尹櫪,黃利國
(濱州學(xué)院數(shù)學(xué)系,山東濱州256603)
關(guān)于雙參數(shù)廣義三角函數(shù)與雙曲函數(shù)的不等式
尹櫪,黃利國
(濱州學(xué)院數(shù)學(xué)系,山東濱州256603)
利用經(jīng)典的Bernoulli不等式,通過初等解析方法與不等式理論建立了帶雙參數(shù)廣義三角函數(shù)與雙曲函數(shù)的Grünbaum型不等式;另外,還得到了推廣超幾何級數(shù)3F2的兩個雙邊不等式.
不等式;廣義三角函數(shù)與雙曲函數(shù);推廣超幾何級數(shù)
帶參數(shù)的廣義三角函數(shù)與雙曲函數(shù)的研究是最近發(fā)展起來的一個新課題.文獻(xiàn)[1]引入了廣義三角函數(shù)(如:sinp)的定義.當(dāng)p=2時,這些函數(shù)包含了通常的三角函數(shù).2010年,文獻(xiàn)[2]發(fā)展了一套計算sinp的數(shù)值方法.最近,文獻(xiàn)[3]介紹了(p,q)-三角函數(shù)的定義,并研究相關(guān)的性質(zhì)和不等式.目前,國內(nèi)外越來越多的科研工作者展開了對此領(lǐng)域的研究[3-8].
定義高斯超幾何函數(shù)如下:
其中a,b,c為復(fù)數(shù),c≠0,-1,-2,···,(a,0)=1(a≠0),(a,n)=a(a+1)···(a+n-1).容易知道,一些常見的函數(shù)和(p,q)-三角函數(shù)都是高斯超幾何函數(shù)的特殊情況,具體表示見文獻(xiàn)[10].
定義帶雙參數(shù)廣義反正弦與反雙曲函數(shù)arcsinpqx與arcsinhpqx如下:
其中p>1,q>1,x∈(0,1).之后,通過定義其反函數(shù)并連續(xù)延拓到R,可以定義(p,q)-三角函數(shù)如sinpqx,cospqx,sinhpqx,coshpqx等,詳見文獻(xiàn)[4].
推廣的超幾何級數(shù)3F2定義如下:
易知此級數(shù)當(dāng)|z|<1時收斂.
引理2.1[7]設(shè)f:(a,+∞)→R,(a>0).函數(shù)上的單調(diào)遞增函數(shù),令h(x)=f(x2),則Grünbaum不等式
成立.其中x,y≥a且z2=x2+y2.若g為(a,+∞)上的單調(diào)遞減函數(shù),則
引理2.2[4]當(dāng)p>1,q>1時,對任意x∈(0,1),有
定理2.1當(dāng)p>1,q>1時,對任意x,y,z∈(0,1),只要滿足z2=x2+y2,則有Grünbaum型不等式
成立.
定理2.2當(dāng)p>1,q≥2時,對任意x,y,z∈(0,1)且滿足z2=x2+y2時,有
下面推導(dǎo)兩種不同類型的推廣超幾何函數(shù)3F2(或clausen函數(shù))的上、下界.其主要思想是通過考慮和差形式arcsinpqx±arcsinhpqx,利用推廣三角函數(shù)的上、下界來進(jìn)行估計.
定理2.3當(dāng)p>1,q>1時,對任意x∈(0,1),有
定理2.4當(dāng)p>1,q>1時,對任意x∈(0,1),有
注2.2推廣超幾何函數(shù)3F2的研究已有一些成果,如文獻(xiàn)[10-12],但是估計上下界的成果并不多.值得注意的是Karp得到了推廣超幾何函數(shù)q+1Fq的一些估計[13].
在文獻(xiàn)[7]中,Baricz等利用單參數(shù)廣義三角函數(shù)與雙曲函數(shù)的估計給出了一種特殊形式下3F2的上下界,本文結(jié)果推廣了上述情況.
(1)對于三角函數(shù),有簡單的倍角公式sin(2x)=2sinxcosx,自然希望把此公式推廣到帶參數(shù)的廣義三角函數(shù)中去.目前唯一的結(jié)果是Edmunds-Gurka-Lang等式,這個公式巧妙的利用了Jacobi橢圓函數(shù)的性質(zhì)處理了這種特殊情況.即
一般情況下還沒有解決.
(2)廣義三角函數(shù)與雙曲函數(shù)的Turán型不等式,這個課題已有一些結(jié)果,但仍有很多猜想沒有解決,讀者可參看文獻(xiàn)[7,13].
(3)廣義三角函數(shù)與雙曲函數(shù)的各類平均不等式.目前,對于冪平均(Power mean)、對數(shù)平均(Logarithmic mean)和恒等平均(Identic mean)等已有研究(可見文獻(xiàn)[6,14-15]).
[1]Linqvist P.Some remarkable sine and cosine functions[J].Ricerche di Matematica,1995,44:269-290.
[2]Biezuner R J,Ercole G,Martins E M.Computing the sinpfunction via the inverse power method[J].Comput.Methods Appl.Math.,2012,(2):129-140.
[3]Takeuchi S.Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian[J].J.Math.Anal.Appl.,2012,385:24-35.
[4]Bhayo B A,Vuorinen M.On generalized trigonometric functions with two parameters[J].J.Approx.Theory,2012,164(10):1415-1426.
[5]Jiang W D,Wang M K,Chu Y M,et al.Convexity of the generalized sine function and the generalized hyperbolic sine function[J].J.Approx.Theory,2013,174:1-9.
[6]Bariczá,Bhayo B A,Klén R.Convexity properties of generalized trigonometric and hyperbolic functions[J].Aequat.Math.,2015,89(3):473-484.
[7]Bariczá,Bhayo B A,Pogány T K.Functional inequalities for generalized inverse trigonometric and hyperbolic functions[J].J.Math.Anal.Appl.,2014,417:244-259.
[8]Edmunds D E,Gurka P,Lang J.Properties of generalized trigonometric functions[J].J.Approx.Theory,2012,164:47-56.
[9]王竹溪,郭敦仁.特殊函數(shù)概論[M].北京:北京大學(xué)出版社,2000.
[10]Maier R S.P-symbol,Heun identities,and3F2identities[J].Contemp.Math.,2008,471:139-159.
[11]Lavoie J L,Grondin F,Rathie A K.Generalizations of wastons theorems on the sum of a3F2[J].Indian J.Math.,1992,32(1):23-32.
[12]Lavoie J L,Grondin F,Rathie A K.Generalizations of whipples theorems on the sum of a3F2[J].Math.Comp.,1994,205(62):267-276.
[13]Karp D.Representations and inequalities for generalized hypergeometric functions[J].J.Math.Anal.Appl.,2014,421(1):370-382.
[14]Bhayo B A,Vuorinen M.Power mean inequality of generalized trigonometric functions[J].Matematicki Vesnik,2015,67(1):17-25.
[15]Bhayo B A,Yin L.Logarithmic mean inequality for generalized trigonometric and hyperbolic functions[J].Acta.Univ.Sapientiae Math.,2014,6(2):135-145.
Some inequalities for the generalized trigonometric and hyperbolic functions with two parameters
Yin Li,Huang Liguo
(Department of Mathematics,Binzhou University,Binzhou256603,China)
In this paper,we present some Grünbaum type inequalities for the generalized trigonometric and hyperbolic functions with two parameters by applying classical Bernoulli inequality.Meanwhile,we obtain two bilateral inequalities for the generalized hypergeometric function3F2.
inequality,generalized trigonometric and hyperbolic functions,generalized hypergeometric function
O178
A
1008-5513(2015)05-0474-06
10.3969/j.issn.1008-5513.2015.05.006
2014-11-09.
國家自然科學(xué)基金(11401041);濱州學(xué)院科研基金(BZXYL1303,2013Y02).
尹櫪(1979-),碩士,講師,研究方向:特殊函數(shù)的不等式及其應(yīng)用.
2010 MSC:33B10