国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

熱帶水果上食源性致病菌研究進(jìn)展

2015-09-10 13:06馬晨李建國(guó)
熱帶農(nóng)業(yè)科學(xué) 2015年8期
關(guān)鍵詞:存活生長(zhǎng)

馬晨++李建國(guó)

摘 要 芒果、木瓜、椰子、菠蘿、香蕉和鱷梨等曾發(fā)生多起食源性疾病爆發(fā)事件。諾瓦克病毒(Norovirus)和沙門氏菌(Salmonella)是高發(fā)性食源性致病微生物。綜述與熱帶水果相關(guān)的食源性致病微生物、致病菌在熱帶水果上的行為以及致病菌侵染植物的過(guò)程,提出未來(lái)研究方向。

關(guān)鍵詞 熱帶水果 ;食源性致病菌 ;存活/生長(zhǎng) ;侵染過(guò)程

分類號(hào) S432

Foodborne Pathogens of Tropical Fruits

MA Chen LI JIanguo

(Analysis and Testing Center / Hainan Provincial Key Laboratory of Quality and Safety for

Tropical Fruits and Vegetables, Ministry of Agriculture Laboratory of Quality & Safety Risk

Assessment for Tropical Products, CATAS, Haikou, Hainan 571101, China)

Abstract Outbreaks of foodborne disease associated with tropical fruits have occurred, mainly associated with mango, payaya, coconut, pineapple, banana and avocado. Norovirus and Salmonella are the leading viral and bacterial pathogens, respectively. The frequency of foodborne pathogens contamination for tropical fruits is probably high because of growth and production environment and innate characteristics of fruit. This review is to discuss the foodborne pathogens associated tropical fruit consumption, pathogen behavior on tropical fruits, internalization of foodborne pathogen into plant and future research needs.

Keywords tropical fruits ; foodborne pathogens ; survival and growth ; internalization

近年來(lái),歐美國(guó)家不斷爆發(fā)新鮮果蔬上食源性致病菌中毒事件[1-4],引起了國(guó)內(nèi)外廣泛關(guān)注。沙門氏菌等可附著在果蔬表面,并可進(jìn)入組織內(nèi)部存活和繁殖[5-6]。所以,新鮮果蔬的微生物質(zhì)量安全問(wèn)題已成為國(guó)際食品安全焦點(diǎn)。熱帶水果中曾發(fā)生過(guò)多起食源性致病菌爆發(fā)事件[7]。在中國(guó),香蕉、芒果、菠蘿、火龍果等是深受人們喜愛(ài)的熱帶水果。海南、福建、廣東、廣西和臺(tái)灣等地是我國(guó)熱帶水果主要產(chǎn)地。泰國(guó)、馬來(lái)西亞等是主要進(jìn)口國(guó)。這些地區(qū)大多缺乏標(biāo)準(zhǔn)的食品安全生產(chǎn)和采后管理 標(biāo)準(zhǔn),疾病爆發(fā)預(yù)警體系和致病菌檢測(cè)能力欠缺,可能導(dǎo)致大量食源性疾病爆發(fā)事件未被報(bào)道[7]。另外,這些地區(qū)水熱充沛,動(dòng)物糞便和植物交叉污染嚴(yán)重,食源性致病菌的污染風(fēng)險(xiǎn)可能較高。

熱帶水果本身性質(zhì),如生長(zhǎng)環(huán)境、pH、表面特性、抑菌成分和損傷敏感性等是影響致病菌存活和生長(zhǎng)的重要因素[8]。表1列出了常見(jiàn)熱帶水果的基本性質(zhì)。其中,pH是決定致病菌在水果上生長(zhǎng)的關(guān)鍵因素。pH≤4.0為高酸性水果,pH≥4.0為低酸性水果[8]。如表1所示,熱帶水果具有不同程度的抑菌活性。水果的不可食外皮是防止細(xì)菌污染的強(qiáng)力屏障,但分切時(shí)易與刀具發(fā)生交叉污染[9]。致病菌在水果損傷部位或切割面上生長(zhǎng)良好[10]。因而,易損傷或擠壓的水果,也易受致病菌感染。

綜上所述,熱帶水果的種植和加工環(huán)境以及水果自身特性決定了其受食源性微生物感染的幾率較高。隨著全球熱帶水果消費(fèi)量的劇增,熱帶水果微生物質(zhì)量安全問(wèn)題應(yīng)引起廣泛重視。本文主要從食源性致病菌種類、存活和生長(zhǎng)規(guī)律及侵染途徑等方面總結(jié)熱帶水果上食源性致病菌的研究進(jìn)展,為保障熱帶水果微生物質(zhì)量安全提供參考。

1 與熱帶水果相關(guān)的食源性致病菌

表2列出了與熱帶水果有關(guān)的食源性致病菌中毒事件。其中,沙門氏菌和諾瓦克病毒是最常見(jiàn)的食源性微生物。受污染的熱帶水果主要包括鱷梨、香蕉、芒果、木瓜、菠蘿和椰子等。水果制品感染率較高。以下主要介紹細(xì)菌性食源性致病菌特征。

1.1 致病性大腸桿菌

腸出血性大腸桿菌和產(chǎn)志賀毒素大腸桿菌,尤其是Escherichia coli O157:H7是果蔬安全關(guān)注的焦點(diǎn)。該菌生長(zhǎng)pH為4.4~9.0,生長(zhǎng)溫度7~46℃[8]??梢鹉c出血、溶血性尿毒綜合征及神經(jīng)紊亂等征狀。E. coli O157:H7感染的果蔬包括綠葉蔬菜、蘋果汁、苜蓿芽和哈密瓜等[15]。熱帶水果中該菌的污染事件不多。1994年,美國(guó)爆發(fā)了由菠蘿引起的腸出血性E. coli O11:H43感染事件(表2)。

1.2 沙門氏菌屬

沙門氏菌(Salmonella)列居微生物性食物中毒事件首位。該菌生長(zhǎng)pH為3.8~9.5,生長(zhǎng)溫度5.2~46.2℃[8]。典型癥狀為腹瀉和嚴(yán)重腹部絞痛。沙門氏菌爆發(fā)事件中,涉及的熱帶水果有芒果、木瓜、菠蘿和椰子等。芒果引起的沙門氏菌感染事件有5起,木瓜和椰子各3起,涉及的沙門氏菌血清型多樣(表2)。新加坡曾爆發(fā)水果沙門氏菌感染事件,并引起造船工人感染[16];抽檢的水果樣品中白蘭瓜、木瓜、菠蘿和西瓜均檢出沙門氏菌。另外,新鮮椰子是沙門氏菌生長(zhǎng)的良好基質(zhì)[17]。Kovacs[18]第一次從干椰子中分離出沙門氏菌。南威爾士、英國(guó)和新加坡都曾爆發(fā)食用椰子制品而導(dǎo)致的較大范圍沙門氏菌感染(表2)。endprint

1.3 葡萄球菌屬

葡萄球菌是存在于人類皮膚中的常見(jiàn)細(xì)菌,只有產(chǎn)毒素種類(金黃色葡萄球菌Staphylococcus aureus)是食源性致病菌。由于發(fā)病后病期短和類感冒癥狀,該菌的漏報(bào)率高達(dá)38倍[7]。香蕉及其制品中曾爆發(fā)金黃色葡萄球菌感染事件(表2)。

1.4 單增李斯特菌

目前沒(méi)有熱帶水果中單增李斯特菌(Listeria Monocytogenes)感染事件的報(bào)道。該菌生長(zhǎng)pH為4.4~9.4,生長(zhǎng)溫度-0.4~45℃[8]。對(duì)孕婦危害極大,可引起死胎或流產(chǎn)。常存在于植物表面、植物產(chǎn)品和加工環(huán)境中[8]。該菌可在冰箱儲(chǔ)藏溫度下生長(zhǎng)。冷藏儲(chǔ)存的新鮮或鮮切熱帶水果應(yīng)該關(guān)注該菌的污染風(fēng)險(xiǎn)。

1.5 志賀氏菌

志賀氏菌只能感染人類。嚴(yán)格管理工人的個(gè)人衛(wèi)生和車間消毒可避免食物中志賀氏菌感染。志賀氏菌爆發(fā)事件中,涉及的熱帶水果有鱷梨和椰子(表2)。1991年,泰國(guó)一所學(xué)校發(fā)生了食用椰奶甜品引起的志賀氏菌感染事件,導(dǎo)致200多人生病[19]。另外,鱷梨醬中也發(fā)生過(guò)兩起該菌感染事件,均由加工人員的個(gè)人衛(wèi)生造成。

1.6 其他食源性致病菌

彎曲腸桿菌感染通常與消費(fèi)家禽有關(guān)。熟食店中禽肉和果蔬的交叉感染可引起果蔬污染[7]。此菌生長(zhǎng)pH為4.4~9.0,生長(zhǎng)溫度32~45℃[8]。1999和2002年,菠蘿和鱷梨沙拉醬中發(fā)生過(guò)兩例Campylobacter jejuni爆發(fā)事件(表2)。

諾瓦克病毒是最常見(jiàn)的食源性致病微生物。其感染癥狀為惡心、腹瀉、腹痛等。鱷梨、新鮮香蕉和菠蘿及其制品上都曾爆發(fā)該病毒感染事件(表2)。

另外,部分芽孢桿菌(Bacillus cereus、Clostridium botulinum和 Clostridium perfringens)也是潛在的食源性致病菌。目前沒(méi)有發(fā)現(xiàn)熱帶水果上芽孢桿菌感染事件。但是,熱帶水果儲(chǔ)存環(huán)境常為部分或完全厭氧,有利于產(chǎn)芽孢菌生長(zhǎng)和存活。

2 食源性致病菌在熱帶水果上存活和生長(zhǎng)規(guī)律

致病菌可在土壤、灌溉水、果蔬葉際或根際和鮮切果蔬上存活和生長(zhǎng)[6]。關(guān)注較多的食源性致病菌是Salmonella、Escherichia coli O157:H7和Listeria monocytogenes,環(huán)境耐受性為E. coli O157:H7

2.1 芒果

新鮮芒果、芒果汁和鮮切芒果是常見(jiàn)的消費(fèi)形式。其食源性致病菌爆發(fā)率最高。研究發(fā)現(xiàn),采后熱冷處理是導(dǎo)致芒果感染沙門氏菌的主要原因[20]。據(jù)報(bào)道,芒果肉中,6和-10℃時(shí)E. coli O157:H7可存活13 d[21]。芒果汁中,25℃時(shí)耐酸性和非耐酸性E. coli O157:H7可存活6 d,3 d后數(shù)量迅速減少[22];7℃存活8 d;10℃時(shí)Salmonella Heidelberg可存活18天,20和37℃時(shí)存活9 d[23]。鮮切芒果中,23℃時(shí)E. coli O157:H7和Salmonella可以生長(zhǎng);12℃時(shí)只有Salmonella 可以生長(zhǎng);4℃時(shí)E. coli O157:H7和Salmonella可存活28 d;-20℃存活至少180 d[24]。Penteado等[25]發(fā)現(xiàn),25℃時(shí)S. enteritidis和L. monocytogenes生長(zhǎng)延滯期分別為19 和7.2 h,增代時(shí)間分別為0.66和1.44 h;10℃,只有L. monocytogenes生長(zhǎng);4℃兩種菌可存活8 d;-20℃,S. enteritidis可存活5個(gè)月;L. monocytogenes可存活8個(gè)月。另外,當(dāng)?shù)毒咧袛y帶大于104 CFU/mL的S. enteritidis或者大于105 CFU/ml的L. monocytogenes時(shí),切分芒果時(shí)存在交叉污染[25]。

2.2 木瓜

新鮮木瓜、木瓜汁、鮮切木瓜、木瓜甜品等是常見(jiàn)的消費(fèi)形式。研究發(fā)現(xiàn),印度加爾各答街邊攤販銷售的鮮切木瓜菌落總數(shù)較高,可檢出大腸菌群和腸道致病菌。30份樣品中,E. coli檢出率48%,S. aureus檢出率17%,Salmonella檢出率3%,Vibrio cholerae檢出率3%[26]。在鮮切木瓜中,4℃時(shí)E. coli O157:H7和Salmonella可存活28 d;-20℃時(shí)至少存活180 d;23和12℃時(shí)E. coli O157:H7 和 Salmonella可以生長(zhǎng)[24]。室溫培養(yǎng)6 h,在鮮切木瓜塊和檸檬表面處理的木瓜塊上,Salmonella Typhi數(shù)量分別增長(zhǎng)1.4和0.8 log CFU/mL;Shigella sonnei、S. flexneri和S. dysenteriae約增長(zhǎng)2.0 log CFU/mL[27-28]。木瓜汁中,4、20和37℃時(shí)E. coli O157:H7均可以生長(zhǎng);25℃培養(yǎng)72 h,數(shù)量達(dá)到8.5 log CFU/mL;37℃,培養(yǎng)16 h,該菌數(shù)量達(dá)到最大值9.0 log CFU/mL;4℃時(shí)該菌生長(zhǎng)緩慢[29-30];37℃,Salmonella快速生長(zhǎng)到9.0 log CFU/mL;4℃,24 h,該菌數(shù)量約增長(zhǎng)1.0 CFU/mL,然后數(shù)量減少[30]。木瓜肉中,10℃儲(chǔ)存7 d、20℃儲(chǔ)存2 d、30℃儲(chǔ)存1 d后,S. enteritidis數(shù)量分別增長(zhǎng)1.8、6.0和7.0 log CFU/g;增代時(shí)間分別為16.61、1.74 和0.66 h;10℃時(shí)增殖速率降低,但不抑制其生長(zhǎng)[31]。Campylobacter jejuni在木瓜中不生長(zhǎng),以穩(wěn)定數(shù)量存活并可能引起食源性疾病[28]。

2.3 椰子

消費(fèi)形式主要有新鮮椰子(椰子水)、生吃椰肉或者作為添加成分。椰子外殼堅(jiān)硬,食用時(shí)必須用刀剖開(kāi),所以在加工過(guò)程中受細(xì)菌感染的概率較大。研究發(fā)現(xiàn),從印度新德里和帕蒂亞啦抽取150份椰子片,產(chǎn)腸毒素S.aureus檢出率為58%,Shigella dysenteraie(1-5型)和S. flexneri(type 2a)檢出率為15%[32]。含新鮮椰子甜品的S. aureus檢出率明顯高于不含新鮮椰子的甜品[33]。鮮切椰肉中,L. monocytogenes可在以下多種條件下生長(zhǎng):儲(chǔ)藏溫度2、4、8、12℃,儲(chǔ)藏環(huán)境(非氣調(diào)或氣調(diào)環(huán)境:65% N2,30% CO2和5% O2),接種劑量2.0 log CFU/g或5.7 log CFU/g[34]。新鮮椰子水中,L. monocytogenes 可以存活和生長(zhǎng):4℃或10℃時(shí)生長(zhǎng)遲緩,可儲(chǔ)存數(shù)天;35℃時(shí)生長(zhǎng)延滯期明顯縮短,菌數(shù)明顯增加[35]。

2.4 菠蘿

菠蘿消費(fèi)形式包括鮮切、榨汁或作為食品添加成分。研究發(fā)現(xiàn),致病菌只能在菠蘿或菠蘿汁中存活,不能生長(zhǎng)。在菠蘿汁中,4、20~25℃儲(chǔ)存3 d,E. coli O157:H7不生長(zhǎng),該菌數(shù)量約降低0.1~0.5 log CFU/mL[29];4℃,24 h,檢測(cè)不到Salmonella;37℃,前24 h,Salmonella數(shù)量約增長(zhǎng)2.0 log CFU/mL,后數(shù)量下降[30];10℃時(shí)Salmonella Heidelberg存活18 d,20℃存活12 d,37℃存活9 d[23]。冷凍菠蘿汁(-23℃)中各種致病菌可長(zhǎng)時(shí)間存活:E. coli O157:H7和Salmonella可存活至少180 d;前6 h,Salmonella和E. coli O157:H7數(shù)量急速下降,然后Salmonella穩(wěn)定在較低數(shù)量[36]。冷凍菠蘿果肉中,6或-10℃時(shí)E. coli O157:H7可存活13 d[21]。

2.5 香蕉

香蕉常帶皮完整銷售,所以鮮切香蕉中致病菌的研究很少。Behrsing發(fā)現(xiàn),18℃,接種到香蕉皮上的Listeria innocua, Salmonella和E. Coli可存活13 d[37]。-23℃,接種到香蕉果泥中的E. coli O157:H7、L. monocytogenes和 Salmonella可存活12周,低接種量的E. coli O157:H7仍可存活[36]。4℃,7 d內(nèi),接種到香蕉乳酪中的L. monocytogenes數(shù)量從4.0 log CFU/mL降低到3.5 logCFU/mL[38]。

2.6 番石榴

番石榴消費(fèi)形式主要為鮮食、鮮切或榨汁。番石榴中曾分離出Staphylococcus aureus[7]。在番石榴果肉中,6℃或-10℃,E. coli O157:H7(接種量2 log CFU/mL)可存活13 d[21]。Tang等報(bào)道,Salmonella Typhi可在番石榴表面形成生物膜,接觸時(shí)間越長(zhǎng)其附著量越大[39]。在番石榴汁中,10℃時(shí)Salmonella Heidelberg可存活18 d,20℃存活12 d,37℃存活9 d[23]。

2.7 火龍果

火龍果pH在4.7~5.1,含糖量高,是致病菌生長(zhǎng)的良好基質(zhì)。Pui(2010)[40]報(bào)道,鮮切火龍果中沙門氏菌檢出率較高:Salmonella spp.75%,S. Typhi 40% 和S. Typhimurium 25%。Sim等發(fā)現(xiàn)[41],28℃,8 h后,在低接種劑量下(2.5 log CFU/g) Salmonella大量增殖,數(shù)量約增長(zhǎng)2.4~3.0 log CFU/g;高接種劑量(5.5 log CFU/g)下,數(shù)量約增長(zhǎng)0.4~0.7 log CFU/g;12℃儲(chǔ)存96 h后,在低接種劑量下,耐酸性和非耐酸性沙門氏菌數(shù)量均增長(zhǎng)0.7~0.9 log CFU/g;4℃,Salmonella沒(méi)有明顯生長(zhǎng)。環(huán)境耐受型沙門氏菌與非耐受菌株在鮮切火龍果上的存活和生長(zhǎng)規(guī)律沒(méi)有明顯差異。

2.8 百香果

百香果常被作為果汁飲用。其外皮光滑并有蠟質(zhì)層,不利于致病菌躲藏或附著。據(jù)報(bào)道,-20℃,S. enteritidis在冷凍百香果飲料中可存活90 d。常溫下,初始接種劑量4.0~5.0 log CFU/mL時(shí),百香果飲料對(duì)E. coli,Salmonella和Shigella有致死作用[42]。耐酸性和非耐酸性E. coli O157:H7在冷凍百香果果肉中數(shù)量穩(wěn)定下降,12~21天后無(wú)法檢出該菌。Behrsing等[37]在百香果外皮上接種L. innocua,Salmonella和 E. coli(約5.0~6.0 log CFU/ml),10℃儲(chǔ)存6 d,可直接檢測(cè)到L. Innocua,通過(guò)富集培養(yǎng)其他兩種菌可以復(fù)活。

2.9 鱷梨

鱷梨常作為果醬或鮮果使用。鱷梨果醬中曾發(fā)生多起致病菌感染事件(表2),致病菌在鱷梨上存活規(guī)律的研究也較多。墨西哥街頭攤販和飯店銷售的鱷梨醬中各種致病菌檢出率為S.aureus 4.3%~10.3%,E. coli 54.3%~69%,Salmonella 0%~3.4%,L. monocytogenes 15.2%~17.2%[43]。S. aureus,E. coli,Salmonella和 L. monocytogenes均可在鱷梨皮和鱷梨汁中生長(zhǎng)[29,30,43]。但是在中國(guó),鱷梨的消費(fèi)量較低。所以,相關(guān)研究不在此贅述,具體參考文獻(xiàn)[7]。

3 食源性致病菌“侵染”熱帶水果過(guò)程

致病菌廣泛存在于自然界,受污染的灌溉水、肥料、土壤、動(dòng)物糞便、種子和昆蟲等都是潛在污染源[44]。研究已證實(shí),致病菌不僅附著在水果表面,還可通過(guò)多種方式進(jìn)入水果組織內(nèi)部并增殖[1,6]。關(guān)于致病菌侵染熱帶水果過(guò)程的研究非常少。據(jù)報(bào)道,Salmonella可以通過(guò)清洗水進(jìn)入芒果或芒果果肉中,并在其中存活[20,45]。endprint

有研究表明,食源性致病菌侵入植物和動(dòng)物細(xì)胞的機(jī)制可能相似[1,6]。致病菌“感染”植物細(xì)胞的過(guò)程分為以下幾部分(圖1)[46]。

3.1 致病菌附著在植物細(xì)胞表面

菌毛(fimbriae)是致病菌的主要附著結(jié)構(gòu)。在苜蓿芽和芹菜附著過(guò)程中,證實(shí)了致病菌菌毛的重要作用[47]。Curli菌毛和基質(zhì)主要成分纖維素參與沙門氏菌生物膜形成,并有利于其在苜蓿芽、芹菜、西紅柿小葉上附著和存活[5,46,48-49]。菌株生物膜形成能力越強(qiáng),其附著能力越強(qiáng)[49]。細(xì)菌粘附素MisL和鞭毛結(jié)構(gòu)參與沙門氏菌附著生菜葉的過(guò)程[46,49-50]。細(xì)菌T3分泌系統(tǒng)和細(xì)胞間的群體效應(yīng)(quorum sensing)在致病菌附著植物的過(guò)程中也發(fā)揮重要作用[46]。另外,Salmonella和E. coli O157:H7中參與附著的部分關(guān)鍵基因已確定[6,51]。

3.2 致病菌進(jìn)入植物內(nèi)部

致病菌常通過(guò)植物表面的天然“開(kāi)放體”(如氣孔和側(cè)根等)、物理?yè)p傷部位或者通過(guò)滲透作用從灌溉水、種子浸泡水和清洗水進(jìn)入植物內(nèi)部[1,6]。研究發(fā)現(xiàn),沙門氏菌可進(jìn)入各種植物組織內(nèi)部甚至可進(jìn)入果實(shí)種子內(nèi)部,并可在活體植株體中移動(dòng)[47]。室內(nèi)實(shí)驗(yàn)觀察到S.Typhimurium存在于擬南芥根被皮細(xì)胞內(nèi)部,低劑量沙門氏菌可以進(jìn)入煙草原生質(zhì)體[52-53]。但是,食源性致病菌是否可以進(jìn)入植物細(xì)胞內(nèi)部仍存在爭(zhēng)議[46]。

致病菌主要通過(guò)T3分泌系統(tǒng)將效應(yīng)蛋白注入動(dòng)物細(xì)胞中,調(diào)控宿主細(xì)胞生理狀態(tài)和免疫系統(tǒng),以進(jìn)入細(xì)胞內(nèi)部。缺失T3分泌系統(tǒng)將降低致病菌在擬南芥中的繁殖能力[54]。但是,Iniguez等發(fā)現(xiàn)[55],缺失T3分泌系統(tǒng)有利于沙門氏菌進(jìn)入苜蓿芽和小麥種子。所以,T3分泌系統(tǒng)可能參與致病菌進(jìn)入植物細(xì)胞過(guò)程,但是具有植物特異性。Schikora 等發(fā)現(xiàn)[53],含O抗原的沙門氏菌感染擬南芥后,植物產(chǎn)生快速抵抗反應(yīng),并激活控制防御基因表達(dá)的蛋白酶,植物外觀產(chǎn)生明顯的萎蔫和枯黃癥狀。不含O抗原菌株感染后,植物未表現(xiàn)出明顯癥狀。另外,沙門氏菌還可引起苜蓿屬植物Medicago spp.免疫反應(yīng),去除細(xì)菌信號(hào)分子后植物內(nèi)沙門氏菌數(shù)量增多[54]。所以,擬南芥和苜蓿屬植物中可能存在識(shí)別沙門氏菌細(xì)菌因子(如O抗原)的專一性受體,并可激發(fā)植物免疫反應(yīng)[55-56]。因此,食源性致病菌可能通過(guò)T3分泌系統(tǒng)進(jìn)入植物細(xì)胞,但具體機(jī)制仍不清楚。

3.3 致病菌在植物內(nèi)部增殖

在植物內(nèi)部,致病菌必須消化植物內(nèi)的營(yíng)養(yǎng)物質(zhì)供自身生長(zhǎng)和繁殖。在沙門氏菌中發(fā)現(xiàn)了多糖降解酶的編碼基因[55]。所以,在植物非原生質(zhì)體空間,細(xì)菌可能直接降解植物細(xì)胞壁中的多糖合成自身物質(zhì)。致病菌可能借助于其他植物病原菌或真菌的降解作用,間接利其降解產(chǎn)物[55]。研究發(fā)現(xiàn),在Pseudomonas syringae和Xanthomonas campestris降解作用下,纖維糖和蔗糖含量提高,從而促進(jìn)沙門氏菌和致病性大腸桿菌在植物內(nèi)的存活或生長(zhǎng)[46]。另外,某些植物病原菌分泌效應(yīng)蛋白進(jìn)入植物細(xì)胞,活化編碼糖轉(zhuǎn)運(yùn)蛋白基因,使植物細(xì)胞分泌小分子糖進(jìn)入質(zhì)外體,供植物病原菌利用。沙門氏菌和大腸桿菌也可能利用這種方式,但機(jī)制仍不清楚[55]。

4 展望

目前,熱帶水果上食源性致病菌的研究還不深入。未來(lái)的研究重點(diǎn)應(yīng)著眼于以下幾方面:(1) 開(kāi)發(fā)快速而有效的檢測(cè)方法,建立有效致病菌溯源系統(tǒng)。果蔬中的致病菌含量通常較低,并可能誘導(dǎo)進(jìn)入活的非可培養(yǎng)狀態(tài)(viable but non-culture, VBNC)[51]。當(dāng)應(yīng)對(duì)食源性致病菌污染突發(fā)事件時(shí),高靈敏度、快速的檢測(cè)方法和及時(shí)溯源技術(shù)十分重要。(2)建立致病菌風(fēng)險(xiǎn)評(píng)估系統(tǒng)。按照危害因子識(shí)別、危害特征描述和風(fēng)險(xiǎn)管理等要求,確定高污染風(fēng)險(xiǎn)的熱帶水果種類和高發(fā)病率致病菌和可能引起致病菌污染的環(huán)節(jié)。采后處理是熱帶水果感染致病菌的主要環(huán)節(jié)。了解水果采后污染幾率以及在采后處理、運(yùn)輸、儲(chǔ)藏和銷售時(shí)的交叉污染率,對(duì)于風(fēng)險(xiǎn)防控十分關(guān)鍵。(3)致病菌在熱帶水果上的行為。目前致病菌在熱帶水果上存活和生長(zhǎng)規(guī)律的研究還較少。致病菌附著方式和內(nèi)化機(jī)制,以及影響致病菌與植物間相互作用的環(huán)境因素還不清楚。開(kāi)展這方面研究將有助于找出降低水果致病菌附著的有效方法,以及選育抗致病菌污染的植物品系。(4)不斷開(kāi)發(fā)有效致病菌防控措施。研究表明,傳統(tǒng)的消毒方式,如氯表面清洗,無(wú)法達(dá)到減少食源性致病菌的目的。水果表面的土著微生物對(duì)消毒處理更加敏感,消毒處理后有利于致病菌在低競(jìng)爭(zhēng)環(huán)境下存活和生長(zhǎng)。所以,不斷開(kāi)發(fā)有效的水果表面消毒手段是防控致病菌污染的關(guān)鍵。

參考文獻(xiàn)

[1] Schikora A, Garcia A V, Hirt H. Plants as alternative hosts for Salmonella[J]. Trends in Plant Science, 2012, 17(5): 245-249

[2] Abadias M, Usall J, Anguera M. et al. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments[J]. International Journal of Food Microbiology, 2008, 31(123): 121-129.

[3] Bülent E. Survival characteristics of Salmonella Typhimurium and Escherichia coli O157:H7 in minimally processed lettuce during storage at different temperatures[J]. Journal fur Verbraucherschutz Lebensmittelsicherheit, 2011, 6(3): 339-342.endprint

[4] 劉程惠,胡文忠,何熠波,等. 鮮切果蔬病原微生物侵染及其生物控制的研究進(jìn)展[J]. 食品工業(yè)科技,2012,33(18):362-366.

[5] Barak J D, Kramer L C, Hao L Y. Colonization of tomato plants by Salmonella enterica is cultivar dependent, and type 1 trichomes are preferred colonization sites[J]. Applied and Environmental Microbiology, 2011, 77(2): 498-504.

[6] Brandl M T, Cox C E, Teplitski M. Salmonella interactions with plants and their associated microbiota[J]. Phytopathology, 2013, 103(4): 316-325.

[7] Strawn L K , Schneider K R, Danyluk MD. Microbial safety of tropical fruits[J]. Critical Reviews in Food Science and Nutrition, 2011, 51(2):132-145.

[8] Bassett J, McClure P. A risk assessment approach for fresh fruits[J]. Journal of Applied Microbiology, 2008, 104(4): 925-943.

[9] Beuchat L R. Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables[J]. Microbes and Infection, 2002, 4(4): 413-423.

[10] Dingman D W. Growth of Escherichia coli O157:H7 in bruised apple (Malus domestica) tissue as influenced by cultivar, date of harvest, and source[J]. Applied and Environmental Microbiology, 2000, 66(3): 1 077-1 083.

[11] Mohamed S, Hassan Z, Abd Hamid N. Antimicrobial activity of some tropical fruit wastes (guava, starfruit, banana, papaya, passionfruit, langsat, duku, rambutan and rambai)[J]. Pertanika Journal of Tropical Agricultural Science, 1994, 17(3): 219-227.

[12] Mandal S M, Dey S, Mandal M, et al. Identification and structural insights of three novel antimicrobial peptides isolated from green coconut water[J]. Peptides, 2009, 30(4): 633-637.

[13] Engels C, Schieber A, Gānzle MG. Inhibitory spectrum and mode of antimicrobial action of gallotannins from mango kernels (Mangifera indica L.)[J]. Applied and Environmental Microbiology, 2011, 77(7): 2 215-2 223.

[14] Moneruzzaman K M, Md J S, Mat N, et al. Bioactive constituents, antioxidant and antimicrobial activities of three cultivars of wax apple (Syzygium samarangense L.) fruits[J]. Research Journal of Biotechnology, 2015, 10(1): 7-16.

[15] Sivapalasingam S, Friedman C R, Cohen L, et al. Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997[J]. Journal of Food Protection, 2004, 67(10): 2 342-2 353.

[16] Ooi P L. A shipyard outbreak of Salmonellosis traced to contaminated fruits and vegetables[J]. Annals of the Academy of Medicine Singapore, 1997, 26(5): 539-543.endprint

[17] Schaffner C P, Mosbach K, Bibit V C, et al. Coconut and Salmonella infections[J]. Appl Microbiol, 1967, 15(3): 471-475.

[18] Kovacs N. Salmonellae in desiccated coconut, egg pulp, fertilizer, meat-meal, and mesenteric glands: Preliminary reports[J]. The Medical Journal of Australia, 1959, 46(17): 557-559.

[19] Hoge C W, Bodhidatta L, Tungtaem C, et al. Emergence of nalidixic acid resistant Shigella dysenteriae type 1 in Thailand: An outbreak associated with consumption of coconut milk dessert[J]. International Journal of Epidemioloy, 1995, 24(6): 1 228-1 232.

[20] Penteado A L. Evidence of Salmonella internalization into fresh mangos during simulated postharvest insect disinfestations procedures[J]. Journal of Food Protection, 2004, 67(1): 181-184.

[21] Leite C C, Guimaraes A G, da Silva M D, et al. Evaluation of the behavior of Escherichia coli O157:H7 in fruit pulp[J]. Higiene Alimentar, 2002, 16: 67-73.

[22] Hsin-Yi C, Chou C. Acid adaptation and temperature effect on the survival of E. coli O157:H7 in acidic fruit juice and lactic fermented milk product[J]. International Journal of Food Microbiology, 2001, 70(1-2):189-195.

[23] EI-Safey M E. Behavior of Salmonella heideberg in fruit juices[J]. International Journal of Nutrition and Food Sciences, 2013, 2(2): 38-44.

[24] Strawn L K, Danyluk M D. Fate of Escherichia coli O157:H7 and Salmonella spp. on fresh and frozen cut mangoes and papayas[J]. International Journal of Food Microbiology, 2010, 138 (1-2): 78-84

[25] Penteado A L, Castro M F P M D, Rezende A C B. Salmonella enterica serovar Enteritidis and Listeria monocytogenes in mango (Mangifera indica Linn) pulp: growth, survival and cross contamination[J]. Journal of the Science of Food and Agriculture, 2014, 94(13): 2 746-2 751.

[26] Guha A K, Mitra A, Mukhopadhyay R, et al. An evaluation of street-vended sliced papaya (Carica papaya) for bacteria and indicator micro-organisms of public health significance[J]. Food Microbiology, 2002, 19(6): 663-667.

[27] Escartin E F, Ayala A C, Lozano J S. Survival and growth of Salmonella and Shigella on sliced fresh fruit[J]. Journal of Food Protection, 1989, 52:471-472.

[28] Castillo A, Escartin E F. Survival of Campylobacter jejuni on sliced watermelon and papaya[J]. Journal of Food Protection, 1994, 57(2):166-168.

[29] Mutaku I, Erku W, Ashenafi M. Growth and survival of Escherichia coli O157:H7 in fresh tropical fruit juices at ambient and cold temperatures[J]. International Journal of Food Sciences and Nutrition, 2005, 56(2):133-139.endprint

[30] Yigeremu B, Bogale M, Ashenafi M. Fate of Salmonella species and E. coli in fresh-prepared orange, avocado, papaya, and pine apple juices[J]. Ethiopian Journal of Health Science, 2001, 11(2): 89-95.

[31] Penteado A L, Leitao M F F. Growth of Salmonella enteritidis in melon, watermelon and papaya pulp stored at different times and temperatures[J]. Food Control, 2004, 15(5): 369-373.

[32] Ghosh M, Wahi S, Kumar M et al. Prevalence of enterotoxigenic Staphylococcus aureus and Shigella spp. in some raw street vended Indian foods[J]. International Journal of Environmental Health Research, 2007, 17(2):151-156.

[33] Suklampoo L, Satta P, Senaard S. Study on contamination of Staphylococcus aureus in Thai dessert[C]. Proceedings of 41st Kasetsart University Annual Conference, 2003. Agro-Ind.: 85-91.

[34] Sinigaglia M, Bevilacqua A, Campaniello D, et al. Growth of Listeria monocytogenes in fresh-cut coconut as affected by storage conditions and inoculum size[J]. Journal of Food Protection, 2006, 69(4):820-825.

[35] Walter E H M, Kabuki D Y, Esper L M R, et al. Modelling the growth of Listeria monocytogenes in fresh green coconut (Cocos nucifera L.) water[J]. Food Microbiology, 2009, 26(6): 653-657.

[36] Oyarzabal O A, Nogueira M C L, Gombas D E. Survival of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella in juice concentrates[J]. Journal of Food Protection, 2003, 66(9): 1 595-1 598.

[37] Behrsing J, Jaeger J, Horlock F, et al. Survival of Listeria innocua, Salmonella Salford and Escherchia coli on the surface of fruit with inedible skins[J]. Postharvest Biology ans Technology, 2003, 29(3): 249-256.

[38] Sabreen M S, Korashy E. Incidence and survival of Listeria monocytogenes in yoghurt in Assiut City[J]. Assiut Veterinary Medical Journal, 2001, 45:122-133

[39] Tang P L, Pui C F,Wong W C, et al, Biofilm forming ability and time course study of growth of Salmonella Typii on fresh produce surfaces[J]. Internatinal Food Reseaech Journal, 2012,19(1):71-76.

[40] Pui C F, Wong W C, Chai L C, et al. Simultaneous detection of Salmonella spp., Salmonella Typhi and Salmonella Typhimurium in sliced fruits using multiplex PCR[J]. Food Control, 2010, 22(2): 337-342.

[41] Sim H L, Hong Y K, Yoon W B, et al. Behavior of Salmonella spp. and natural microbiota on fresh-cut dragon fruits at different storage temperatures[J]. International Journal of food microbiology, 2013, 160(3): 239-244.endprint

[42] Aea R T F, Bushnell O A. Survival times of selected enteropathogenic bacteria in frozen passionfruit nectar base[J]. Applied and Environmental Microbiology, 1962, 10(3): 277-279.

[43] Arvizu-Medrano S M, Iturriaga M H, Escartin E F. Indicator and pathogenic bacteria in guacamole and their behavior in avocado pulp[J]. Journal of Food Safety, 2001, 21(4):233-244.

[44] Critzer F J, Doyle M P. Microbial ecology of foodborne pathogens associated with produce[J]. Current Opinion in Biotechnology, 2010, 21(2): 125-130.

[45] Soto M, Chavez G, Baez M, et al. Internalization of Salmonella typhimurium into mango pulp and prevention of fruit pulp contamination by chlorine and copper ions[J]. International Journal of Environmental Health Research, 2007, 17(6): 453-459.

[46] Wiedemann A, Virlogeux-Payant I, Chaussé A M, et al. Interactions of Salmonella with animals and plants[J]. Frontiers in Microbiology, 2015, 5: 791.

[47] Gu G, Hu J, Cevallos-Cevallos J M, et al. Internal colonization of Samonella enterica serovar Typhimurium in tomato plants[J]. Plos One, 2011, 6(11): e27340.

[48] Lapidotand A, Yarson S. Transfer of Samonella enterica servor typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components[J]. Journal of Food Protection, 2009, 72(3): 618-623.

[49] Kroupitski Y, Brandl M T, Pinto R, et al. Identification of Salmonella enterica genes with a role in persistence on lettuce leaves during cold storage by recombinase-based in vitro expression technology[J]. Phytopathology, 2013, 103(4), 362-372.

[50] Kroupitski Y, Golberg D, Belausov E, et al. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata[J]. Applied and Environmental Microbiology, 2009, 75(19): 6 076-6 086.

[51] Yaron S, Romling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence[J]. Microbial Biotechnology, 2014, 7(6): 496-516.

[52] Samelis J, Ikeda J S, Sofos J N, Evaluation of the pH-dependent, stationary-phase acid tolerance in Listeria monocytogenes and Salmonella Typuimurium DT104 induced by culturing in media with 1% glucose: a comparative study with Escherichia coli O157:H7[J]. Journal of Applied Microbiology, 2003, 95(3): 563-575.

[53] Schikora A, Carreri A, Charpentier E, et al. The dark side of the salad: Samonella typhimurium overcomes the innate immmune response of Arabidopsis thaliana and shows an endopathogenic lifestyle[J]. Plos One, 2008, 3(5): e2279.

[54] Schikora A, Virlogeux-Payant I, Bueso E, et al. Conservation of Salmonella infection mechanisms in plants and animals[J]. PLoS One, 2011, 6(9): e24112

[55] Iniguez A L, Dong Y, Carter H D, et al. Regulation of enteric endophytic bacterial colonization by plant defenses[J]. Molecular Plant-microbe Interactions, 2005, 18(2):169-178.

[56] Deering A J, Mauer L J, Pruitt R E. Internalization of E. coli O157: H7 and Salmonella spp. in plants: a review[J]. Food Research International, 2012, 45(2): 567-575.endprint

猜你喜歡
存活生長(zhǎng)
碗蓮生長(zhǎng)記
共享出行不再“野蠻生長(zhǎng)”
生長(zhǎng)在哪里的啟示
野蠻生長(zhǎng)
生長(zhǎng)
病毒在體外能活多久
病毒在體外能活多久
《生長(zhǎng)在春天》
飛利浦在二戰(zhàn)中如何存活
131I-zaptuzumab對(duì)體外培養(yǎng)腫瘤細(xì)胞存活的影響
察雅县| 聂荣县| 来安县| 大余县| 南宫市| 石河子市| 朝阳区| 万州区| 馆陶县| 石城县| 海兴县| 韶山市| 建水县| 高邑县| 额济纳旗| 虞城县| 丘北县| 同心县| 吴堡县| 巴青县| 乌什县| 那坡县| 通城县| 新泰市| 壶关县| 桑日县| 五河县| 迁西县| 剑川县| 土默特右旗| 元朗区| 封丘县| 拜泉县| 会昌县| 望谟县| 阜平县| 中山市| 石嘴山市| 托里县| 平凉市| 洛川县|