李青松,周生輝,李國(guó)新,陳國(guó)元,馬曉雁,高乃云(.廈門理工學(xué)院水資源環(huán)境研究所,福建 廈門602;2.福建師范大學(xué)環(huán)境科學(xué)與工程學(xué)院,福建 福州 507;.浙江工業(yè)大學(xué)建筑工程學(xué)院,浙江 杭州00;.同濟(jì)大學(xué)污染控制與資源化研究國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200092)
超聲波與氯胺聯(lián)用工藝去除水中三氯生的研究
李青松1*,周生輝1,2,李國(guó)新1,陳國(guó)元1,馬曉雁3,高乃云4(1.廈門理工學(xué)院水資源環(huán)境研究所,福建 廈門361024;2.福建師范大學(xué)環(huán)境科學(xué)與工程學(xué)院,福建 福州 350117;3.浙江工業(yè)大學(xué)建筑工程學(xué)院,浙江 杭州310014;4.同濟(jì)大學(xué)污染控制與資源化研究國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200092)
采用超聲與氯胺聯(lián)用工藝對(duì)水中三氯生(TCS)的去除進(jìn)行了研究,考察了超聲功率、氯胺投加量、TCS初始濃度、pH值和自由基捕獲劑等因素對(duì)TCS去除的影響,鑒定識(shí)別了降解產(chǎn)物并探討聯(lián)用工藝降解TCS的機(jī)理.結(jié)果表明,超聲和氯胺聯(lián)用去除TCS具有協(xié)同效應(yīng),可以有效地去除TCS.超聲波功率為600W,TCS濃度為200μg/L,氯胺濃度為5mg/L時(shí),120min后TCS去除率可達(dá)90.8%.聯(lián)用工藝中增加超聲功率可以提高TCS的去除,TCS的去除率隨氯胺濃度升高呈現(xiàn)出先升高后降低的趨勢(shì),隨著初始濃度的升高而下降,堿性環(huán)境有利于TCS的去除,pH值為10.7時(shí),TCS的去除可達(dá)100%,自由基捕獲劑叔丁醇TBA對(duì)TCS的去除有抑制作用. GC/MS掃描分析表明2,4-二氯苯酚(2,4-DCP)為TCS的降解產(chǎn)物.
三氯生;超聲;氯胺;降解產(chǎn)物
三氯生(2,4,4'-三氯-2'-羥基二苯醚,TCS)是藥品和個(gè)人護(hù)理用品(PPCPs)中一種典型的廣譜抗菌消毒劑,廣泛添加在個(gè)人護(hù)理用品、藥物制劑及紡織品中.環(huán)境中低濃度TCS曾被認(rèn)為對(duì)人體和環(huán)境是高度安全的,長(zhǎng)期以來其環(huán)境效應(yīng)被人們忽視[1-2].研究表明[3-5]TCS能干擾人的內(nèi)分泌系統(tǒng),一定條件下可轉(zhuǎn)化為氯酚、2,8-二氯-p-二噁英(2,8-Cl2DD)等毒性更強(qiáng)的持久性污染物.近年來水體中TCS濃度呈上升趨勢(shì),嚴(yán)重威脅到水體生物安全及人體健康[6-9].
研究者采用氧化和吸附等技術(shù)對(duì)TCS的去除進(jìn)行了研究[10-12].超聲波技術(shù)在去除水中難降解污染物方面效果顯著[13-16],但超聲利用率低、能耗大,為強(qiáng)化污染物的去除效果,超聲與其他水處理技術(shù)聯(lián)用成為最近關(guān)注的熱點(diǎn)[17-21].氯胺是一種相對(duì)穩(wěn)定的氧化劑,同時(shí)也是一種綠色消毒劑,與自由氯消毒法相比,其消毒過程中較少消毒副產(chǎn)物產(chǎn)生,常用來替代自由氯消毒,然而其氧化性較弱,難以去除內(nèi)分泌干擾有機(jī)物與藥品成分有機(jī)物[22].為了克服這一缺點(diǎn),本文將氯胺與超聲波技術(shù)結(jié)合起來,強(qiáng)化消毒效果的同時(shí)提高降解水中有機(jī)物的能力.
本文利用超聲波與氯胺聯(lián)用工藝去除水中TCS,研究超聲波功率、氯胺濃度、pH值、自由基捕獲劑及TCS初始濃度對(duì)去除的影響.
1.1試劑與儀器
TCS(德國(guó)Dr.Ehrenstorfer公司,純度>99.5%);乙腈(HPLC級(jí),德國(guó) Merck);叔丁醇(TBA)、NH4Cl、KH2PO4、K2HPO4、NaClO和Na2S2O3等均為化學(xué)純;試驗(yàn)用水采用Milli-Q超純水(18.2MΩ).
LC-20A高效液相色譜儀(Shimadzu,日本),自動(dòng)進(jìn)樣器(SIL-20A),檢測(cè)器(SPD-M20A);UV2550 (Shimadzu,日本);GCMS-QP2010ultra (Shimadzu,日本),GC/MS自動(dòng)進(jìn)樣器(AOC-5000,日本島津),色譜柱(Rxi?-5ms:30m×0.32mm× 0.25μm,日本島津).pH儀 (Eutevch,美國(guó));便攜式水質(zhì)分析儀(Dr2800,哈希);超聲波處理器(FS-1200N,上超生析超聲波儀器有限公司),工作頻率為20kHz.
1.2試驗(yàn)方法
氯胺配制以 KH2PO4與 K2HPO4為緩沖溶液,pH值為7.8~8.0,NaClO與NH4Cl配制而成,其中Cl2:N=4:1.稱取10.0mgTCS,配制成100mg/L的標(biāo)準(zhǔn)儲(chǔ)備液(用乙腈作為助溶劑),使用時(shí)稀釋至所需的濃度.
試驗(yàn)在完全混合間歇式條件下運(yùn)行:TCS溶液置于反應(yīng)器內(nèi),并通過管路5、7和8混合循環(huán),反應(yīng)器外有冷卻套管,反應(yīng)溫度控制在室溫,反應(yīng)器內(nèi)加入一定濃度的TCS溶液,再加入一定量的氯胺溶液,啟動(dòng)水泵完全混合 2min后,開啟超聲(探頭深入液面 3cm)同時(shí)開啟循環(huán)冷卻水,并開始計(jì)時(shí),設(shè)定反應(yīng)時(shí)間后取樣,水樣滴加過量的Na2S2O3溶液抑制反應(yīng)繼續(xù)進(jìn)行,樣品過0.45 μm玻璃纖維膜后進(jìn)行水質(zhì)分析.反應(yīng)裝置見圖1.
圖1 試驗(yàn)工藝流程示意Fig.4 Schematic diagram of the reactor
1.3分析方法
試驗(yàn)中采用HPLC和GC/MS對(duì)TCS及其降解產(chǎn)物進(jìn)行鑒定分析.
HPLC條件:色譜柱為Insertsil C18 (250mm×4.6mm, 5μm),流動(dòng)相為乙腈/水-70/30 (V:V),流速為0.8mL/min,檢測(cè)波長(zhǎng)λ=230nm,進(jìn)樣體積10μL,S/N大于3.
GC/MS條件:載氣為高純氦氣,90kPa;進(jìn)樣量1μL;無分流進(jìn)樣方式;進(jìn)樣口溫度為 280℃;爐溫控制:初始溫度為75℃,保留1min,以10℃/min升溫至150℃,持續(xù)5min,然后以15℃/min升溫至280℃,持續(xù)3min;MS離子化溫度為250℃;接口溫度280℃;采用scan掃描:m/z起始為50,終止為600,掃描時(shí)間為4至24min.
2.1氯胺、超聲、超聲/氯胺聯(lián)用降解TCS
超聲反應(yīng)條件為超聲功率600W,頻率20kHz;超聲和氯胺反應(yīng)條件為超聲功率 600W,頻率20kHz,氯胺投加量為 3mg/L,TCS初始質(zhì)量濃度為200μg/L,TCS的降解效果見圖2.
圖2 氯胺、超聲及超聲/氯胺工藝降解TCS的效果Fig.4 Degradation efficiencies of TCS by chloramine, ultrasound and ultrasound/chloramine
由圖2可知,氯胺氧化30min后,TCS的去除率為13.40%,60min后TCS的去除為15.08%,此后去除隨時(shí)間幾乎沒有變化,單獨(dú)氯胺去除 TCS效果不佳.超聲作用60min和120min后TCS的去除率分別為 47.07%和 50.02%,超聲比氯胺有更好的去除效果.超聲/氯胺工藝可以顯著提高TCS的去除,TCS去除隨反應(yīng)的進(jìn)行而逐漸增加,60min時(shí)TCS去除率為66.61%,120min時(shí)去除率可達(dá)83.53%.
氯胺對(duì)于有機(jī)物的去除主要是氧化去除,但由于較低的氧化電位,單獨(dú)氯胺無法有效去除 TCS.超聲降解有機(jī)污染物機(jī)理主要為聲空化理論,超聲作用時(shí)水中的微小氣泡核經(jīng)歷振蕩、生長(zhǎng)、收縮、崩潰等一系列動(dòng)力學(xué)過程,產(chǎn)生瞬時(shí)的高溫高壓,同時(shí)生成氧化性極強(qiáng)的羥基自由基,使得水中的污染物在高溫?zé)峤狻⒆杂苫趸?yīng)、機(jī)械效應(yīng)和超臨界氧化效應(yīng)的作用下去除[23-24].
超聲工藝中,60min和120min時(shí)TCS去除率均有增加,試驗(yàn)中超聲對(duì)TCS的去除要好于氯胺的去除,主要原因可能是超聲產(chǎn)生的自由基氧化還原電位更高,可以更有效的去除TCS.投加一定量的氯胺溶液能顯著增加TCS的去除,反應(yīng)時(shí)間60,120min時(shí),TCS的去除與二者單獨(dú)作用相加相比,去除分別增加了 7.17%和 26.14%,超聲/氯胺工藝去除TCS具有協(xié)同增效效應(yīng).
考察了超聲作用下氯胺的變化,濃度為3mg/L的氯胺溶液超聲 120min后濃度僅降低9.8%,表明超聲波作用下氯胺相對(duì)穩(wěn)定.超聲/氯胺工藝具有協(xié)同效應(yīng)可能是因?yàn)槌曌饔孟驴栈荼罎r(shí)除產(chǎn)生羥基自由基外,還有超聲產(chǎn)生的射流作用導(dǎo)致分子碰撞加劇,增大了溶液分子接觸反應(yīng)的機(jī)率.
2.2超聲/氯胺聯(lián)用降解TCS影響因素
2.2.1超聲波功率對(duì)TCS去除的影響 TCS濃度為 200μg/L,氯胺投加量設(shè)定為 3mg/L,調(diào)節(jié)超聲功率,考察超聲功率對(duì) TCS去除的影響,結(jié)果見圖3.由圖3可知,超聲波功率為240W時(shí),反應(yīng)120min后TCS的去除率為55.5%,而當(dāng)超聲波功率分別提高到360,480,600W時(shí),TCS的去除率增加為65.7%、80.2%、83.5%.
試驗(yàn)表明,超聲波功率對(duì)TCS的去除起促進(jìn)作用, TCS的去除隨著超聲功率的增加而升高,提高超聲波功率能增加TCS的去除.
由于在超聲波作用下,水溶液發(fā)生空化效應(yīng)促使水分子分解成羥基自由基(?OH)和氫原子(?H)[25-26],其反應(yīng)可以表達(dá)為式(1).
圖3 超聲波功率對(duì)TCS去除的影響Fig.4 Effect of ultrasonic power on TCS removal
增加超聲波功率使溶液中產(chǎn)生更多的空化泡,增強(qiáng)了空化效應(yīng),提高了超聲波分解水分子的速度,從而增加了溶液中?OH濃度,并加快了傳質(zhì)過程,提高了TCS的去除率.lnc與反應(yīng)時(shí)間t之間呈線性關(guān)系,TCS降解曲線呈現(xiàn)出一級(jí)反應(yīng)的特征,參數(shù)見表1.實(shí)驗(yàn)范圍內(nèi),一級(jí)反應(yīng)速率常數(shù)由0.104min-1增加到600W時(shí)的0.228min-1.
表1 不同功率下聯(lián)合工藝降解TCS的一級(jí)動(dòng)力學(xué)擬合Table 1 First-order kinetics model of TCS degradation in ultrasound/chloramine processes under different powers
2.3氯胺濃度對(duì)TCS去除的影響
TCS初始濃度為200μg/L時(shí),超聲波功率設(shè)定為 600W,氯胺的投加量分別為 0,1.25,3,5,7.5, 10mg/L,考察氯胺濃度對(duì) TCS去除的影響,結(jié)果見圖4.由圖4可知,TCS的去除率隨氯胺濃度升高呈現(xiàn)出先升高后降低的趨勢(shì).單獨(dú)超聲120min 時(shí)TCS去除率僅為50%.當(dāng)投加1.25mg/L的氯胺溶液后,TCS去除率升高為71%.增加氯胺濃度至5mg/L時(shí),TCS的去除率增加為90.8%.繼續(xù)增加氯胺濃度至10mg/L, TCS的去除率反而降低為80.4%,TCS的去除率隨氯胺濃度升高呈現(xiàn)出先升高后降低的趨勢(shì).
圖4 氯胺濃度對(duì)TCS去除的影響Fig.4 Effect of chloramine concentrations on TCS removal
Wu等[22]研究發(fā)現(xiàn),氯胺相對(duì)穩(wěn)定,難以氧化降解TCS.我們的前期研究也證明氯胺對(duì)TCS基本沒有去除作用.但是在超聲波作用下,氯胺與超聲波發(fā)生協(xié)同作用,顯著提高了 TCS的去除.這可能是超聲波條件下,不僅可以產(chǎn)生自由基,而且聲空化效應(yīng)的機(jī)械作用會(huì)增加溶液中的TCS與氯胺的有效碰撞次數(shù),提高了 TCS的去除率.然而繼續(xù)增加氯胺的濃度時(shí), TCS的去除反而降低,這可能是因?yàn)槁劝窛舛鹊脑黾訉?dǎo)致溶液中Cl-離子濃度相應(yīng)地增加,而Cl-容易捕獲?OH生成氧化性較低的C1,進(jìn)而降低TCS的去除.
2.4TCS初始濃度對(duì)TCS去除的影響
超聲功率為600W時(shí),氯胺溶液的濃度設(shè)定為3mg/L,改變TCS的初始濃度,考察初始濃度對(duì)TCS去除率的影響,結(jié)果見圖5.由圖5可知,TCS初始濃度為 108, 212, 323, 527μg/L時(shí),反應(yīng)120min后TCS去除率分別為95.4%、83.5%、74.4%和62%.試驗(yàn)表明TCS初始濃度對(duì)聯(lián)用工藝的去除效果影響較大,TCS去除率隨著初始濃度的升高而下降.這是因?yàn)樵诔暪β屎吐劝窛舛纫欢ǖ那闆r下,發(fā)生空化反應(yīng)的能力是相同的,濃度越高,
圖5 初始濃度對(duì)TCS去除的影響Fig.4 Effect of initial concentrations on TCS removal
單位濃度TCS還原的羥基自由基就越少,所以導(dǎo)致TCS去除率隨著濃度的增高而降低.不同濃度時(shí)TCS降解曲線呈現(xiàn)出一級(jí)反應(yīng)的特征,其一級(jí)反應(yīng)動(dòng)力學(xué)擬合曲線參數(shù)見表2.
表2 TCS不同初始濃度下聯(lián)合工藝降解TCS的一級(jí)動(dòng)力學(xué)擬合Table 1 First-order kinetics model of TCS degradation in ultrasound/chloramine processes at different concentrations
2.5pH值對(duì)TCS去除的影響
試驗(yàn)中TCS的濃度為200μg/L,超聲波功率為600W,投加3mg/L的氯胺溶液,調(diào)整溶液pH值,考察溶液 pH值對(duì)去除率的影響,結(jié)果見圖6.由圖6可知,實(shí)驗(yàn)范圍內(nèi)TCS去除率隨pH值升高而升高.pH值為6.7時(shí),TCS去除率為72.0%.pH值為7.2、8.7及9.4時(shí),TCS去除率分別為76.9%、83.5%、92.4%.當(dāng)pH值為10.7時(shí), TCS的去除最高,此時(shí)TCS的濃度已低于檢測(cè)限.
圖6 pH值對(duì)TCS去除的影響Fig.4 Effect of pH on TCS removal
一方面較高的溶液pH值有利于氯胺的反應(yīng)持久性,提高其氧化性能[27];另一方面 pH 值可以改變污染物的存在形態(tài)和親疏水性,影響到超聲過程中其在空化泡和溶液中的分布和去除途徑. TCS為疏水性、弱揮發(fā)性物質(zhì),當(dāng)溶液呈弱堿性時(shí),TCS一部分以分子形式存在(TCS的pKa= 7.9)[28],隨著酸性的增強(qiáng),以分子形式存在的 TCS就越多,而分子形式的 TCS疏水性較強(qiáng),傾向于向空化泡內(nèi)移動(dòng)進(jìn)行熱解反應(yīng),強(qiáng)堿環(huán)境中 TCS以負(fù)離子形式存在,傾向于在空化泡氣液界面或進(jìn)入本體溶液中同空化效應(yīng)產(chǎn)生的?OH等進(jìn)行氧化反應(yīng)[29-30].試驗(yàn)結(jié)果表明,TCS發(fā)生在空化泡溶液界面和本體溶液中的氧化反應(yīng)起主導(dǎo)作用,而空化泡內(nèi)的熱解作用較弱.Nilsun等[31]在研究pH對(duì)超聲去除NP的影響時(shí)具有類似的結(jié)論.
2.6自由離子捕獲劑對(duì)去除率的影響
叔丁醇(TBA)通常認(rèn)為是一種自由基清除劑,常用于確認(rèn)反應(yīng)存在自由基反應(yīng),如果投加自由基捕獲劑而導(dǎo)致去除率下降則表明反應(yīng)過程包含自由基參與降解[32].試驗(yàn)中取 1L初始濃度為200μg/L的TCS溶液,設(shè)置超聲波功率為600W,投加3mg/L的氯胺溶液,以TBA模擬自由基捕獲劑,考察自由基捕獲劑對(duì) TCS去除的影響,結(jié)果見圖 7.由圖 7可知,TCS去除隨自由基捕獲劑TBA 濃度上升而下降,TBA 投加量為 0.001, 0.01,0.05,0.1mg/L時(shí),TCS的去除率為 70.3%、41.0%、27.8%和20.0%,表明聯(lián)用工藝降解TCS反應(yīng)過程中有自由基參與反應(yīng).
圖7 自由基捕獲劑對(duì)TCS去除的影響Fig.4 Effect of free radicals scavenger on TCS removal
作為自由基捕獲劑,TBA可以清除超聲空化氣泡內(nèi)的?OH,阻止?OH在空化氣泡界面處積累和向水相的進(jìn)一步擴(kuò)散,使得超聲產(chǎn)生的?OH被TBA捕獲,只有少量進(jìn)入溶液.同時(shí),TBA和它的產(chǎn)物在空化氣泡內(nèi)積累,降低了空化氣泡中混合氣體的比熱容比,進(jìn)而降低空化氣泡崩潰時(shí)的相對(duì)溫度和壓力.這2種因素導(dǎo)致TBA的加入有效的抑制了超聲對(duì)TCS的去除.可推斷工藝去除中自由基氧化為TCS的主要降解途徑.
2.7TCS降解機(jī)制
采用C18小柱,對(duì)400mL聯(lián)用工藝去除TCS溶液進(jìn)行 SPE富集,再用乙腈洗脫,富集液進(jìn)行GC/MS掃描分析,結(jié)果見圖8.
圖8 超聲波與氯胺聯(lián)用降解TCS氧化產(chǎn)物的質(zhì)譜掃描圖Fig.4 MS spectra for main oxidized product of TCS in presence of ultrasonic and chloramines
由圖 8可見,掃描圖上分別在 10.425, 33.775min有2個(gè)相對(duì)明顯的峰.其中, 33.775min時(shí)的出峰經(jīng)鑒定為 TCS,10.425min時(shí)的出峰為TCS的氧化產(chǎn)物,該產(chǎn)物特征碎片為 m/z 63,98,126,162,鑒定為2,4-DCP.
Vikesland等[31]實(shí)驗(yàn)發(fā)現(xiàn),氯胺與 TCS反應(yīng)有5,6-Cl2-TCS、4,5-Cl2-TCS和4,5,6-Cl3-TCS的生成.Gao等[34-36]研究發(fā)現(xiàn),在較低的羥基自由基濃度下,TCS的主要降解產(chǎn)物為2,4-DCP和多氯聯(lián)苯二噁英,在較高羥基自由基濃度下,TCS與其中間產(chǎn)物都會(huì)被完全降解礦化.實(shí)驗(yàn)中除了2,4-DCP,未鑒定出這 3種物質(zhì),這可能是由于羥基自由基率先攻擊這3個(gè)物質(zhì),亦有可能是超聲波的其他作用促使該3個(gè)物質(zhì)分解,有待進(jìn)一步深入分析.
3.1超聲和氯胺聯(lián)用去除 TCS具有協(xié)同效應(yīng),可以有效降解 TCS,降解符合一級(jí)反應(yīng)動(dòng)力學(xué)模型.超聲波功率為 600W,氯胺濃度為 5mg/L 時(shí),TCS去除率可達(dá)90.8%.
3.2聯(lián)用工藝中TCS的去除隨氯胺濃度升高呈現(xiàn)出先升高后降低的趨勢(shì),TCS去除率隨TCS初始濃度的升高而下降,堿性環(huán)境有利于TCS的去除,TBA對(duì)TCS的降解起抑制作用,聯(lián)用工藝降解TCS反應(yīng)過程中有自由基參與降解.
3.3GC/MS鑒定表明2,4-DCP為TCS的降解產(chǎn)物.
[1] Singer H, Muller S, Tixier C, et a1. Triclosan: occurrence and fate of a widely used biocidc in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and 1ake sediments [J]. Environ. Sci. Technol., 2002,36(23):4998-5004.
[2] Von der Ohe P C, Schmitt-Jansen M, Slobodnik J, et al. Triclosan -the forgotten priority substance? [J]. Environ. Sci. Pollut. R., 2012,19(2):585-591.
[3] Ingerslev F, Vaclavik E, Halling B. S?rensen. Pharmaceuticals and personal care products: a source of endocrine disruption in the environment?* [J]. Pure Appl. Chem., 2003,75(11/12):1881-1893.
[4] Canosa P, Morales S, Rodríguez I, et a1. Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine [J]. Anal. Bioanal. Chem., 2005, 383(7/8):1119-1126.
[5] Lores M, Llompart M, Sanchez-Prado L, et a1. Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME [J]. Anal. Bioanal. Chem., 2005,381(6):1294-1298.
[6] Marshall R, Royer T. Pharmaceutical compounds and ecosystem function: an emerging research challenge for aquatic ecologists [J]. Ecosystems, 2012,15:867-880.
[7] Braoudaki M, Hilton A C. Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12and E.coli O55compared to E.coli O157 [J]. Fems Microbiol. Lett., 2004, 235(2):305-309.
[8] Brausch J M, Rand G M. A review of personal care products in the aquatic environment: environmental concentrations and toxicity [J]. Chemosphere, 2011,82(11):1518-1532.
[9] Schultz M M, Bartell S E, Schoenfuss H L. Effects of triclosan and triclocarban, two ubiquitous environmental contaminants,on anatomy, physiology, and behavior of the fathead minnow (pimephales promelas) [J]. Arch. Environ. Con. Tox., 2012,63(1):114-124.
[10] Yu J C, Kwong T. Y, Luo Q, Cai Z W. Photocatalytic oxidation of triclosan [J]. Chemosphere, 2006,65(3):390-399.
[11] Chen X J, Richard J, Liu Y L, et al. Ozonation products oftriclosan in advanced wastewater treatment [J]. Water Res., 2012,46(7):2247-2256.
[12] Behera S K, Oh S Y, Park H S. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: Effects of pH, ionic strength, and humic acid [J]. J. Hazard. Mater., 2010,179:684-691.
[13] Yao J J, Gao N Y, Li C, et a1. Mechanism and kinetics of parathion degradation under ultrasonic irradiation [J]. J. Hazard. Mater., 2010,175(1-3):138-145.
[14] Mehrdad A, Hashemzadeh R, Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide [J]. Ultrason. Sonochem., 2010,17(1):168-172.
[15] Dükkancl M, Gündüz G. Ultrasonic degradation of oxalic acid in aqueous solutions [J]. Ultrason. Sonochem., 2006,13(6):517-522.
[16] Sathiskumar P S, Madras Giridhar. Ultrasonic degradation of butadiene, styrene and their copolymers [J]. Ultrason. Sonochem., 2012,19(3):503-508.
[17] Chiha M, Hamdaoui O, Baup S, et al. Sonolytic degradation of endocrine disrupting chemical 4-cumylphenol in water [J]. Ultrason. Sonochem., 2011,18(5):943-950.
[18] Rominder P S S, Mohan N, Uthappa D, et al. Ultrasound assisted destruction of estrogen hormones in aqueous solution: Effect of power density, power intensity and reactor configuration [J]. J. Hazard. Mater., 2007,146(3):472-478.
[19] Ji Guodong, Zhang Baolong, Wu Yingchao. Combined ultrasound/ozone degradation of carbazole in APG1214surfactant solution [J]. J.Hazard. Mater., 2012,225-226:1-7.
[20] 魏 紅,李 娟,李克斌,等.左氧氟沙星的超聲/H2O2聯(lián)合降解研究 [J]. 中國(guó)環(huán)境科學(xué), 2013,33(2):257-262.
[21] 周作明,荊國(guó)華.超聲波/H2O2/CuO協(xié)同氧化降解苯酚 [J]. 中國(guó)環(huán)境科學(xué), 2006,26(3):280-283.
[22] Wu Qihua, Shi Honglan, Adams Craig D, et al. Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan [J]. Sci. Total. Environ., 2012, 439:18-25.
[23] Song Weihua, O'shea K E. Ultrasonically induced degradation of 2-methylisoborneol and geosmin [J]. Water Res., 2007,41(12):2672-2678.
[24] Ifelebuegu A O, Onubogu J, Joyce E, et al. Sonochemical degradation of endocrine disrupting chemicals 17β-estradiol and 17α-ethinylestradiol in water and wastewater [J]. Int. J. Environ. Sci. Technol., 2014,11(1):1-8.
[25] Adewuyi Y G. Sonochemistry: environmental science and engineering applications [J]. Ind. Eng. Chem. Res., 2001,40(22):4681-4715.
[26] Adewuyi Y G. Sonochemistry in environmental remediation. 1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water [J]. Environ. Sci. Technol., 2005,39(10):3409-3420.
[27] 汪雪嬌.氯胺消毒特性及其副產(chǎn)物的生成研究 [D]. 上海:同濟(jì)大學(xué)環(huán)境科學(xué)與工程學(xué)院, 2008:42-47.
[28] Wong-Wah-Chung P, Rafqah S, Voyard G, et al. Photochemical behaviour of triclosan in aqueous solutions: kinetic and analytical studies [J]. J. Photoch. Photobio. A., 2007,191(2/3):201-208.
[29] Pang Y I, Abdullah A Z, Bhatia S. Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater [J]. Desalination, 2011,277(1-3):1-14.
[30] Chowdhury P, Viraraghavan T. Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes-A review [J]. Sci. Total. Environ., 2009.407(8):2476-2492.
[31] Ince N H, Gültekin I, Tezcanli-Güyer G. Sonochemical destruction of nonylphenol: Effects of pH and hydroxyl radical scavengers [J]. J. Hazard. Mater., 2009,172(2/3):739-743.
[32] Song Weihua, Cruz A A, Rein K, et al. Ultrasonically induced degradation of microcystin-LR and -RR: identification of products, effect of pH, formation and destruction of peroxides [J]. Environ. Sci. Technol., 2006,40(12):3941-3946.
[33] Greyshock A E, Vikesland P J. Triclosan reactivity in chloraminated waters [J]. Environ. Sci. Technol., 2006,40(8):2615-2622.
[34] Bester K. Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters [J]. Arch. Environ. Con. Tox., 2005,49(1):9-17.
[35] Gao Y P, Ji Y M, Li G Y, et al. Mechanism, kinetics and toxicity assessment of OH-initiated transformation of triclosan in aquatic Environments [J]. Water Res., 2014,49:360-370.
[36] Sanchez-Prado L, Barro R, Garcia-Jares C, et al. Sonochemical degradation of triclosan in water and wastewater [J]. Ultrason. Sonochem., 2008,15(5):689-694.
Degradation of triclosan in aqueous solution by using ultrasound combined with chloramine.
LI Qing-song1*, ZHOU Sheng-hui1,2, LI Guo-xin1, CHEN Guo-yuan1, MA Xiao-yan3, GAO Nai-yun4(1.Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China;2.College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350117, China;3.College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China;4.National Key Laboratory of Pollution Control and Reuse, Tongji University, Shanghai 200092, China).
China Environmental Science, 2015,35(9):2670~2676
Ultrasound and chloramine combined process was employed in this paper to remove triclosan (TCS) in aqueous solution. The effects of several factors such as ultrasonic power, chloramine dosage, TCS initial concentration, pH and radical scavenger on TCS degradation were studied. Furthermore, the degradation products were identified and the degradation mechanism of TCS by combined process was discussed. The results indicated that the combination of ultrasound and chloramine can remove TCS effectively and possess significant synergetic effect on the degradation. The degradation rate of TCS could reach 90.8% within 120min under the conditions of ultrasonic power 600W, TCS initial concentration of 200μg/L, and chloramine dosage of 5mg/L. TCS degradation efficiency decreased with the raise of initial concentration of TCS, and tended to increase firstly and then decrease with the increase of chloramine concentration. Alkaline environment was conducive to the TCS removal, and the degration efficiency of TCS could reach 100% when pH value was 10.7. The presence of free radical scavenger TBA had an inhibitory effect on TCS degradation. The identification and recognition of degradation products by GC/MS indicated 2,4-dichlorophenol (2,4-DCP) was the main degradation products of TCS during the combined process.
triclosan;ultrasound;chloramine;degradation product
X703.1
A
1000-6923(2015)09-2670-07
2015-02-06
國(guó)家自然基金項(xiàng)目(51378446,51208468,51309197);福建自然基金項(xiàng)目(2013J01212);福建高校新世紀(jì)優(yōu)秀人才計(jì)劃項(xiàng)目(JA14227);廈門市科技局項(xiàng)目(3502Z20131157,3502Z20130039)
*責(zé)任作者, 副研究員, leetsingsong@sina.com
李青松(1979-),男,山東東明人,副研究員,博士,主要從事水處理理論與技術(shù)研究.發(fā)表論文40余篇.