王曉先, 張進江, 楊雄英
(1.中國地震局地殼應(yīng)力研究所地殼動力學重點實驗室,北京 100085;2.北京大學地球與空間科學學院造山帶與地殼演化教育部重點實驗室,北京 100871)
特提斯喜馬拉雅馬拉山花崗巖的年代學、地球化學特征及成因機制
王曉先1,2, 張進江2, 楊雄英2
(1.中國地震局地殼應(yīng)力研究所地殼動力學重點實驗室,北京100085;2.北京大學地球與空間科學學院造山帶與地殼演化教育部重點實驗室,北京100871)
馬拉山花崗巖位于特提斯喜馬拉雅的西部,其主要礦物組成為石英、鉀長石、白云母和黑云母。鋯石LA-MC-ICP-MS U-Pb定年表明,花崗巖的發(fā)育記錄了(28.0±0.5)Ma和(18.4±0.3)Ma兩期深熔作用,(18.4±0.3)Ma代表了最終的結(jié)晶時間。全巖地球化學分析結(jié)果顯示,樣品具有高的SiO2(72.36%~72.51%)、Al2O3(15.22%~15.37%)和CaO(1.64%~1.66%)含量,高的K2O/Na2O值(0.97~1.05)和A/CNK值(1.15~1.20),顯示高鉀鈣堿性過鋁質(zhì)的特征;巖石富集Rb、Th、U和K,虧損Ba、Nb、Sr和Zr,Eu負異常不明顯(δEu=0.80~0.89),輕重稀土分餾較強[(La/Yb)N=7.09~19.68]。馬拉山花崗巖具有較低的Rb/Sr值(0.90~1.10)和較高的CaO/Na2O值(0.44 ~ 0.46),指示巖漿源區(qū)物質(zhì)成分可能以頁巖為主;樣品(87Sr/86Sr)i和εNd(t)分別為0.742 522 ~ 0.744 097和-14.5 ~ -13.7,與大喜馬拉雅結(jié)晶雜巖中變質(zhì)沉積巖成分一致,表明其來自變質(zhì)沉積巖的部分熔融。巖石具有較低的(87Sr/86Sr)i和較高的Sr含量,且隨著Ba含量的增加,Rb/Sr值基本不變,表明馬拉山花崗巖是水致白云母部分熔融的產(chǎn)物,部分熔融可能與南北向裂谷的東西向伸展關(guān)系密切。
馬拉山花崗巖;年代學;地球化學特征;成因機制;特提斯喜馬拉雅
始于65~55Ma(BECK et al.,1995;RAGE et al.,1995;ROWLEY,1996)的印度-歐亞大陸的碰撞-匯聚作用,不僅造就了全球規(guī)模最大的高原和最年輕、最經(jīng)典的碰撞型造山帶——青藏高原和喜馬拉雅造山帶,而且在碰撞的中晚期(始新世—中新世)觸發(fā)了大規(guī)模的地殼深熔作用(LE Fort,1975;SEARLE et al.,1997;HARRISON et al.,1999;LEE et al.,2000;SEARLE et al.,2003;ZENG et al.,2011;GUO et al.,2012),形成了2條綿延數(shù)千千米的花崗巖帶。一條位于大喜馬拉雅結(jié)晶雜巖(GHC)的頂部,以淡色花崗巖為主,稱為大喜馬拉雅淡色花崗巖帶(Yin,2006);另一條位于特提斯喜馬拉雅,以花崗巖為主,稱為北喜馬拉雅花崗巖帶。這些淡色花崗巖/花崗巖主要沿碰撞造山過程形成的伸展構(gòu)造分布(COPEL et al.,1990;HARRISON et al.,1995a,1995b,1997;COLEMAN,1998;HODGES,2000;SEARLE et al.,2003;ZHANG et al.,2004;ANNEN et al.,2006;GODIN et al.,2006;COTTLE et al.,2007;LEE et al.,2007;YANG et al.,2009;ZENG et al.,2009;KELLETT et al.,2010;LARSON et al.,2010;LELOUP et al.,2010;SACHAN et al.,2010;CHAMBERS et al.,2011;LIU et al.,2012;YAN et al.,2012),并與造山帶的演化過程關(guān)系密切,是研究造山作用中晚期深部構(gòu)造-巖漿作用的重要“巖石探針”(莫宣學等,2003)。
北喜馬拉雅花崗巖帶位于特提斯喜馬拉雅的中部,主要有2種產(chǎn)出形式:一種以獨立侵入體形式侵入到特提斯喜馬拉雅沉積巖系(THS)中,如昌果、打拉和確當?shù)葞r體(ZENG et al.,2009;LARSON et al.,2010);另一種主要出露于北喜馬拉雅片麻巖穹窿(NHGD)核部,如麻布迦、然巴和雅拉香波等巖體(ZHANG et al.,2004;YAN et al.,2012;LIU et al.,2014)。近年來,許多學者對這些巖體進行了大量的年代學研究,發(fā)現(xiàn)北喜馬拉雅花崗巖形成時間跨度很大,如東部的雅拉香波穹窿中花崗巖年齡可達44~43Ma(ZENG et al.,2009),而然巴穹窿中淡色花崗巖的年齡僅為8Ma(LIU et al.,2014),但絕大多數(shù)巖體集中于26 ~ 13Ma(HARRISON et al.,1997;AOYA et al.,2005;LEE et al.,2006;KAWAKAMI et al.,2007;LEE et al.,2007;LELOUP et al.,2010;LEDERER et al.,2013;MITSUISHI et al.,2012;GAO et al.,2013;GAO et al.,2014)。雖然對北喜馬拉雅花崗巖的形成時代已經(jīng)有了較為準確的厘定,但有關(guān)花崗巖的成因問題仍然存在不少的爭議。目前,爭議的焦點集中在以下兩方面:①花崗巖的源區(qū)和源巖。大部分學者認為花崗巖來自大喜馬拉雅結(jié)晶雜巖(GHC)中變質(zhì)沉積巖的部分熔融(張宏飛等,2005;ZHANG et al.,2004;GAO et al.,2013;GAO et al.,2014);而Zeng 等(2009)基于對雅拉香波穹窿中花崗巖的Sr-Nd同位素研究,認為其源區(qū)為增厚地殼中的角閃巖,并有少量變泥質(zhì)巖參與部分熔融;謝克家等(2010)對打拉花崗巖的研究認為其可能為下地殼基性物質(zhì)部分熔融的產(chǎn)物。②花崗巖的形成機制。絕大多數(shù)的喜馬拉雅花崗巖主要來自白云母部分熔融這一結(jié)論已基本達成共識(HARRISON et al.,1997,1998;HARRIS et al.,1995;PATIO et al.,1998),但導致白云母部分熔融的觸發(fā)因素還具有較大的爭議,如LE Fort等(1987)認為水等流體的加入可能是導致部分熔融的主要因素,但是部分學者通過實驗巖石學研究發(fā)現(xiàn),在無外來流體的情況下,部分熔融也可以發(fā)生(HARRIS et al.,1992);而HARRIS和MASSEY(1994)以及DAVIDSON等(1997)認為造山過程中相關(guān)的伸展構(gòu)造發(fā)生活動導致的構(gòu)造減壓可能是部分熔融的主要觸發(fā)因素。后期又有學者提出斷裂活動過程中的剪切摩擦生熱和放射性同位素生熱可以導致部分熔融(HARRISON et al.,1997,1998,1999;VISONet al.,2002)。但理論計算表明,單純的剪切摩擦熱和地殼放射性生熱元素生熱很難產(chǎn)生大規(guī)模的巖漿作用(NABELEK et al.,2004)。由此可見,北喜馬拉雅花崗巖的成因問題仍然需要進一步的研究,尤其是來自巖石學、地球化學和同位素地球化學等方面的證據(jù)。
本次研究采集吉隆地區(qū)佩枯錯湖西北部的馬拉山花崗巖,在LA-MC-ICP-MS鋯石U-Pb年代學分析的基礎(chǔ)上,開展全巖主量、微量和Sr-Nd同位素地球化學分析,厘定花崗巖的形成時代,揭示其源區(qū)和成因機制,并探討其構(gòu)造動力學意義。
狹義的喜馬拉雅造山帶指雅魯藏布江縫合帶與主前鋒逆沖斷裂(MFT)之間、由新生代印度-歐亞大陸碰撞形成的強烈變形、變質(zhì)帶(圖1)。造山帶自北向南發(fā)育一系列北傾的斷裂,包括藏南拆離系(STDS)、主中央逆沖斷裂(MCT)、主邊界逆沖斷裂(MBT)和MFT;被這些斷裂分隔的巖石-構(gòu)造單元自北向南依次為THS、GHC、小喜馬拉雅沉積系(LHS)和西瓦里克前陸盆地沉積(SS)。其中,最北部的THS主要由早古生代到始新世的、經(jīng)歷極低級變質(zhì)的碎屑巖和碳酸巖組成(BROOKFIELD,1993)。在其中部自西向東分布一系列片麻巖穹窿——北喜馬拉雅片麻巖穹窿(NHGD),是北喜馬拉雅伸展構(gòu)造的重要組成部分(張進江,2007);GHC位于STDS和MCT之間,為中高級變質(zhì)結(jié)晶雜巖(AIKMAN et al.,2008);LHS位于MCT和MBT之間,由碎屑沉積巖和低級變質(zhì)巖組成(BROOKFIELD,1993);最南部為SS,為一套古近系-中新世的海相和陸相沉積。
馬拉山花崗巖體位于佩枯錯片麻巖穹窿的西北部(圖2),其圍巖為侏羅紀—白堊紀的砂巖、泥巖、鈣質(zhì)片巖和矽卡巖等。以巖體為中心,圍巖中發(fā)育環(huán)狀的巴洛式變質(zhì)帶(KAWAKAMI et al.,2007),但變質(zhì)級別較低,未見夕線石和混合巖化現(xiàn)象(AOYA et al.,2005),僅在靠近巖體的變質(zhì)沉積巖中發(fā)育紅柱石,可能與巖體侵位過程中的接觸變質(zhì)作用有關(guān)。構(gòu)造解析表明,馬拉山花崗巖體邊緣和圍巖經(jīng)歷了強烈的變形,相關(guān)構(gòu)造指示了早期向南逆沖和晚期向北伸展的2期變形作用(AOYA ET al.,2004)。本次研究沿佩枯錯湖西北部采集樣品,樣品被后期變形作用改造為糜棱巖化花崗巖,顯示透入性的面理(圖3a),顯微鏡下觀察主要礦物組合為石英、鉀長石、黑云母和白云母,鉀長石以殘斑形式存在,黑云母和白云母發(fā)生定向排列(圖3b)。
2.1鋯石U-Pb定年
樣品在河北廊坊地質(zhì)服務(wù)有限公司進行破碎,經(jīng)浮選和磁選后,挑選鋯石顆粒進行制靶,然后進行透射光、反射光圖像的拍攝,而后在北京大學造山帶與地殼演化教育部重點實驗室進行鋯石陰極發(fā)光照相,用于分析鋯石成因和確定測年位置點。
鋯石U-Pb定年測試工作在天津地質(zhì)礦產(chǎn)研究所同位素實驗室進行。所用儀器為Thermo Fisher公司生產(chǎn)的Neptune型激光剝蝕多接收器等離子體質(zhì)譜儀(LA-MC-ICP-MS),并結(jié)合美國ESL公司生產(chǎn)的UP193-FX ArF準分子激光器,激光剝蝕束斑直徑為35μm,激光能量密度為10J.cm-2,頻率為10Hz,激光剝蝕物質(zhì)以He為載氣送入Neptune的電感耦合等離子體,GJ-1作為外部鋯石年齡標準進行U-Pb同位素分餾校正(BLACK et al.,2003;JACKSON et al.,2004)。在測試過程中,每測定7個樣品點前后重復測試兩次鋯石標樣GJ-1。分析數(shù)據(jù)的離線處理采用ICPMSDataCal程序(LIU et al.,2009)完成,鋯石年齡諧和圖用Isoplot/Ex(3.0)程序(LUDWIG,2003)獲得。
2.2全巖主量、微量元素和Sr-Nd同位素測定
采集的新鮮樣品完成巖石化學分析制備后,送往中國科學院地質(zhì)與地球物理研究所巖石圈演化國家重點實驗室進行全巖主量、微量和Sr-Nd同位素測試。
主量元素采用荷蘭PA Nalytical 分析儀器公司制作的順序式X射線熒光光譜儀(AXIOS Minerals)完成測定,分析經(jīng)度達0.1%~1.0%;微量元素和稀土元素采用Agilent 7500a等離子體質(zhì)譜儀(ICP-MS)完成測試,對美國地質(zhì)調(diào)查局(USGS)標準參考物質(zhì)BCR-2、BHVO-2和AGV-1的分析結(jié)果顯示,分析精度和準確度優(yōu)于5%。
全巖Sr、Nd同位素的化學分離在中國科學院地質(zhì)與地球物理研究所固體同位素地球化學實驗室完成,并采用德國Finnigan公司生產(chǎn)的MAT-262型熱電離質(zhì)譜儀(TIMS)進行同位素比值的測定,87Sr/86Sr和143Nd/144Nd值分別采用87Sr/86Sr =0.119 4和143Nd/144Nd = 0.721 9進行質(zhì)量分餾校正。詳細的Sr-Nd同位素分析流程參見CHEN等(2002)。
圖2 北喜馬拉雅佩枯錯穹窿地質(zhì)圖和剖面圖Fig.2 Geological map and cross-section of the Peiku cuo dome in northern Himalaya
3.1鋯石U-Pb定年
馬拉山花崗巖樣品中大部分鋯石呈長柱或短柱狀,自形-半自形,棱角清晰,鋯石晶粒長度為200 ~ 300μm,長寬比為2∶1~3∶1。絕大部分鋯石發(fā)育清晰的核-邊結(jié)構(gòu),核部色調(diào)較亮且形狀不規(guī)則,部分發(fā)育似港灣狀結(jié)構(gòu),可能為邊部鋯石生長時熔體或熱液作用改造所致。邊部較窄(40~60μm)且色調(diào)較暗,發(fā)育明顯的巖漿韻律環(huán)帶(圖4),表明為巖漿成因。
對樣品PKC-29中的鋯石共進行了31個點位分析,其中9個分析點位于核部,另外22個分析點位于邊部,分析結(jié)果見表1。核部9個分析點的U和Th含量變化范圍為313.6×10-6~ 633.6 ×10-6和110.6 ×10-6~ 359.0 ×10-6,Th/U值較高,為0.19 ~1.13,206Pb/238U表觀年齡范圍為834.0~403.3Ma,其中4個分析點的加權(quán)平均年齡為(486±12)Ma(MSWD=0.04)(圖5b)。邊部22個分析點的U和Th含量變化范圍分別為566.9 ×10-6~858.0×10-6和11.9 ×10-6~ 99.4 ×10-6,Th/U值較低,為0.01 ~ 0.15,206Pb/238U表觀年齡范圍為239.4~17.9Ma。22個分析點中有5個分析點的年齡較大且位于諧和線之下,可能是測試過程中剝蝕到鋯石的核部所致,代表了混合年齡。剩余17個分析點全部落在諧和線上,在U-Pb諧和圖上明顯分為2組:第一組共8個分析點,Th/U值為0.03~0.11,年齡范圍為29.1~26.9 Ma,加權(quán)平均年齡為(28.0±0.5)Ma(MSWD =0.8); 第二組共9個分析點,Th/U值為0.01~0.11,年齡范圍為18.9~17.9Ma,加權(quán)平均年齡為(18.4±0.3)Ma(MSWD=0.5)(圖5c、圖5d)。2組不同年齡的鋯石其邊部具有相同的震蕩環(huán)帶以及較低的Th/U值,與深熔成因的花崗巖特征相吻合(WU et al.,2004),代表了2期深熔作用,其中(28.0 ± 0.5)Ma(MSWD = 0.8)與研究區(qū)南部佩枯花崗巖體的時代一致(GAO et al.,2013),指示早期的深熔作用,而(18.4±0.3)Ma(MSWD = 0.5)代表了馬拉山花崗巖的最終結(jié)晶年齡。
圖4 馬拉山花崗巖樣品代表性鋯石CL圖像Fig.4 Representative CL images of the zircons from the Malashan granite
圖5 馬拉山花崗巖鋯石U-Pb年齡諧和圖Fig.5 Zircon U-Pb concordia diagram of the Malashan granite
3.2全巖主量、微量元素和Sr-Nd同位素特征
樣品全巖主量、微量和Sr-Nd同位素數(shù)據(jù)見表2。馬拉山花崗巖具有較高的SiO2(72.36% ~ 72.51%)、Al2O3(15.22% ~ 15.37%)和CaO(1.64% ~ 1.66%)。樣品的K2O/Na2O值較高,為0.97 ~1.05(表2)。在K2O-SiO2圖解中,位于高鉀鈣堿性系列中(圖6a)。A/CNK值為1.15 ~1.20,均大于1.1,在A/NK-A/CNK圖解中,全部位于過鋁質(zhì)區(qū)域中(圖6b)??傮w來看,馬拉山花崗巖屬于高鉀鈣堿性過鋁質(zhì)花崗巖。
在原始地幔標準化微量元素蛛網(wǎng)圖上,馬拉山花崗巖顯示Rb、Th、U和K的正異常以及Ba、Nb、Sr和Zr的負異常(圖6c)。樣品稀土元素總量(TREE)為81.37×10-6~108.64×10-6,相對富集輕稀土元素(LREE),虧損重稀土元素(HREE),(La/Yb)N值為7.09~19.68,表明輕、重稀土元素分餾程度較強。在球粒隕石標準化的稀土元素配分模式圖中(圖6d),顯示為右傾型的稀土分布曲線,Eu負異常不明顯,δEu值為0.80~0.89。
馬拉山花崗巖的(87Sr/86Sr)i較高,為0.742 522~0.744 097,εNd(t)較低,為-14.5~-13.7,Sr-Nd同位素初始比值變化不大。Nd同位素二階段虧損地幔模式年齡為1 994~1 928Ma,暗示其可能來自古老地殼的重熔。
表2 馬拉山花崗巖全巖主量、微量元素和Sr-Nd同位素分析結(jié)果
注:主量元素成分含量為%,微量元素成分含量為10-6;LOI為燒失量;A/NK= 摩爾Al2O3/(Na2O+K2O),A/CNK=摩爾Al2O3/(CaO+Na2O+K2O);δEu=2EuN/(SmN+GdN),其中N為球粒隕石標準化值(據(jù)SUN et al.,1989)。87Rb/86Sr和147Sm/144Nd通過ICP-MS測試的微量元素Rb,Sr,Sm和Nd計算所得,計算公式為87Rb/86Sr = Rb/Sr × 2.981,147Sm/144Nd = Sm/Nd × [0.531 497 + 0.142 521 ×(143Nd/144Nd)s]。(87Sr/86Sr)t=(87Sr/86Sr)s+87Rb/86Sr(eλt-1),(143Nd/144Nd)t=(143Nd/144Nd)s+147Sm/144Nd(eλt-1);εNd= [(143Nd/144Nd)s/(143Nd/144Nd)CHUR-1] ×104,fSm/Nd=(147Sm/144Nd)CHUR-1。(143Nd/144Nd)CHUR=0.512 638,(147Sm/144Nd)CHUR=0.196 7,(143Nd/144Nd)DM=0.513 15,(147Sm/144Nd)DM=0.213 7;λRb=1.42×10-12/年(STEIGER et al.,1977),λSm=6.54×10-12/年(LUGMAIR et al.,1978);二階段模式年齡TDM2的計算見JAHN et al.,1999。
圖6 (a)馬拉山花崗巖的SiO2-K2O圖解、(b)A/NK-A/CNK分類圖解、(c)原始地幔標準化蛛網(wǎng)圖和(d)球粒隕石標準化稀土元素配分模式圖(原始地幔和球粒隕石數(shù)值據(jù)SUN et al.,1989)Fig.6 (a)SiO2-K2O diagram,(b)A/NK-A/CNK diagram,(c)primitive mantle(PM)-normalized trace element spider diagram and (d) chondrite-normalized REE patterns of the Malashan granite
4.1北喜馬拉雅花崗巖的時代
北喜馬拉雅花崗巖的形成時代一直是國際地學界研究的熱點,早期的年代學研究發(fā)現(xiàn)其年齡主要為晚漸新世—早中新世(26~13Ma)(高利娥等,2013;HARRISON et al.,1997;ZHANG et al.,2004;AOYA et al.,2005;LEE et al.,2006;KAWAKAMI et al.,2007;LEE et al.,2007;LARSON et al.,2010;LELOUP et al.,2010;MITSUISHI et al.,2012;YAN et al.,2012;GAO et al.,2013;LEDERER et al.,2013;GAO et al.,2014)。然而,近幾年隨著測年技術(shù)的提升,大量高質(zhì)量的年代學數(shù)據(jù)被相繼報道,如在THS東部,雅拉香波-打拉-確當花崗巖的年齡為44 ~ 43 Ma(戚學祥等,2008;AIKMAN et al.,2008;ZENG et al.,2009);在中部的麻布迦穹窿,淡色花崗巖年齡為10Ma(KALI et al.,2010);在然巴穹窿,LIU等(2014)獲得了迄今為止最小的花崗巖年齡為7.6 Ma。這些年齡數(shù)據(jù)不斷的改寫北喜馬拉雅花崗巖的年齡跨度,隨著更多高精度的年代學數(shù)據(jù)的發(fā)表,北喜馬拉雅花崗巖的時代需要重新評估。馬拉山花崗巖記錄了早期(28.0±0.5)Ma(MSWD=0.8)和后期(18.4±0.3)Ma(MSWD=0.5)兩期深熔作用。這兩期深熔作用均可以與其他穹窿內(nèi)的花崗巖年齡對比,如然巴穹窿中斑狀二云母花崗巖年齡為28.2 Ma(LIU et al.,2014),薩迦穹窿中淡色花崗巖年齡為27.5 Ma(張宏飛等,2004),佩枯錯穹窿中二云母花崗巖年齡為28.2 Ma(GAO et al.,2013)。而(18.4±0.3)Ma(MSWD=0.5)這一年齡更是北喜馬拉雅中新世花崗巖的主要形成期(吳福元等,2015),如THS西部的昌果花崗巖年齡為18.4 Ma(LARSON et al.,2010),扛錯花崗巖年齡為19 Ma(MITSUISHI et al.,2012),佩枯錯二云母花崗巖年齡為19.8Ma(GAO et al.,2013)以及東部的雅拉香波淡色花崗巖年齡為20 Ma(YAN et al.,2012)。近期,吳福元等(2015)在前人已發(fā)表的大量年代學數(shù)據(jù)的基礎(chǔ)上,借鑒前人的劃分方案(HODGES,2000),重新勾畫了喜馬拉雅花崗巖的年代學格架,將其大致劃分為始喜馬拉雅階段(EO-HIMALAYAN;44~26Ma)、新喜馬拉雅階段(NEO-HIMALAYAN;26~13Ma)和后喜馬拉雅階段(POST-HIMALAYAN;13~7 Ma),筆者獲得的馬拉山花崗巖的2個年齡分別屬于上述劃分方案中的始喜馬拉雅階段和新喜馬拉雅階段。
4.2馬拉山花崗巖的源區(qū)和源巖
研究表明,北喜馬拉雅花崗巖可能的源區(qū)包括GHC變質(zhì)沉積巖(DANIEL et al.,1987;HARRIS et al.,1992;HARRIS et al.,1994;HARRISON et al.,1999)、LHS變質(zhì)沉積巖(LE FORt et al.,1987)和THS角閃巖或基性巖等(ZENG et al.,2009;謝克家等,2010)。GUILLOT和LE FORT(1995)認為不同類型的花崗巖來自不同的源區(qū),如二云母花崗巖來自雜砂巖區(qū),而電氣石-石榴石花崗巖更多的與泥質(zhì)巖區(qū)有關(guān)。馬拉山花崗巖主要的礦物組成為石英、鉀長石、白云母和黑云母,且云母的含量較高。在地球化學特征上表現(xiàn)為較高的SiO2和Al2O3含量,相對富集大離子親石元素Rb及放射性生熱元素Th和U,虧損高場強元素Ba、Nb、Sr和Zr,這些特征與殼源S型花崗巖的特征吻合。樣品的A/CNK值大于1.1,顯示強過鋁質(zhì)的特征,強過鋁質(zhì)花崗巖的源區(qū)具有多樣性,但主要的源區(qū)為地殼中的碎屑沉積巖(如泥質(zhì)巖、頁巖、碎屑巖和雜砂巖等)或變質(zhì)沉積巖(SYLVESTER,1998)。實驗巖石學表明,強過鋁質(zhì)花崗巖的CaO與Na2O含量及比值的差異可以反映源區(qū)成分的差異(CHAPPELL et al.,1992),一般富斜長石貧泥質(zhì)的砂質(zhì)源巖形成的熔體的CaO/Na2O值大于0.3,而貧斜長石富泥質(zhì)巖的源巖形成的熔體的CaO/Na2O值小于0.3(PATIO DOUCE etal.,1991;SKJERLIE et al.,1996)。馬拉山花崗巖的CaO/Na2O值為0.44~0.46,均大于0.3,推測其源區(qū)可能以砂質(zhì)巖或相當成分的巖石為主。另外,富集于云母和長石等礦物中的Rb、Ba、Sr及其比值也可以反映源區(qū)的成分性質(zhì),在Rb/Ba-Rb/Sr判別圖解中(圖7a),研究區(qū)花崗巖樣品均落入貧黏土的頁巖成分區(qū),與上述推測的可能的源區(qū)物質(zhì)成分一致。樣品具有較高的(87Sr/86Sr)i值(0.742 522~0.744 097)和較低的εNd(t)值(-14.5~-13.7),Nd同位素二階段虧損地幔模式年齡TDM2為1 994~1 928Ma,表明源區(qū)為古老的大陸地殼。綜上,馬拉山花崗巖的源區(qū)為古老大陸地殼的頁巖區(qū)或相當成分的沉積巖區(qū)。
為進一步限定花崗巖的源巖,將馬拉山花崗巖樣品的Sr、Nd同位素成分與可能的源巖包括GHC變質(zhì)沉積巖、LHS變質(zhì)沉積巖和THS片麻巖,以及部分穹窿中花崗巖樣品進行綜合對比[(87Sr/86Sr)i和εNd(t)值統(tǒng)一以t=18Ma計算],并表示在圖7b中。對比結(jié)果顯示,4件樣品的Sr、Nd同位素成分均落入GHC變質(zhì)沉積巖區(qū)域中,且其Nd同位素二階段虧損地幔模式年齡(1 994~1 928Ma)與GHC變質(zhì)沉積巖的相同,并與GHC內(nèi)碎屑鋯石獲得的2 000Ma的峰值年齡吻合(AHMAD et al.,2000;MILLER et al.,2001;RICHARDS et al.,2005),暗示巖漿來自GHC變質(zhì)沉積巖的部分熔融。綜上所述,認為馬拉山花崗巖的源巖主要為GHC變質(zhì)沉積巖。
4.3馬拉山花崗巖的形成機制
喜馬拉雅造山帶內(nèi)26~13Ma的花崗巖為典型的S型花崗巖,多數(shù)是源巖通過白云母脫水熔融產(chǎn)生的(HARRIS et al.,1995;HARRISON et al.,1997,1998;PATIO ET AL.,1998;ZHANG et al.,2004;KING et al.,2011)。與白云母脫水熔融形成的花崗巖相比,馬拉山花崗巖具有完全不同的地球化學組成,其Sr含量較高,而Rb/Sr值和(87Sr/86Sr)i值相對較低,造成這一差異的可能因素包括熔體形成時部分熔融機制的差異或熔體侵位過程中圍巖的混染作用,但考慮到樣品Sr、Nd同位素相對均一,不隨Rb、Sr含量的變化而變化,因此,可以排除圍巖混染的影響。
1.大喜馬拉雅變質(zhì)沉積巖;2.小喜馬拉雅變質(zhì)沉積巖;3.北喜馬拉雅穹窿片麻巖;4.拉軌崗日淡色花崗巖;5.麻布迦淡色花崗巖;6.然巴淡色花崗巖;7.本次研究圖7 (a)馬拉山花崗巖的Rb/Sr-Rb/Ba(據(jù)SYLYESTER,1998)和(b)(87Sr/86Sr)i - εNd(t)圖Fig.7 (a)Rb/Sr versus Rb/Ba diagram(After SYLVESTER, 1998)and(b)(87Sr/86Sr)i - εNd(t)diagram of the Malashan granite (注:Sr-Nd同位素數(shù)據(jù)來自張宏飛等,2005;AHMAD et al.,2000;MILLER et al.,2001;RICHARDS et al.,2005;ZENG et al.,2011;GUO et al.,2012;WANG et al.,2012)
1.瑪納斯魯?shù)◢弾r;2.拉軌崗日淡色花崗巖;3.定結(jié)淡色花崗巖;4.聶拉木淡色花崗巖;5.洛扎淡色花崗巖;6.苦堆淡色花崗巖;7.薩迦淡色花崗巖;8.亞東淡色花崗巖;9.然巴淡色花崗巖;10.吉隆淡色花崗巖;11.本次研究圖8 (a)馬拉山花崗巖和喜馬拉雅造山帶內(nèi)花崗巖的Sr-(87Sr/86Sr)i和(b)Ba-Rb/Sr圖Fig.8 (a)Sr versus(87Sr/86Sr)i diagram and (b)Ba versus Rb/Sr diagram of the Malashan granite and other granites from Himalayan orogen(注:Sr和87Sr/86Sr數(shù)據(jù)來自張宏飛等,2005;HARRISON et al.,1999;GUO et al.,2012)
4.4構(gòu)造動力學意義
喜馬拉雅造山帶發(fā)育多種類型的花崗巖組合,它們的形成與印度-歐亞大陸碰撞之后的不同的陸內(nèi)構(gòu)造過程相聯(lián)系,反映了不同的構(gòu)造背景和動力學過程。如44~26Ma的二云母花崗巖主要分布于特提斯喜馬拉雅,其結(jié)晶時代與喜馬拉雅變質(zhì)巖進變質(zhì)時代(45~39Ma)(CATLOS et al.,2002;COTTLE et al.,2009)相同,是逆沖增厚條件下地殼深熔作用的產(chǎn)物(ZENG et al.,2005b;AIKMAN et al.,2008)。這些熔體的形成使地殼弱化,并強烈影響著與STDS相關(guān)的中下地殼的伸展拆離,被認為是觸發(fā)STDS啟動的重要因素。另一類為中新世(26~13Ma)的淡色花崗巖(吳福元等,2015),在特提斯喜馬拉雅和大喜馬拉雅均有分布,這類花崗巖的結(jié)晶時代與喜馬拉雅峰期變質(zhì)時代一致,楊曉松等(2001)認為這類淡色花崗巖與碰撞后地殼伸展導致的快速隆升和減壓熔融有關(guān),而HARRIS和MASSEY(1994)則認為其形成于大喜馬拉雅構(gòu)造楔的迅速折返的減壓環(huán)境下,總之,與STDS向北伸展拆離的構(gòu)造活動關(guān)系密切。在13Ma之后,喜馬拉雅地區(qū)還發(fā)育一期花崗巖,其年齡集中于13~7Ma(EDWARDS et al.,1997;WU et al.,1998;KALI et al.,2010;LIU et al.,2014),這類花崗巖的共同特點是發(fā)育在NSTR的下盤,其形成和侵位與NSTR活動有關(guān)(吳福元等,2015)。
馬拉山花崗巖的最終結(jié)晶年齡為(18.4±0.3)Ma(MSWD=0.5),屬于中新世的花崗巖, 僅從年代學考慮,其形成可能與STDS有關(guān)。然而,需要指出的是,上述與NSTR有關(guān)的花崗巖的年齡數(shù)據(jù)(13~7Ma)主要來自THS的東部地區(qū),而在西部地區(qū),相關(guān)裂谷的啟動時間相對較早,為19~17Ma(GARZIONE et al.,2003;MITSUISHI et al.,2012)。馬拉山花崗巖位于南北向的吉隆裂谷中,其年齡與鄰區(qū)的Kung Co裂谷時代(19 Ma,MAYUMI et al.,2012)一致,據(jù)此,筆者更傾向于認為其與NSTR東西向伸展的啟動有關(guān)。
(1)馬拉山花崗巖的發(fā)育記錄了(28.0±0.5)Ma(MSWD=0.8)和(18.1±0.4)Ma(MSWD=1.0)兩期深熔事件;巖石為高鉀鈣堿性過鋁質(zhì)花崗巖,強烈富集大離子親石元素Rb及放射性生熱元素Th和U,虧損高場強元素Ba、Nb、Sr和Zr,輕重稀土元素分餾較強[(La/Yb)N=7.09~19.68],負Eu異常不明顯(δEu=0.80~0.89);具有較高的CaO/Na2O值(0.44~0.46)和Sr含量以及較低的Rb/Sr值(0.90~1.10),(87Sr/86Sr)i和εNd(t)分別為0.742 522~0.744 097和-14.5~-13.7。
(2)馬拉山花崗巖的源區(qū)為貧黏土的頁巖區(qū)或相當成分的沉積巖區(qū),源巖為GHC變質(zhì)沉積巖,是水致白云母部分熔融的產(chǎn)物。
(3)馬拉山花崗巖分布于吉隆裂谷中,其形成可能與NSTR東西向伸展的啟動密切相關(guān)。
致謝:鋯石定年實驗得到天津地質(zhì)礦產(chǎn)研究所耿建珍工程師的指導和幫助,地球化學測試得到中國科學院地質(zhì)與地球物理研究所王芳博士和楊岳衡博士的指導和幫助,地球化學數(shù)據(jù)處理得到合肥工業(yè)大學資源與環(huán)境工程學院王志強博士的指導,在此一并致謝。
高利娥,曾令森,王莉,等.藏南馬拉山高鈣二云母花崗巖的年代學特征及其形成機制[J].巖石學報,2013,29(6):1995-2012.
GAO Li’e,ZENG Lingsen,WANG Li,et al.Age and formation mechanism of the Malashan high-Ca two-mica granite within the Northern Himalayan Gneiss Domes,southern Tibet[J].Acta Petrologica Sinica,2013,29(6):1995-2012.
莫宣學,趙志丹,鄧晉福,等.印度-亞洲大陸主碰撞過程的火山作用響應(yīng)[J].地學前緣,2003,10(3):135-148.
MO Xuanxue,ZHAO Zhidan,DENG Jinfu,et al.Response of volcanism to the India-Asia collision[J].Earth Science Frontiers,2003,10(3):135-148.
戚學祥,曾令森,孟祥金,等.特提斯喜馬拉雅打拉花崗巖的鋯石SHRIMP U-Pb定年及其地質(zhì)意義[J].巖石學報,2008,24(7):1501-1508.
QI Xuexiang,ZENG Lingsen,MENG Xiangjin,et al.Zircon SHRIMP U-Pb dating for Dala granite in the Tethyan Himalaya and its geological implication[J].Acta Petrologica Sinica,2008,24(7):1501-1508.
吳福元,劉志超,劉小馳,等.喜馬拉雅淡色花崗巖[J].巖石學報,2015,31(1):1-36.
WU Fuyuan,LIU Zhichao,LIU Xiaochi,et al.Himalayan leucogranite:Petrogenesis and implications to orogenesis and plateau uplift[J].Acta Petrologica Sinica,2015,31(1):1-36.
謝克家,曾令森,劉靜,等.西藏南部晚始新世打拉埃達克質(zhì)花崗巖及其構(gòu)造動力學意義[J].巖石學報,2010,26(4):1016-1026.
XIE Kejia,ZENG Lingsen,LIU Jing,et al.Late-Eocene Dala adakitic granite,southern Tibet and geological implications[J].Acta Petrologica Sinica,2010,26(4):1016-1026.
楊曉松,金振民,Huenges E,等.高喜馬拉雅黑云斜長片麻巖脫水熔融實驗:對青藏高原地殼深熔的啟示[J].科學通報,2001,46(3):246-250.YANG Xiaosong,JIN Zhenmin,HUENGES E,et al.Dehydration melting experiments of the biotite-plagioclase gneiss from the Greater Himalaya:implications for crustal anatexis in Tibetan plateau[J].Chinese Science Bulletin,2001,46(3):246-250.張宏飛,HARRIS N,PARRISH R,等.北喜馬拉雅淡色花崗巖地球化學:區(qū)域?qū)Ρ?、巖石成因及構(gòu)造意義[J].地球科學,2005,30(3):275-288.ZHANG Hongfei,HARRIS N,PARRISH R,et al.Geochemistry of North Himalayan leucogranites:Regional comparison,petrogenesis and tectonic implications[J].Earth Science,2005,30(3):275-288.
張進江.北喜馬拉雅及藏南伸展構(gòu)造綜述[J].地質(zhì)通報,2007,26(6):639-649.
ZHANG Jinjiang.A review on the extensional structures in the northern Himalaya and southernTibet[J].Geological Bulletin of China,2007,26(6):639-649.
AHMAD T,HARRIS N,BICKLE M,et al.Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series,Garhwal Himalaya[J].Geological Society of American Bulletin,2000,112(3):467-477.
AIKMAN AB,HARRISON TM,DING L.Evidence for early(>44Ma)Himalayan crustal thickening,Tethyan Himalaya,southern Tibet[J].Earth and Planetary Science Letters,2008,274(1/2):14-23.
ANNEN C,SCAILLET B,SPARKS R S J.Thermal constraints on the emplacement rate of a large intrusive complex:the Manaslu leucogranite,Nepal Himalaya[J]. Journal of Petrology,2006,47(1):71-95.
AOYA M,WALLIS S R,KAWAKAMI T,et al.The Malashan metamorphic complex in southern Tibet:Dominantly top-to-the north deformation and intrusive origin of its associated granites[J].Himalayan Journal of Science,2004,2(4):92-93.
AOYA M,WALLIS S R,TERADA K,et al.North-south extension in the Tibetan crust triggered by granite emplacement[J].Geology,2005,33(11):853-856.
BECK R A,BURBANK D W,SERCOMBE W J,et al.Stratigraphic evidence for an early collision between Northwest India and Asia[J].Nature,1995,373:55-58.
BLACK L P,KAMO S L,ALLEN C M,et al.TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology[J].Chemical Geology,2003,200(1/2):155-170.
BROOKFIELD M E.The Himalayan passive margin from Precambrian to Cretaceous[J].Sedimentary Geology,1993,84(1/2/3/4):1-35.
CATLOS E J,HARRISON T M,MANNING C E,et al.Records of the evolution of the Himalayan orogeny from in situ Th-Pb ion microprobe dating of monazite:eastern Nepal and western Garhwal[J].Journal of Asian Earth Science,2002,20(5):459-479.
CHAMBERS J,PARRISH R R,ARGLES T,et al.A short-duration pulse of ductile normal shear on the outer South Tibetan detachment in Bhutan:Alternating channel flow and critical taper mechanics of the eastern Himalaya[J].Tectonics,2011,30(2).doi:10.1029/2010TC002784.
CHAPPELL B W,WHITE A J R.I and S-type granites in the Lachlan fold belt[J].GSA Special Papers:1992, 272:1-26.
CHEN F,SIEBEL W,SATIR M,et al.Geochronology of the Karadere basement(NW Turkey)and implications for the geological evolution of the Istanbul zone[J]. International Journal of Earth Sciences,2002,91:469-481.
COLEMAN M E.U-Pb constraints on Oligocene-Miocene deformation and anatexis within the Central Himalaya,Marsyandi valley,Nepal[J].American Journal of Science,1998,298(7):553-571.
COPELAND P,HARRISON T M,LE FORT P.Age and cooling history of the Manaslu granite-implications for Himalayan tectonics[J].Journal of Volcanology and Geothermal Research,1990,44(1/2):33-50.
COTTLE JM,JESSUP MJ,NEWELL DL,et al.Structural insights into the early stages of exhumation along an orogen-scale detachment:The South Tibetan Detachment system,Dzakaa Chu section,eastern Himalaya[J]. Journal of Structural Geology,2007,29(11):1781-1797.COTTLE J M,JESSUP M J,NEWELL D L,et al.Geochronology of granulitized eclogite from the Ama Drime Massif:Implications for the tectonic evolution of the South Tibetan Himalaya[J].Tectonics,2009,28,TC1002.doi:10.1029/2008TC002256.
DANIEL C,VIDAL P,F(xiàn)ERNANDEZ A,et al.Isotopic study of the Manaslu granite(Himalaya,Nepal):Inferences of the age and source of Himalayan leucogranites[J]. Contributions to Mineralogy and Petrology,1987,96(1):78-92.DAVIDSON C,GRUJIC DE,HOLLISTER LS,et al.Metamorphic reactions related to decompression and synkinematic intrusion of leucogranite,High Himalayan Crystallines,Bhutan[J]. Journal of Metamorphic Geology,1997,15(5):593-612.
EDWARDS M A,HARRISON T M.When did the roof collapse?Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite[J].Geology,1997,25(6):543-546.
GAO LE,ZENG L S.Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet[J].Geochimica et Cosmochimica Acta,2014,130:136-155.
GAO L E,ZENG L S,HOU K J,et al.Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan Gneiss Dome,Southern Tibet[J]. Chinese Science Bulletin,2013,58(28/29):3546-3563.
GARZIONE C N,DECELLES P G,HODKINSON D G,et al.East-west extension and Miocene environmental change in the southern Tibetan Plateau,Thakkhola Garben,central Nepal[J].Geological Society of America Bulletin,2003,115(1):3-20.
GODIN L,GRUJIC D,LAW R D,et al.Channel flow,ductile extrusion and exhumation in continental collision zones:An introduction[J].Geological Society Special Publication, 2006,268(1):1-23.
GUILLOT S,LE FORT P.Geochemical constraints on the bimodal origin of High Himalayan leucogranites[J]. Lithos,1995,35(3/4):221-234.
GUO ZF,WILSON M.The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting[J].Gondwana Research,2012,22(2):360-376.
HARRIS N,INGER S.Trace element modeling of pelite-derived granites[J].Contributions to Mineralogy and Petrology,1992,110(1):46-56.
HARRIS N,MASSEY J.Decompression and anatexis of Himalayan metapelites[J].Tectonics,1994,13(6):1537-1546.
HARRIS N,AYRES M,MASSEY J.Geochemistry of granitic melts produced during the incongruent melting of muscovite:Implications for the extraction of Himalayan leucogranite magma[J].Journal of Geophysical Research,1995,100(B8):15767-15777.
HARRISON T M,COPELAND P,KIDD W S F,et al.Activation of the Nyainquentanghla Shear Zone:Implications for uplift of the southern Tibetan Plateau[J]. Tectonics,1995a,14(3):658-676.
HARRISON T M,GROVE M,LOVERA O M,et al.A model for the origin of Himalayan anatexis and inverted metamorphism[J].Journal of Geophysical Research,1998,103(B11):27017-27032.HARRISON T M,GROVE M,MCKEEGAN K D,et al.Origin and episodic emplacement of the Manaslu intrusive complex,central Himalaya[J].Journal of Petrology,1999,40(1):3-19.
HARRISON T M,LOVERA OM,GROVE M.New insights into the origin of two contrasting Himalayan granite belts[J].Geology,1997,25(10):899-902.HARRISON T M,MCKEEGAN K D,LE FORT P.Detection of inherited monazite in the Manaslu leukogranite by208Pb/232Th ion microprobe dating-crystallization age and tectonic implication[J].Earth and Planetary Science Letters,1995b,133(3/4):271-282.
HODGES K V.Tectonics of the Himalaya and southern Tibet from two perspectives[J].Geological Society of America Bulletin,2000,112(3):324-350.
INGER S,HARRIS N.Geochemical constraints on leucogranite magmatism in the Langtang Valley,Nepal Himalaya[J].Journal of Petrology,1993,34(2):345-368.
JACKSON S E,PEARSON N J,GRIFFIN W L,et al.The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J].Chemical Geology,2004,211(1/2):47-69.
JAHN B M,WU F Y,LO C H,et al.Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex,central China[J].Chemistry Geology,1999,157(1/2):119-146.
KALI E,LELOUP P H,ARNAUD N,et al.Exhumation history of the deepest central Himalayan rocks (Ama Drime range):Key pressure-temperature deformation-time constraints on orogenic model[J].Tectonics,2010,29(2):TC2014. Doi:10.1029/2009TC002551.
KAWAKAMI T,AOYA M,WALLIS S R,et al.Contact metamorphism in the Malashan dome,North Himalayan gneiss domes,southern Tibet:An example of shallow extensional tectonics in the Tethys Himalaya[J]. Journal of Metamorphic Geology,2007,25(8):831-853.KELLETT D A,GRUJIC D,WARREN C,et al.Metamorphic history of a syn-convergent orogen-parallel detachment:The South Tibetan detachment system,Bhutan Himalaya[J]. Journal of Metamorphic Geology,2010,28(8):785-808.
KING J,HARRIS N,ARGLES T,et al.Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet[J].Geological Society of America Bulletin,2011,123(1/2):218-239.
KNESEL K M,DAVIDSON J P.Insights into collisional magmatism from isotopic fingerprints of melting reactions[J].Science,2002,296(5576):2206-2208.
LARSON K P,GODIN L,DAVIS J D,et al.Out-of-sequence deformation and expansion of the Himalayan orogenic wedge:Insight from the Changgo culmination,south central Tibet[J].Tectonics,2010,29(4):1-30.
LE FORT.Himalayas,the collided range:present knowledge of the continental arc[J].American Journal of Science,1975,275:1-44.LEDERER G W,COTTLE J M,JESSUP M J,et al.Timescales of partial melting in the Himalayan middle crust:Insightfrom the Leo Pargil dome,northwest India[J].Contributions to Mineralogy and Petrology,2013,166(5):1415-1441.
LEE J H,WHITEHOUSE M J.Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircon ages[J].Geology,2007,35(1):45-48.
LEE J H,MCCLELLAND W,WANG Y,et al.Oligocene-Miocene crustal flow southern Tibet:Geochronology of Mabja Dome[J].Geological Society of London,Special Publications,2006,268:445-469.
LEE J,DINKLAGE B R,WANG W S,et al.Evolution of the Kangmar Dome,southern Tibet:Structural,petrologic,and thermochronologic constrains[J].Tectonics,2000,19(5):872-895.
LELOUP PH,MAHEO G,ARNAUD N,et al.The South Tibet detachment shear zone in the Dinggye area:Time constraints on extrusion models of the Himalayas[J]. Earth and Planetary Science Letters,2010,292(1/2):1-16.
LIU X B,LIU X H,LELOUP P H,et al.Ductile deformation within Upper Himalaya Crystalline Sequence and geological implications,in Nyalam area,Southern Tibet[J]. Chinese Science Bulletin,2012,57(26):3469-3481.
LIU Y S,GAO S,HU Z C,et al.Continental and oceanic crust recycling-induced melt-peridotite interaction in the Trans-North China Orogen U-Pb dating,Hf isotopes and trace elements in zircon from mantle xenoliths[J]. Journal of Petrology,2009,51(1/2):537-571.
LIU Z C,WU F Y,JI W Q,et al.Petrogenesis ofthe Ramba leucogranite in the Tethyan Himalaya and constraints onthe channel flow model[J].Lithos,2014,208/209:118-136.
LUDWIG K R.Users manual forIsoplot/Ex version 3.00:A geochronological took kit for Microsoft Excel version 3.00[M].Berkeley:Geochronology Centre,Special Publication,2003.
LUGMAIR G W,HARTI K.Lunar initial143Nd/144Nd: differential evolution of the lunar crust and mantle[J]. Earth and Planetary Science Letters,1978,39(3):349-357.
MITSUISHI M,SIMON R W,MUTSUKI A,et al.E-W extension at 19 Ma in the Kung Co area,S.Tibet:Evidence for contemporaneous E-W and N-S extension in the Himalayan orogeny[J].Earth and Planetary Science Letters,2012,325/326:10-20.
MILLER C,TH?NI M,F(xiàn)RANK W,et al.The early Paleozoic magmatic event in the Northwest Himalaya,India:source,tectonic setting and age of emplacement[J]. Geological Magazine,2001,138(3):237-251.
NABELEK P I,LIU M.Petrologic and thermal constraints on the origin of leucogranites in collisional orogens[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences,2004,95:73-85.
RAGE J C,CAPPETTA H,HARTENBERGER J L,et al.Collision ages[J].Nature,1995,375:286.
RICHARDS A,ARGLES T,HARRIS N,et al.Himalayan architecture constrained by isotopic tracers from clastic sediments[J].Earth and Planetary Science Letters,2005,236(3/4):773-796.
RICHARDS A,ARGLES T,HARRIS N,et al.Himalayan architecture constrained by isotopic tracers from clastic sediments[J].Earth and Planetary Science Letters,2005,236(3/4):773-796.
ROWLEY D B.Age of initiation collision between India and Asia:Review of the stratigraphic data[J].Earth and Planetary Science Letters,1996,145:1-13.
SACHAN H K,KOHN M J,SAXENA A,et al.The Malarileucogranite,Garhwal Himalaya,northern India:Chemistry,age,and tectonic implications[J].Geological Society of America Bulletin,2010,122(11/12):1865-1876.
SEARLE M P,GODIN L.The South Tibetan Detachment system and the Manaslu leucogranite:A structural re-interpretation and restoration of the Annapurna Manaslu Himalaya,Nepal[J].Journal of Geology,2003,111(5):505-523.
SEARLE M P,PARRISH R R,HODGES K V.Shisha Pangmaleucogranite,south Tibetan Himalaya:Field relations,geochemistry,age,origin,and emplacement[J]. Journal of Geology,1997,105(5):295-317.
SEARLE M P,SIMPSON R L,LAW R D,et al.The structural geometry, metamorphic and magmatic evolution of the Everest massif,High Himalaya of Nepal-South Tibet[J].Journal of Geological Society of London,2003,160(3):345-366.
SKJERLIE K P,JOHNSTON A D.Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phase: implications for anatexis in the deep to very deep continental crust and active continental margins[J].Journal of Petrology,1996,37(3):661-691.
SUN S S,MCDONOUGH W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and process[J].Geological Society of London Special Publication,1989,42(1):313-345.
SYLVESTER P J.Post-collisional strongly peraluminous granites[J].Lithos,1998,45(1/2/3/4):29-44.
WU C,NELSON K D,WORTMAN G,et al.Yadong cross structure and South Tibetan Detachment in the east central Himalaya(89°-90°E)[J].Tectonics,1998,17(1):28-45.
YAN D P,ZHOU M F,ROBINSON P T,et al.Constraining the mid-crustal channel flow beneath the Tibetan Plateau:Data from the Nielaxiongbo gneiss dome,SE Tibet[J].International Geology Review,2012,54(6):615-632.
YANG X Y,ZHANG J J,QI G W,et al.Structure and deformation around the Gyirong basin,north Himalaya,and onset of the south Tibetan detachment[J].Science in China Series D:Earth Sciences,2009,52(8):1046-1058.
YIN A.Cenozoic tectonic evolution of the Himalayan orogeny as constrained by along-strike variation of structural geometry,exhumation history,and foreland sedimentation[J].Earth-Science Reviews,2006,76(1/2):1-131.
ZENG L S,ASIMOW P,SALEEBY J B.Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source[J].Geochimica et Cosmochimica Acta,2005a,69(4):3671-3682.
ZENG L S,GAO L E,XIE K J,et al.Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickening lower continental crust[J].Earth and Planetary Science Letters,2011,303(3/4):251-266.
ZENG L S,LIU J,GAO L E,et al.Early Oligocene anatexis in the Yardoi gneiss dome,southern Tibet and geological implications[J].Chinese Science Bulletin,2009,54(1):104-112.
ZENG L S,SALEEBY J B,ASIMOW P.Nd isotope disequilibrium during crustal anatexis:A record from the Goat Ranch migmatite complex,southern Sierra Nevada batholith,California[J].Geology,2005b,33(1):53-56.
ZHANG H F,HARRIS N,PARRISH R,et al.Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform[J].Earth and Planetary Science Letters,2004,228(1/2):195-212.
ZHANG J J,SANTOSH M,WANG X X,et al.Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research,2012,21(4):939-960.
Geochronology, Geochemistry and Formation Mechanism of Malashan Granite in Tethyan Himalaya
WANG Xiaoxian1,2,ZHANG Jinjiang2,YANG Xiongying2
(1. Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration,Beijing 100085,China;2. Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education,School of Earth and Space Sciences, Peking University, Beijing 100871, China)
The Malashan granite was exposed in the west of the Tethyan Himalayan sedimentary sequence (THS).It is characterized by gneissic texture and the assemblage of quartz, K-feldspar, muscovite and biotite.LA-MC-ICP-MS zircon U-Pb dating results indicated that the granite recorded two episodes of anatexis at (28.0 ±0.5) Ma and (18.4 ±0.3) Ma, respectively.The age of (18.4 ±0.3) Ma represents the final crystallized time of Malashan granite.Geochemical data show that these samples are characterized by high SiO2(72.36%-72.51%), Al2O3(15.22%-15.37%), CaO (1.64%-1.66%) and high value of K2O/Na2O (0.97-1.05) and A/CNK (1.15-1.20), and the enrichment in Rb, Th, U and K, the depletion in Ba, Nb, Sr and Zr, weak negative Eu anomalies (δEu= 0.80-0.89), and strong fractionation between LREE and HREE((La/Yb)N= 7.09-19.68).These features suggest that they are high potassium calc-alkaline and peraluminous granites.The relatively low Rb/Sr ratios(0.90-1.10)and high CaO/Na2O ratios(0.44-0.46)imply that the magma source was probably psammitolite.The (87Sr/86Sr)I(0.742 522 -0.744 097) and εNd(t) (-14.5- -13.7) can compare well with those of the metasedimentary rocks in the Greater Himalaya Crystalline complex (GHC), so these granite wasgenerated from partial melting of the GHC metasedimentary rocks.The features of relatively low (87Sr/86Sr)iand high Sr content,and the constant Rb/Sr ratios relative to large variations in Ba concentrations approve that, the Malashangranite wasderived from fluxed melting of the GHC metasedimentary rocks,possibly associated tightly with the E-W extension along the North-South trend rift system (NSTR).
Malashan granite; geochronology; geochemistry; formation mechanism; Tethyan Himalaya
2015-02-15;
2015-07-07
中央級公益性科研院所基本科研業(yè)務(wù)專項(ZDJ2014-09)和國家自然科學基金“藏南佩枯錯片麻巖穹窿變形-變質(zhì)作用及形成演化研究”(41402175)聯(lián)合資助
王曉先(1986-),男,博士,助理研究員,構(gòu)造地質(zhì)學專業(yè),主要從事青藏高原地質(zhì)研究。E-mail:xiaoxianwang@pku.edu.cn
P597
A
1009-6248(2015)04-0070-17