月的適應(yīng)期(模擬廢水逐步被糞便污水替換)后,氨氮容積去除率穩(wěn)定在0.7kg/(m3·d),NRE 可達(dá)76%。de Graaff 等[60]采用兩段式短程硝化-厭氧氨氧化工藝對厭氧消化后的糞便污水進(jìn)行了小試研究,通過添加鈣離子(39mg/L)可強(qiáng)化厭氧氨氧化污泥的顆?;?,NRR為0.5kg/(m3·d),NRE 達(dá)87%。在該研究中,由于亞硝酸鹽濃度增加,厭氧氨氧化反應(yīng)不完全,導(dǎo)致溫室氣體N2O 的產(chǎn)生,就此研究者認(rèn)為控制亞硝酸鹽的積累能夠阻止N2O 的產(chǎn)生。另外,糞便污水中含有相對較高濃度的激素和藥物,de Graaff 等[61]對短程硝化-厭氧氨氧化處理后的出水中微污染物進(jìn)行了檢測,結(jié)果表明該工藝對乙酰氨基酚、美托洛爾、布洛芬等污染物去除效果較好,并建議對不易生物降解的雙氯芬酸、卡馬西平、西替利嗪可采用物化后續(xù)處理。Sliekers 等[62]采用CANON 工藝處理尿液并取得一定的進(jìn)展,在限氧條件下在SBR 中以模擬含氨廢水為基質(zhì)連續(xù)富集培養(yǎng)AOB 和AnAOB,當(dāng)基質(zhì)變?yōu)槟蛩貢r,能夠?qū)崿F(xiàn)自養(yǎng)脫氮,該研究還通過批次試驗(yàn)證明了AnAOB 不能直接利用尿素,需要依靠AOB 分解尿素為厭氧氨氧化提供基質(zhì)。Liu 等[63]的研究也表明尿素分解菌能和AnAOB 較好地共存。因此,短程硝化-厭氧氨氧化工藝處理源分離糞便污水具有巨大的優(yōu)勢,而且城市污水源分離是未來的一個趨勢,但是目前大規(guī)模實(shí)現(xiàn)糞便污水分離收集的工程化還需要一定的時日[64]。
一些工業(yè)廢水,比如海產(chǎn)品加工、紡織印染、醫(yī)藥和石油化工、制革以及養(yǎng)殖和垃圾滲濾液等含有大量的氨氮和鹽[65]。Dapena-Mora 等[66]采用SHARON-厭氧氨氧化工藝處理魚肉罐頭加工廢水的研究中,進(jìn)水氨氮濃度700~1000mg/L,鹽分8000~10000mgNaCl/L,平均NLR 為0.5kg/(m3·d),平均氨氮去除率達(dá)到68%。面對SHARON 反應(yīng)器出水水質(zhì)波動,厭氧氨氧化反應(yīng)系統(tǒng)表現(xiàn)出較強(qiáng)的穩(wěn)定性,NO2--N/NH4+-N 比低于1 時未見不利影響,但是當(dāng)該比值高于1 時,出水亞硝氮濃度升高,而且活性未能恢復(fù)。該研究還表明,10gNaCl/L 左右的鹽度對厭氧氨氧化活性和污泥特性沒有長期的不利影響。但本文作者課題組[65]的研究表明,30gNaCl/L 的沖擊負(fù)荷是厭氧氨氧化反應(yīng)器穩(wěn)定運(yùn)行所能耐受的閾值。雖然目前關(guān)于厭氧氨氧化系統(tǒng)所能耐受的鹽度負(fù)荷閾值不一(30~75gNaCl/L),但是通過長期馴化[67]、添加相容性溶質(zhì)[68]等措施,應(yīng)用厭氧氨氧化工藝處理高氨氮高鹽度工業(yè)廢水潛力巨大。
在其他廢水處理方面,厭氧氨氧化也體現(xiàn)了廣泛的適用性(表4)。Tang 等[69]開發(fā)出了一種菌種流加-厭氧氨氧化工藝用來處理制藥廢水(硫酸黏桿菌素和吉他霉素生產(chǎn)廢水)。當(dāng)出水亞硝氮濃度高于10mg/L 時,5~10mL 的厭氧氨氧化顆粒(0.3~0.6gVSS)加入反應(yīng)器中來阻止反應(yīng)器性能的惡化。在菌種流加速率保持在0.025gVSS/(L·d)時,NRR達(dá)到9.4kg/(m3·d),出水氨氮濃度低至50mg/L。
Chen 等[70]采用厭氧氨氧化工藝處理溫室甲魚養(yǎng)殖廢水,通過新型低溫竹炭填料的添加快速啟動厭氧氨氧化反應(yīng)器,研究中考察了有機(jī)物濃度對厭氧氨氧化處理效果的影響,當(dāng)進(jìn)水COD 濃度在194~577.8mg/L 時,NRE 大于85%,COD 去除率在56.6%左右。該研究對于氮磷含量較高的集約化水產(chǎn)養(yǎng)殖廢水的深度脫氮具有重要的現(xiàn)實(shí)意義。
第一個工業(yè)規(guī)模的采用厭氧氨氧化工藝處理半導(dǎo)體工廠含氮廢水的嘗試也已取得成功。Tokutomi等[33]將污水廠原有硝化-反硝化工藝改造成短程硝化-厭氧氨氧化-反硝化工藝,通過高濃度碳酸氫鹽選擇性抑制亞硝酸氧化來實(shí)現(xiàn)短程硝化,在經(jīng)過10個月的運(yùn)行后達(dá)到穩(wěn)定,厭氧氨氧化反應(yīng)器NRR達(dá)到1.04~3.29kg/(m3·d),其出水再經(jīng)過反硝化處理??扇苄钥偟獫舛葹?60~450mg/L 的進(jìn)水經(jīng)該工藝處理后,出水氨氮濃度可達(dá)8mg/L 以下,這充分證明了短程硝化-厭氧氨氧化工藝處理半導(dǎo)體工廠含氮廢水的可行性。
Daverey 等[71]利用CANON 工藝處理高氨氮的光電工業(yè)廢水,采用18L 的SBR 反應(yīng)器,通過投加NaHCO3控制堿度在850mgCaCO3/L 左右,在進(jìn)水氨氮濃度高達(dá)3636mg/L 時,NLR 為0.909kg/(m3·d),氨氮去除率高達(dá)98%,并且該反應(yīng)系統(tǒng)面對17~37℃的溫度波動均表現(xiàn)出高效的脫氮性能,說明CANON 工藝有望應(yīng)用于光電工業(yè)廢水的脫氮治理。
實(shí)際廢水成分復(fù)雜,禽畜養(yǎng)殖廢水中含有重金屬離子和抗生素,垃圾滲濾液中重金屬含量高,焦化和石化廢水中含有氰化物、硫氰化物、焦油、酚類等,制革廢水中含有大量有機(jī)氮和重金屬離子,制藥廢水特別是抗生素生產(chǎn)廢水含有生物抑制劑,海產(chǎn)品加工、制革、煉油、造紙、酒精發(fā)酵廢水中還含有硫化物,養(yǎng)殖廢水、糞便污水、市政、化肥、制藥廢水中含有濃度不等的磷酸鹽。上述這些障礙因子是制約厭氧氨氧化技術(shù)應(yīng)用在高濃度氨氮工業(yè)廢水處理領(lǐng)域的關(guān)鍵因素。雖然目前的研究涉及基質(zhì)(亞硝酸鹽和氨)、有機(jī)物(包括致毒性和非致毒性)、鹽度、重金屬、磷酸鹽及硫化物等所致抑制,但是因?yàn)榫N或?qū)嶒?yàn)條件等不同,抑制劑的抑制閾值不一,是否可逆也存在爭議,聯(lián)合作用影響尚未探明,相關(guān)調(diào)控策略的研究十分匱乏。而且目前針對不同水質(zhì)的廢水,一體式和分體式工藝類型的選擇在理論上的探討還未有定論,在實(shí)踐上的證明還缺乏運(yùn)營數(shù)據(jù)支撐。應(yīng)該結(jié)合工業(yè)廢水的實(shí)際情況進(jìn)行工藝改造,并在實(shí)驗(yàn)室研究成果的基礎(chǔ)上積極推進(jìn)中試,以促進(jìn)厭氧氨氧化工藝的實(shí)用化和工業(yè)化。另外,厭氧氨氧化作為新型生物脫氮工藝并不意味著是傳統(tǒng)工藝的終結(jié),而應(yīng)該是作為現(xiàn)有工藝的補(bǔ)充和新型工藝開發(fā)的橋梁樞紐。由于厭氧氨氧化嚴(yán)格的反應(yīng)條件,應(yīng)深度研究不同水質(zhì)障礙因子的影響和調(diào)控策略,提高厭氧氨氧化的工程價值。建議今后在以下幾個方面開展深入的研究。
(1)基于厭氧氨氧化的多菌群耦合工藝。
的開發(fā)。
表4 厭氧氨氧化工藝應(yīng)用于各種廢水的實(shí)驗(yàn)室及中試總結(jié)
(3)不同工業(yè)廢水水質(zhì)障礙因子對厭氧氨氧化的長期、短期、復(fù)合影響。
(4)一體式和分體式工藝中氮氧化物的產(chǎn)生機(jī)理和減排措施。
(5)厭氧消化出水中溶解性甲烷的去除或利用。
[1] Joss A,Salzgeber D,Eugster J,et al. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR[J]. Environmental Science & Technology,2009,43(14):5301-5306.
[2] van der Star W R,Abma W R,Blommers D,et al.Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale anammox reactor in Rotterdam[J].Water Research,2007,41(18):4149-4163.
[3] Strous M,Kuenen J G,Jetten M S. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology,1999,65(7):3248-3250.
[4] Thamdrup B,Dalsgaard T. Production of N2through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Applied and Environmental Microbiology,2002,68(3):1312-1318.
[5] Penton C R,Devol A H,Tiedje J M. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments[J]. Applied and Environmental Microbiology,2006,72(10):6829-6832.
[6] Li H,Chen S,Mu B,et al. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs[J].Microbial Ecology,2010,60(4):771-783.
[7] Kuypers M M,Sliekers A O,Lavik G,et al.Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature,2003,422(6932):608-611.
[8] Hamersley M R,Lavik G,Woebken D,et al.Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone[J]. Limnology and Oceanography,2007,52(3):923.
[9] Meyer R L,Risgaard-Petersen N,Allen D E. Correlation between anammox activity and microscale distribution of nitrite in a subtropical mangrove sediment[J]. Applied and Environmental Microbiology,2005,71(10):6142-6149.
[10] Rysgaard S,Glud R N,Risgaard-Petersen N,et al.Denitrification and anammox activity in Arctic marine sediments[J]. Limnology and Oceanography,2004,49(5):1493-1502.
[11] Schubert C J,Durisch Kaiser E,Wehrli B,et al. Anaerobic ammonium oxidation in a tropical freshwater system ( Lake Tanganyika)[J]. Environmental Microbiology,2006,8(10):1857-1863.
[12] Jaeschke A,Op Den Camp H J,Harhangi H,et al.16S rRNA gene and lipid biomarker evidence for anaerobic ammonium‐oxidizing bacteria(anammox)in California and Nevada hot springs[J]. FEMS Microbiology Ecology,2009,67(3):343-350.
[13] Strous M,F(xiàn)uerst J A,Kramer E H,et al.Missing lithotroph identified as new planctomycete[J].Nature,1999,400(6743):446-449.
[14] Kartal B,van Niftrik L,Rattray J,et al. Candidatus ‘Brocadia fulgida’ : An autofluorescent anaerobic ammonium oxidizing bacterium[J].FEMS Microbiology Ecology,2008,63(1):46-55.
[15] Hu B,Zheng P,Tang C,et al.Identification and quantification of anammox bacteria in eight nitrogen removal reactors[J]. Water Research,2010,44(17):5014-5020.
[16] Araujo J C,Campos A C,Correa M M,et al. Anammox bacteria enrichment and characterization from municipal activated sludge[J].Water Science and Technology,2011,64(7):1428-1434.
[17] Rothrock Jr M J,Vanotti M B,Sz?gi A A,et al. Long-term preservation of anammox bacteria[J]. Applied Microbiology and Biotechnology,2011,92(1):147-157.
[18] Schmid M,Twachtmann U,Klein M,et al.Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Systematic and Applied Microbiology ,2000,23(1):93-106.
[19] Hong Y,Li M,Cao H,et al.Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea:Analyses of marker gene abundance with physical chemical parameters[J].Microbial Ecology,2011,62(1):36-47.
[20] Fuchsman C A,Staley J T,Oakley B B,et al. Free‐living and aggregate‐associated Planctomycetes in the Black Sea[J]. FEMS Microbiology Ecology,2012,80(2):402-416.
[21] Schmid M,Walsh K,Webb R,et al.Candidatus“Scalindua brodae”,sp.nov.,Candidatus“Scalindua wagneri”,sp.nov.,Two new species of anaerobic ammonium oxidizing bacteria[J].Systematic and Applied Microbiology,2003,26(4):529-538.
[22] Woebken D,Lam P,Kuypers M M,et al.A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones[J]. Environmental Microbiology,2008,10(11):3106-3119.
[23] van de Vossenberg J,Woebken D,Maalcke W J,et al. The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium[J].Environmental Microbiology,2013,15(5):1275-1289.
[24] Kartal B , Rattray J , van Niftrik L A , et al. Candidatus“Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J].Systematic and Applied Microbiology,2007,30(1):39-49.
[25] Liu S , Yang F , Gong Z , et al. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal[J]. Bioresource Technology,2008,99(15):6817-6825.
[26] Quan Z X,Rhee S K,Zuo J E,et al. Diversity of ammonium‐oxidizing bacteria in a granular sludge anaerobic ammonium ‐oxidizing (anammox) reactor[J]. Environmental Microbiology,2008,10(11):3130-3139.
[27] Khramenkov S V,Kozlov M N,Kevbrina M V,et al. A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge[J].Microbiology,2013,82(5):628-636.
[28] Lackner S,Gilbert E M,Vlaeminck S E,et al. Full-scale partial nitritation/anammox experiences—An application survey[J]. WaterResearch,2014,55:292-303.
[29] Wett B. Solved upscaling problems for implementing deammonification of rejection water[J]. Water Science and Technology,2006,53(12):121-128.
[30] Wett B. Development and implementation of a robust deammonification process[J].Water Science and Technology,2007,56(7):81-88.
[31] Vlaeminck S E,Terada A,Smets B F,et al. Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox[J]. Applied and Environmental Microbiology,2010,76(3):900-909.
[32] van der Star W R,Abma W R,Blommers D,et al.Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale anammox reactor in Rotterdam[J].Water Research,2007,41(18):4149-4163.
[33] Tokutomi T,Yamauchi H,Nishimura S,et al. Application of the nitritation and anammox process into inorganic nitrogenous wastewater from semiconductor factory[J]. Journal of Environmental Engineering,2011,137(2):146-154.
[34] Abma W,Schultz C,Mulder J,et al.The advance of Anammox[J].Water,2007,2(21):36-37.
[35] van Dongen U , Jetten M S , van Loosdrecht M. The SHARON?-Anammox? process for treatment of ammonium rich wastewater[J].Water Science and Technology,2001,44(1):153-160.
[36] Fux C,Boehler M ,Huber P,et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant[J].Journal of Biotechnology,2002,99(3):295-306.
[37] Siegrist H,Reithaar S,Koch G,et al.Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon[J].Water Science and Technology,1998,38(8):241-248.
[38] Liang Z,Liu J. Landfill leachate treatment with a novel process:Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system[J]. Journal of Hazardous Materials,2008,151(1):202-212.
[39] Liang Z,Liu J,Li J. Decomposition and mineralization of aquatic humic substances (AHS) in treating landfill leachate using the Anammox process[J].Chemosphere,2009,74(10):1315-1320.
[40] Liu J,Zuo J,Yang Y,et al.An autotrophic nitrogen removal process:Short-cut nitrification combined with ANAMMOX for treating diluted effluent from an UASB reactor fed by landfill leachate[J].Journal of Environmental Sciences,2010,22(5):777-783.
[41] Wang C,Lee P,Kumar M,et al.Simultaneous partial nitrification,anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant[J]. Journal of Hazardous Materials,2010,175(1):622-628.
[42] Lan C,Kumar M,Wang C,et al. Development of simultaneous partial nitrification,anammox and denitrification (SNAD) process in a sequential batch reactor[J].Bioresource Technology,2011,102(9):5514-5519.
[43] Anfruns A,Gabarró J,Gonzalez-Olmos R,et al.Coupling anammox and advanced oxidation-based technologies for mature landfill leachate treatment[J].Journal of Hazardous Materials,2013,258:27-34.
[44] Xian Q,Hu L,Chen H,et al.Removal of nutrients and veterinary antibiotics from swine wastewater by a constructed macrophyte floating bed system[J]. Journal of Environmental Management ,2010,91(12):2657-2661.
[45] Hwang I,Min K,Choi E,et al.Nitrogen removal from piggery waste using the combined SHARON and ANAMMOX process[J]. Water Science and Technology,2005,52(10-11):487-494.
[46] Yamamoto T,Takaki K,Koyama T,et al. Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox[J]. Bioresource Technology ,2008,99(14):6419-6425.
[47] 陳旭良. 短程硝化-厭氧氨氧化工藝處理味精廢水的研究[D]. 杭州:浙江大學(xué),2006.
[48] 陳旭良,鄭平,金仁村,等. 味精廢水厭氧氨氧化生物脫氮的研究[J]. 環(huán)境科學(xué)學(xué)報(bào),2007(5):747-752.
[49] Shen L,Hu A,Jin R,et al.Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system[J]. Journal of Hazardous Materials,2012,199:193-199.
[50] Toh S,Ashbolt N. Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater[J]. Applied Microbiology and Biotechnology,2002,59(2-3):344-352.
[51] Yang G,Guo X,Chen S,et al. The evolution of Anammox performance and granular sludge characteristics under the stress of phenol[J].Bioresource Technology,2013,137:332-339.
[52] Jin R,Yang G,Zhang Q,et al.The effect of sulfide inhibition on the ANAMMOX process[J].Water Research,2013,47(3):1459-1469.
[53] Gao H,Scherson Y D,Wells G F.Towards energy neutral wastewater treatment : methodology and state of the art[J]. Environmental Science:Processes&Impacts,2014,16(6):1223-1246.
[54] van Loosdrecht M C M,Brdjanovic D.Anticipating the next century of wastewater treatment[J].Science,2014,344(6191):1452-1453.
[55] Hu Z ,Lotti T,de Kreuk M ,et al. Nitrogen removal by a nitritation-anammox bioreactor at low temperature[J]. Applied and Environmental Microbiology,2013,79(8):2807-2812.
[56] Jin R,Ma C,Yu J. Performance of an Anammox UASB reactor at high load and low ambient temperature[J]. Chemical Engineering Journal,2013,232:17-25.
[57] Lotti T,Kleerebezem R,van Erp Taalman Kip C,et al.Anammox growth on pretreated municipal wastewater[J]. Environmental Science&Technology,2014,48(14):7874-7880.
[58] Lotti T,Kleerebezem R,Kartalb B,et al.Pilot Scale evaluation of Anammox based main-stream nitrogen removal from municipal wastewater[J]. Environmental Technology,2014-11-03:1-11[Epub ahead of print].
[59] Vlaeminck S E,Terada A,Smets B F,et al.Nitrogen removal from digested black water by one-stage partial nitritation and anammox[J].Environmental Science&Technology,2009,43(13):5035-5041.
[60] de Graaff M S,Temmink H,Zeeman G,et al.Autotrophic nitrogen removal from black water:Calcium addition as a requirement for settleability[J].Water Research,2011,45(1):63-74.
[61] de Graaff M S,Vieno N M,Kujawa-Roeleveld K,et al. Fate of hormones and pharmaceuticals during combined anaerobic treatment and nitrogen removal by partial nitritation-anammox in vacuum collected black water[J]. Water Research,2011,45(1):375-383.
[62] Sliekers A O,Haaijer S,Schmid M,et al. Nitrification and anammox with urea as the energy source[J]. Systematic and Applied Microbiology,2004,27(3):271-278.
[63] Liu S,Gong Z,Yang F,et al. Combined process of urea nitrogen removal in anaerobic Anammox co-culture reactor[J]. Bioresource Technology,2008,99(6):1722-1728.
[64] Maurer M,Pronk W,Larsen T A. Treatment processes for source-separated urine[J]. Water Research,2006,40(17):3151-3166.
[65] Ma C,Jin R,Yang G,et al. Impacts of transient salinity shock loads on Anammox process performance[J]. Bioresource Technology,2012,112:124-130.
[66] Dapena-Mora A,Campos J L,Mosquera-Corral A,et al. Anammox process for nitrogen removal from anaerobically digested fish canning effluents[J]. Nutrient Management in Wastewater Treatment Processes and Recycle Streams,2006,53(12):265-274.
[67] Kartal B,Koleva M,Arsov R,et al. Adaptation of a freshwater anammox population to high salinity wastewater[J]. Journal of Biotechnology,2006,126(4):546-553.
[68] Liu M,Peng Y,Wang S,et al. Enhancement of anammox activity by addition of compatible solutes at high salinity conditions[J]. Bioresource Technology,2014,167:560-563.
[69] Tang C,Zheng P,Chen T,et al. Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process[J]. Water Research,2011,45(1):201-210.
[70] Chen C,Huang X,Lei C,et al. Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment[J]. Bioresource Technology,2013,148:172-179.
[71] Daverey A,Su S,Huang Y,et al. Partial nitrification and anammox process:A method for high strength optoelectronic industrial wastewater treatment[J]. Water Research,2013,47(9):2929-2937.
[72] Pynaert K,Smets B F,Beheydt D,et al. Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition[J]. Environmental Science & Technology,2004,38(4):1228-1235.
[73] Wyffels S,Boeckx P,Pynaert K,et al. Nitrogen removal from sludge reject water by a two-stage oxygen-limited autotrophic nitrification denitrification process[J]. Water Science and Technology,2004,49(5-6):57-64.
[74] Vázquez-Padín J,F(xiàn)ernádez I,F(xiàn)igueroa M,et al. Applications of Anammox based processes to treat anaerobic digester supernatant at room temperature[J]. Bioresource Technology,2009,100(12):2988-2994.
[75] Qiao S,Yamamoto T,Misaka M,et al. High-rate nitrogen removal from livestock manure digester liquor by combined partial nitritation-anammox process[J]. Biodegradation,2010,21(1):11-20.
[76] Ahn Y,Hwang I,Min K. ANAMMOX and partial denitritation in anaerobic nitrogen removal from piggery waste[J]. Water Science and Technology,2004,49(5-6):145-153.
[77] Li J,Xiong B,Zhang S,et al. Anaerobic ammonium oxidation for advanced municipal wastewater treatment:Is it feasible?[J]. Journal of Environmental Sciences,2005,17(6):1022-1024.