王華河北省辛集市辛集鎮(zhèn)第十小學(xué)
數(shù)學(xué)思維的基本形式淺談
王華
河北省辛集市辛集鎮(zhèn)第十小學(xué)
對(duì)于數(shù)學(xué)思維的突出強(qiáng)調(diào)是國(guó)際范圍內(nèi)新一輪數(shù)學(xué)課程改革的一個(gè)重要特征,如由美國(guó)的《學(xué)校數(shù)學(xué)課程與評(píng)估的標(biāo)準(zhǔn)》和我國(guó)的《全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)》(以下簡(jiǎn)稱《課程標(biāo)準(zhǔn)》)關(guān)于數(shù)學(xué)教育目標(biāo)的論述中就可清楚地看出。然而,就小學(xué)數(shù)學(xué)教育的現(xiàn)實(shí)而言,上述的理念還不能說(shuō)已經(jīng)得到了很好的貫徹,而造成這一現(xiàn)象的一個(gè)重要原因就是以下的認(rèn)識(shí):小學(xué)數(shù)學(xué)的教學(xué)內(nèi)容過(guò)于簡(jiǎn)單,因而不可能很好地體現(xiàn)數(shù)學(xué)思維的特點(diǎn)。以下將依據(jù)國(guó)際上的相關(guān)研究對(duì)這一觀點(diǎn)作出具體分析,希望能促進(jìn)這一方向上的深入研究,從而能夠?qū)τ趯?shí)際教學(xué)活動(dòng)發(fā)揮積極的導(dǎo)向作用。
眾所周知,強(qiáng)調(diào)與現(xiàn)實(shí)生活的聯(lián)系正是新一輪數(shù)學(xué)課程改革的一個(gè)重要特征?!皵?shù)學(xué)課程的內(nèi)容一定要充分考慮數(shù)學(xué)發(fā)展進(jìn)程中人類(lèi)的活動(dòng)軌跡,貼近學(xué)生熟悉的現(xiàn)實(shí)生活,不斷溝通生活中的數(shù)學(xué)與教科書(shū)上數(shù)學(xué)的聯(lián)系,使生活和數(shù)學(xué)融為一體?!本团Ω淖儌鹘y(tǒng)數(shù)學(xué)教育嚴(yán)重脫離實(shí)際的弊病而言,這一做法是完全正確的;但是,從更為深入的角度去分析,我們?cè)诖藙t又面臨著這樣一個(gè)問(wèn)題,即應(yīng)當(dāng)如何去處理“日常數(shù)學(xué)”與“學(xué)校數(shù)學(xué)”之間的關(guān)系。
事實(shí)上,即使就最為初等的數(shù)學(xué)內(nèi)容而言,我們也可清楚地看到數(shù)學(xué)的抽象特點(diǎn),而這就已包括了由“日常數(shù)學(xué)”向“學(xué)校數(shù)學(xué)”的重要過(guò)渡。
例如,在幾何題材的教學(xué)中,無(wú)論是教師或?qū)W生都清楚地知道,我們的研究對(duì)象并非教師手中的那個(gè)木制三角尺,也不是在黑板上或紙上所畫(huà)的那個(gè)具體的三角形,而是更為一般的三角形的概念,這事實(shí)上就已包括了由現(xiàn)實(shí)原型向相應(yīng)的“數(shù)學(xué)模式”的過(guò)渡。再例如,正整數(shù)加減法顯然具有多種不同的現(xiàn)實(shí)原型,如加法所對(duì)應(yīng)的既可能是兩個(gè)量的聚合,也可能是同一個(gè)量的增加性變化,同樣地,減法所對(duì)應(yīng)的既可能是兩個(gè)量的比較,也可能是同一個(gè)量的減少性變化;然而,在相應(yīng)的數(shù)學(xué)表達(dá)式中所說(shuō)的現(xiàn)實(shí)意義、包括不同現(xiàn)實(shí)原型之間的區(qū)別(例如,這究竟表現(xiàn)了“二元的靜態(tài)關(guān)系”還是“一元的動(dòng)態(tài)變化”)則完全被忽視了:它們所對(duì)應(yīng)的都是同一類(lèi)型的表達(dá)式,如4+ 5=9、7-3=4等,而這事實(shí)上就包括了由特殊到一般的重要過(guò)渡。
應(yīng)當(dāng)強(qiáng)調(diào)的是,以上所說(shuō)的可說(shuō)是一種“數(shù)學(xué)化”的過(guò)程,后者集中地體現(xiàn)了數(shù)學(xué)的本質(zhì)特點(diǎn):數(shù)學(xué)可被定義為“模式的科學(xué)”,也就是說(shuō),在數(shù)學(xué)中我們并非是就各個(gè)特殊的現(xiàn)實(shí)情景從事研究的,而是由附屬于具體事物或現(xiàn)象的模型過(guò)渡到了更為普遍的“模式”。
也正由于數(shù)學(xué)的直接研究對(duì)象是抽象的模式而非特殊的現(xiàn)實(shí)情景,這就為相應(yīng)的“純數(shù)學(xué)研究”提供了現(xiàn)實(shí)的可能性。例如,就以上所提及的加減法運(yùn)算而言,由于其中涉及三個(gè)不同的量(兩個(gè)加數(shù)與它們的和,或被減數(shù)、減數(shù)與它們的差),因此,從純數(shù)學(xué)的角度去分析,我們完全可以提出這樣的問(wèn)題,即如何依據(jù)其中的任意兩個(gè)量去求取第三個(gè)量。例如,就“量的比較”而言,除去兩個(gè)已知數(shù)的直接比較以外,我們顯然也可提出:“兩個(gè)數(shù)的差是3,其中較小的數(shù)是4,問(wèn)另一個(gè)數(shù)是幾?”或者“兩個(gè)數(shù)的差是3,其中較大的數(shù)是4,問(wèn)另一個(gè)數(shù)是幾?”我們?cè)诖耸聦?shí)上已由“具有明顯現(xiàn)實(shí)意義的量化模式”過(guò)渡到了“可能的量化模式”。綜上可見(jiàn),即使就正整數(shù)的加減法此類(lèi)十分初等的題材而言,就已十分清楚地體現(xiàn)了數(shù)學(xué)思維的一些重要特點(diǎn),特別是體現(xiàn)了在現(xiàn)實(shí)意義與純數(shù)學(xué)研究這兩者之間所存在的辯證關(guān)系。當(dāng)然,從理論的角度看,我們?cè)诖擞謶?yīng)考慮這樣的問(wèn)題,即應(yīng)當(dāng)如何去認(rèn)識(shí)所說(shuō)的純數(shù)學(xué)研究的意義。特別是,我們是否應(yīng)當(dāng)明確肯定由“日常數(shù)學(xué)”過(guò)渡到“學(xué)校數(shù)學(xué)”的必要性,或是應(yīng)當(dāng)唯一地堅(jiān)持立足于現(xiàn)實(shí)生活。
由于后一問(wèn)題的全面分析已經(jīng)超出了本文的范圍,在此僅指明這樣一點(diǎn):與現(xiàn)實(shí)意義在一定程度上的分離對(duì)于學(xué)生很好地把握相應(yīng)的數(shù)量關(guān)系是十分重要的。這正是國(guó)際上的相關(guān)研究、特別是近年來(lái)所興起的“民俗數(shù)學(xué)”研究的一個(gè)重要結(jié)論:盡管“日常數(shù)學(xué)”具有密切聯(lián)系實(shí)際的優(yōu)點(diǎn),但也有著明顯的局限性。例如,如果僅僅依靠“自發(fā)的數(shù)學(xué)能力”,人們往往就不善于從反面去思考問(wèn)題,與此相對(duì)照,通過(guò)學(xué)校中的學(xué)習(xí),上述的情況就會(huì)有很大改變,這就是說(shuō),純數(shù)學(xué)的研究“在幫助學(xué)生學(xué)會(huì)使用逆運(yùn)算來(lái)解決問(wèn)題方面有著明顯的效果”;另外,同樣重要的是,如果局限于特定的現(xiàn)實(shí)情景,所學(xué)到的數(shù)學(xué)知識(shí)在“可遷移性”方面也會(huì)表現(xiàn)出很大的局限性。
一般地說(shuō),學(xué)校中的數(shù)學(xué)學(xué)習(xí)就是對(duì)學(xué)生經(jīng)由日常生活所形成的數(shù)學(xué)知識(shí)進(jìn)行鞏固、適當(dāng)重組、擴(kuò)展和組織化的過(guò)程,這就意味著由孤立的數(shù)學(xué)事實(shí)過(guò)渡到了系統(tǒng)的知識(shí)結(jié)構(gòu),以及對(duì)于人類(lèi)文化的必要繼承。這正如著名數(shù)學(xué)教育家斯根普所指出的:“兒童來(lái)到學(xué)校雖然還未接受正式教導(dǎo),但所具備的數(shù)學(xué)知識(shí)卻比預(yù)料的多……他們所需要的幫助是從(學(xué)校教學(xué))活動(dòng)中組織和鞏固他們的非正規(guī)知識(shí),同時(shí)需擴(kuò)展他們這種知識(shí),使其與我們社會(huì)文化部分中的高度緊密的知識(shí)體系相結(jié)合。”
當(dāng)然,我們還應(yīng)明確肯定數(shù)學(xué)知識(shí)向現(xiàn)實(shí)生活“復(fù)歸”的重要性。這正如著名數(shù)學(xué)家、數(shù)學(xué)教育家弗賴登塔爾所指出的:“數(shù)學(xué)的力量源于它的普遍性。人們可以用同樣的數(shù)去對(duì)各種不同的集合進(jìn)行計(jì)數(shù),也可以用同樣的數(shù)去對(duì)各種不同的量進(jìn)行度量?!M管運(yùn)算(等)所涉及的方面十分豐富,但又始終是同一個(gè)運(yùn)算──這即是借助于算法所表明的事實(shí)。作為計(jì)算者人們?nèi)菀淄浧渌婕暗臄?shù)以及他所面對(duì)的文字題中的算術(shù)問(wèn)題的來(lái)源。但是,為了真正理解這種存在于多樣性之中的簡(jiǎn)單性,在計(jì)算的同時(shí)我們又必須能夠由算法的簡(jiǎn)單性回到多樣化的現(xiàn)實(shí)?!?/p>
總的來(lái)說(shuō),這就應(yīng)當(dāng)被看成“數(shù)學(xué)化”這一思維方式的完整表述,即其不僅直接涉及如何由現(xiàn)實(shí)原型抽象出相應(yīng)的數(shù)學(xué)概念或問(wèn)題,而且也包括了對(duì)于數(shù)量關(guān)系的純數(shù)學(xué)研究,以及由數(shù)學(xué)知識(shí)向現(xiàn)實(shí)生活的“復(fù)歸”。另外,相對(duì)于具體知識(shí)內(nèi)容的學(xué)習(xí)而言,我們應(yīng)當(dāng)更加注意如何幫助學(xué)生很好地去掌握“數(shù)學(xué)化”的思想,我們應(yīng)當(dāng)從這樣的角度去理解“情境設(shè)置”與“純數(shù)學(xué)研究”的意義。這正如弗賴登塔爾所指出的:“數(shù)學(xué)化……是一條保證實(shí)現(xiàn)數(shù)學(xué)整體結(jié)構(gòu)的廣闊途徑……情境和模型,問(wèn)題與求解這些活動(dòng)作為必不可少的局部手段是重要的,但它們都應(yīng)該服從于總的方法?!?/p>