魏巍,馮毅雄,程錦
(1.北京航空航天大學(xué) 機(jī)械工程及自動(dòng)化學(xué)院,北京100191;2.浙江大學(xué) 流體動(dòng)力與機(jī)電系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,杭州310027)
產(chǎn)品族設(shè)計(jì)是實(shí)現(xiàn)大批量定制的有效方式[1],模塊化產(chǎn)品族與參數(shù)化產(chǎn)品族是當(dāng)前產(chǎn)品族設(shè)計(jì)領(lǐng)域的兩大分支.模塊化產(chǎn)品族的設(shè)計(jì)策略主要是通過(guò)模塊單元的組合與變換來(lái)實(shí)現(xiàn)客戶需求的響應(yīng),參數(shù)化產(chǎn)品族不改變產(chǎn)品的拓?fù)浣Y(jié)構(gòu),通過(guò)改變影響產(chǎn)品性能的設(shè)計(jì)變量的取值來(lái)設(shè)計(jì)出性能差異的產(chǎn)品.
在參數(shù)化產(chǎn)品族的設(shè)計(jì)與優(yōu)化方法研究方面,目前的研究主要集中在面向單平臺(tái)的產(chǎn)品族設(shè)計(jì)方法及面向多平臺(tái)的產(chǎn)品族設(shè)計(jì)方法.Dai和Scoot[2]在產(chǎn)品族單平臺(tái)策略下,使用偏好聚合法在一個(gè)數(shù)學(xué)模型中集成描述參數(shù)化產(chǎn)品族的平臺(tái)常量和設(shè)計(jì)變量,提出了綜合考慮性能和成本指數(shù)的參數(shù)化產(chǎn)品族單階段設(shè)計(jì)方法,但該方法的求解效率有待提高.Nomaguchi等[3]根據(jù)信息的重要性與可用性,提出一種設(shè)計(jì)方法選擇矩陣進(jìn)行產(chǎn)品平臺(tái)設(shè)計(jì),該方法對(duì)信息重要性的評(píng)斷值得商榷.Akundi等[4]建立了產(chǎn)品族性能敏感度評(píng)價(jià)指數(shù),通過(guò)敏感度分析進(jìn)行產(chǎn)品平臺(tái)設(shè)計(jì),該方法能夠有效提高產(chǎn)品平臺(tái)的通用性.Khajavirad等[5]研究了多平臺(tái)下產(chǎn)品族染色體表達(dá)方式及算法的交叉與變異算子,開(kāi)辟了產(chǎn)品族的多平臺(tái)求解思路.Kumar和Allada[6]模擬蟻群聚合規(guī)律,提出了基于多代理蟻群算法的參數(shù)化產(chǎn)品族設(shè)計(jì)法,該方法成功地將蟻群算法應(yīng)用于產(chǎn)品族設(shè)計(jì)過(guò)程中.Alizon等[7]將價(jià)值分析技術(shù)應(yīng)用于產(chǎn)品族的設(shè)計(jì)中,通過(guò)設(shè)計(jì)結(jié)構(gòu)矩陣和性能指數(shù)評(píng)價(jià)進(jìn)行產(chǎn)品族優(yōu)化設(shè)計(jì).檀潤(rùn)華團(tuán)隊(duì)[8]提出了基于相似性分析與結(jié)構(gòu)敏感性分析的產(chǎn)品平臺(tái)設(shè)計(jì)過(guò)程模型.唐加福等[9]基于質(zhì)量功能配置,以最大化滿足客戶需求為優(yōu)化目標(biāo),該方法提高了客戶需求滿意度.李中凱等[10]面向柔性產(chǎn)品平臺(tái),提出了基于定量指數(shù)與聯(lián)合分析的產(chǎn)品族多目標(biāo)優(yōu)化方法,該方法面向柔性產(chǎn)品平臺(tái)實(shí)現(xiàn)了產(chǎn)品族的多目標(biāo)優(yōu)化.
本文在以上學(xué)者研究基礎(chǔ)上,考慮到目前的產(chǎn)品族的設(shè)計(jì)研究方法難以客觀地權(quán)衡產(chǎn)品平臺(tái)通用性和產(chǎn)品多樣化性能間的博弈關(guān)系,產(chǎn)品族自身結(jié)構(gòu)的穩(wěn)健性一般,提出參數(shù)化產(chǎn)品族遞進(jìn)式設(shè)計(jì)方法,對(duì)產(chǎn)品平臺(tái)通用性與產(chǎn)品實(shí)例性能進(jìn)行權(quán)衡優(yōu)化.優(yōu)化方法采用遞進(jìn)式的兩階段優(yōu)化設(shè)計(jì)策略,考慮到改進(jìn)的強(qiáng)度Pareto進(jìn)化算法(Strength Pareto Evolutionary Algorithm 2+,SPEA2+)適用于產(chǎn)品平臺(tái)的優(yōu)化求解,非支配排序多目標(biāo)遺傳算法(Non-dominated Sorting Genetic Algorithm-II,NSGA-II)算法適用于多個(gè)產(chǎn)品個(gè)體的并行優(yōu)化求解.因此,第一階段SPEA2+算法優(yōu)化產(chǎn)品族設(shè)計(jì)平臺(tái),獲得產(chǎn)品族設(shè)計(jì)參數(shù)的敏感度和變差指數(shù),劃分平臺(tái)常量和設(shè)計(jì)變量得到穩(wěn)健的產(chǎn)品平臺(tái),提高了產(chǎn)品平臺(tái)的通用性.第二階段采用NSGA-II對(duì)產(chǎn)品的多個(gè)性能進(jìn)行優(yōu)化,在已有的產(chǎn)品平臺(tái)基礎(chǔ)上優(yōu)化設(shè)計(jì)變量的取值,設(shè)計(jì)出性能最佳的產(chǎn)品設(shè)計(jì)方案.
在參數(shù)化產(chǎn)品族的設(shè)計(jì)中,一方面要在設(shè)計(jì)過(guò)程中考慮到產(chǎn)品平臺(tái)的通用性,另一方面要兼顧到產(chǎn)品的多樣化性能.通常來(lái)說(shuō)這二者之間存在著此消彼長(zhǎng)的相互博弈關(guān)系,針對(duì)二者間的作用關(guān)系,文獻(xiàn)[11]建立了以目標(biāo)的偏離程度為衡量標(biāo)準(zhǔn)的定量評(píng)價(jià)機(jī)制,分別建立了產(chǎn)品族設(shè)計(jì)平臺(tái)通用性目標(biāo)評(píng)價(jià)指數(shù)(Non Commonality Index,NCI)與產(chǎn)品族性能目標(biāo)的偏離指數(shù)(Performance Deviation Index,PDI)[11].如圖 1 所示,在通用性與性能權(quán)衡的參數(shù)化產(chǎn)品族優(yōu)化設(shè)計(jì)模型中,NCI值越小,表示產(chǎn)品族設(shè)計(jì)平臺(tái)的通用性越高,PDI值越小,表示產(chǎn)品族的綜合性能越優(yōu).通過(guò)分析可以看出,綜合最優(yōu)的產(chǎn)品設(shè)計(jì)方案分布在G區(qū),最劣的設(shè)計(jì)方案分布在D區(qū),參數(shù)化產(chǎn)品族設(shè)計(jì)以同時(shí)減小產(chǎn)品設(shè)計(jì)方案的NCI和PDI值為目標(biāo),提高平臺(tái)通用性和產(chǎn)品性能,使得產(chǎn)品設(shè)計(jì)方案從D區(qū)演變到G區(qū).
圖1 通用性與性能權(quán)衡的參數(shù)化產(chǎn)品族優(yōu)化設(shè)計(jì)模型Fig.1 Universality and performance balance optimization design model of parametric product family
產(chǎn)品族中包括多個(gè)變量,首先區(qū)分這些變量的屬性進(jìn)行產(chǎn)品平臺(tái)的設(shè)計(jì),產(chǎn)品平臺(tái)常量與設(shè)計(jì)變量的劃分結(jié)果直接影響到產(chǎn)品平臺(tái)的通用性.為了客觀地規(guī)劃產(chǎn)品平臺(tái)常量和設(shè)計(jì)變量,引入設(shè)計(jì)參數(shù)的敏感度[12]和變差指數(shù)[13]進(jìn)行產(chǎn)品平臺(tái)常量與設(shè)計(jì)變量的劃分計(jì)算.
設(shè)計(jì)參數(shù)的敏感度表征了參數(shù)的取值變化對(duì)產(chǎn)品性能變化的影響程度[12],敏感度數(shù)值較小的參數(shù)對(duì)產(chǎn)品性能變化的影響相對(duì)較小,在參數(shù)化產(chǎn)品族遞進(jìn)式優(yōu)化設(shè)計(jì)過(guò)程中,對(duì)于產(chǎn)品族中包括的多個(gè)變量參數(shù),敏感度小的參數(shù)被設(shè)置為產(chǎn)品平臺(tái)常量,這些參數(shù)在平臺(tái)層進(jìn)行優(yōu)化,敏感度大的參數(shù)被設(shè)置為設(shè)計(jì)變量,這些參數(shù)需要在實(shí)例層進(jìn)行優(yōu)化.產(chǎn)品設(shè)計(jì)參數(shù)的變差指數(shù)[13]用來(lái)衡量設(shè)計(jì)參數(shù)的變化程度.在設(shè)計(jì)產(chǎn)品平臺(tái)時(shí),變差指數(shù)較小的設(shè)計(jì)參數(shù)被選作平臺(tái)常量,變差指數(shù)較大的設(shè)計(jì)參數(shù)被選作設(shè)計(jì)變量.
對(duì)各個(gè)參數(shù)敏感度的計(jì)算可以通過(guò)一階偏導(dǎo)[12]法求取.設(shè)產(chǎn)品族的性能目標(biāo)函數(shù)集合為F(x)={f1(x),f2(x),…,fm(x)}(m 為性能目標(biāo)的個(gè)數(shù)),在 x={x1,x2,…,xn}(n 為設(shè)計(jì)參數(shù)的個(gè)數(shù))時(shí)得到最佳設(shè)計(jì)結(jié)果,則產(chǎn)品Pk中第j個(gè)設(shè)計(jì)參數(shù)xj對(duì)第i個(gè)性能目標(biāo)的敏感度為
式中:Δxj為設(shè)計(jì)參數(shù)xj的微小變化;Δfi(x)為產(chǎn)品第i個(gè)性能受設(shè)計(jì)參數(shù)變化引起的波動(dòng).
建立產(chǎn)品Pk中所有設(shè)計(jì)參數(shù)對(duì)產(chǎn)品性能目標(biāo)fm(x)的敏感度矩陣為
則設(shè)計(jì)參數(shù)xj對(duì)產(chǎn)品性能i的全局敏感度為
式中:Mijk為第k個(gè)產(chǎn)品第j個(gè)設(shè)計(jì)參數(shù)xj對(duì)產(chǎn)品第i個(gè)性能的局部敏感度;H為產(chǎn)品實(shí)例數(shù).
產(chǎn)品設(shè)計(jì)參數(shù)的變差指數(shù)可通過(guò)參數(shù)的均值和方差值求取,求取過(guò)程為
式中:dj為第j個(gè)設(shè)計(jì)參數(shù)xj的變差指數(shù);μj為第j個(gè)設(shè)計(jì)參數(shù)xj在產(chǎn)品實(shí)例中的均值;δj為第j個(gè)設(shè)計(jì)參數(shù)xj的方差值.
敏感度和變差指數(shù)都計(jì)算完畢后,需要設(shè)置敏感度的閾值λj和變差指數(shù)的閾值β,然后提取敏感度和變差指數(shù)都小于閾值的設(shè)計(jì)參數(shù)選作平臺(tái)常量,其他參數(shù)選作設(shè)計(jì)變量,如圖2所示,產(chǎn)品平臺(tái)常量為敏感度小于λj并且變差指數(shù)小于β的設(shè)計(jì)參數(shù)交集.
建立參數(shù)化產(chǎn)品族的遞進(jìn)式優(yōu)化設(shè)計(jì)流程.如圖3所示,首先確定產(chǎn)品族設(shè)計(jì)問(wèn)題的優(yōu)化目標(biāo),建立相應(yīng)的產(chǎn)品族設(shè)計(jì)數(shù)學(xué)優(yōu)化模型.將參數(shù)化產(chǎn)品族遞進(jìn)式設(shè)計(jì)過(guò)程分為兩個(gè)階段,分別是第一階段的產(chǎn)品平臺(tái)優(yōu)化設(shè)計(jì)和平臺(tái)建立后第二階段的產(chǎn)品實(shí)例優(yōu)化設(shè)計(jì).針對(duì)SPEA2+與NSGA-II算法求解優(yōu)化問(wèn)題各自特點(diǎn)和優(yōu)勢(shì),提出SPEA2+與NSGA-II相結(jié)合的多目標(biāo)混合進(jìn)化算法.在產(chǎn)品平臺(tái)設(shè)計(jì)階段,采用SPEA2+算法[14]進(jìn)行優(yōu)化,通過(guò)設(shè)計(jì)參數(shù)的敏感度分析和變差指數(shù)的計(jì)算進(jìn)行產(chǎn)品平臺(tái)常量和設(shè)計(jì)變量的選取,提高產(chǎn)品族的NCI值,增強(qiáng)產(chǎn)品平臺(tái)的通用性和穩(wěn)健性.在產(chǎn)品實(shí)例的設(shè)計(jì)階段采用NSGA-II算法[15]進(jìn)一步優(yōu)化產(chǎn)品實(shí)例的多個(gè)性能,提高產(chǎn)品族的PDI值.
圖2 參數(shù)化產(chǎn)品平臺(tái)的設(shè)計(jì)Fig.2 Parametric product platform design
圖3 參數(shù)化產(chǎn)品族遞進(jìn)式優(yōu)化設(shè)計(jì)流程Fig.3 Parametric product family progressive optimization design process
參數(shù)化產(chǎn)品族的設(shè)計(jì)優(yōu)化問(wèn)題通常是多目標(biāo)優(yōu)化問(wèn)題,考慮到傳統(tǒng)的優(yōu)化目標(biāo)函數(shù)線性加權(quán)法不能保證設(shè)計(jì)結(jié)果的Pareto最優(yōu)性[15],本文采用SPEA2+與NSGA-II相結(jié)合的多目標(biāo)混合進(jìn)化算法對(duì)產(chǎn)品族設(shè)計(jì)平臺(tái)及產(chǎn)品實(shí)例進(jìn)行優(yōu)化求解.
SPEA2+是改進(jìn)的強(qiáng)度Pareto進(jìn)化算法的改進(jìn)[14],該算法不需要設(shè)置小生境算子,通過(guò)外部種群裁減機(jī)制來(lái)控制種群規(guī)模,具有較高的收斂速度,改進(jìn)算法具有解集分散特點(diǎn),能夠獲得分布均勻的Pareto前沿,適用于產(chǎn)品平臺(tái)的優(yōu)化求解.
NSGA-II算法[15]基于非支配排序策略,通過(guò)擁擠距離計(jì)算和優(yōu)勢(shì)點(diǎn)的保持來(lái)獲取Pareto解前沿,該算法的特點(diǎn)是可以建立多線程的并行優(yōu)化機(jī)制,種群規(guī)模對(duì)算法求解時(shí)間影響較小,適用于多個(gè)產(chǎn)品個(gè)體的并行優(yōu)化求解.
針對(duì)以上兩種算法的特點(diǎn),提出SPEA2+與NSGA-II相結(jié)合的多目標(biāo)混合進(jìn)化算法對(duì)參數(shù)化產(chǎn)品族進(jìn)行優(yōu)化,將兩種算法分別應(yīng)用到產(chǎn)品平臺(tái)優(yōu)化和產(chǎn)品實(shí)例性能優(yōu)化兩個(gè)過(guò)程,采用遞進(jìn)式優(yōu)化策略對(duì)產(chǎn)品族進(jìn)行優(yōu)化,混合進(jìn)化算法使用了兩類種群進(jìn)行求解,解決了同步進(jìn)化過(guò)程中引起的數(shù)據(jù)擾動(dòng)問(wèn)題,使得產(chǎn)品族設(shè)計(jì)優(yōu)化求解更有效.
基于參數(shù)化產(chǎn)品族遞進(jìn)式優(yōu)化設(shè)計(jì)流程,建立多目標(biāo)混合進(jìn)化算法的求解運(yùn)算步驟如下:
步驟1 根據(jù)文獻(xiàn)[3]提出的方法,通過(guò)基因鏈來(lái)表達(dá)參數(shù)化產(chǎn)品族結(jié)構(gòu).
步驟2 初始化參數(shù)化產(chǎn)品族種群,設(shè)置初始種群規(guī)模數(shù)N,并根據(jù)種群規(guī)模隨機(jī)生成種群Pop.
步驟3 應(yīng)用SPEA2+算法優(yōu)化初始種群,得到設(shè)計(jì)方案的Pareto最優(yōu)解,根據(jù)基因鏈排列結(jié)構(gòu)得到各個(gè)設(shè)計(jì)參數(shù)值.
步驟4 計(jì)算各個(gè)設(shè)計(jì)參數(shù)的平均值、方差和變差指數(shù),分析每個(gè)設(shè)計(jì)參數(shù)的微小變化帶來(lái)的產(chǎn)品性能波動(dòng),列出設(shè)計(jì)參數(shù)對(duì)產(chǎn)品性能的敏感度,并設(shè)定敏感度的閥值λ和變差指數(shù)的閥值β.
步驟5 根據(jù)敏感度和變差指數(shù)劃分產(chǎn)品平臺(tái)常量和設(shè)計(jì)變量,建立穩(wěn)健的產(chǎn)品平臺(tái),降低平臺(tái)通用性目標(biāo)偏離指數(shù)NCI,提高產(chǎn)品平臺(tái)的通用性.
步驟6 在建立好的穩(wěn)健產(chǎn)品平臺(tái)上,根據(jù)步驟2的方法進(jìn)行種群初始化,建立NSGA-II的并行進(jìn)化機(jī)制,保持產(chǎn)品平臺(tái)常量不變,優(yōu)化產(chǎn)品平臺(tái)設(shè)計(jì)變量,求取產(chǎn)品Pareto前沿,降低產(chǎn)品族的性能目標(biāo)偏離指數(shù)PDI,優(yōu)化產(chǎn)品實(shí)例的多個(gè)性能,
步驟7 根據(jù)步驟6獲得的產(chǎn)品Pareto前沿,得到最佳解的基因鏈排列結(jié)構(gòu),進(jìn)而推出產(chǎn)品最佳設(shè)計(jì)方案,并輸出設(shè)計(jì)結(jié)果.
電動(dòng)機(jī)在保持其產(chǎn)品平臺(tái)常量恒定,僅通過(guò)變化疊厚就能夠派生出不同輸出扭矩的系列化產(chǎn)品,是典型的參數(shù)化產(chǎn)品.其設(shè)計(jì)任務(wù)是設(shè)計(jì)輸出功率相同,但扭矩不同的8個(gè)電動(dòng)機(jī)組成的產(chǎn)品族.建立電動(dòng)機(jī)產(chǎn)品族設(shè)計(jì)問(wèn)題的多目標(biāo)優(yōu)化數(shù)學(xué)模型[16],兩個(gè)優(yōu)化目標(biāo)為:電動(dòng)機(jī)產(chǎn)品的效率η最高,同時(shí)優(yōu)化電動(dòng)機(jī)產(chǎn)品的質(zhì)量W最小.
建立電動(dòng)機(jī)的優(yōu)化目標(biāo)函數(shù)和約束條件[16]:
電動(dòng)機(jī)質(zhì)量:
電動(dòng)機(jī)效率:
電動(dòng)機(jī)扭矩:
式中:W1為定子質(zhì)量;W2為電樞質(zhì)量;W3為電圈質(zhì)量;t為定子厚度;ro為定子外徑;L為電動(dòng)機(jī)的疊厚;Awa為轉(zhuǎn)子線圈橫截面積;Awf為定子線圈橫截面積;Awire為導(dǎo)線橫截面積;Ns為定子磁極繞線扎數(shù);Nc為轉(zhuǎn)子繞線扎數(shù);ρ為銅導(dǎo)線電阻率;ρcopper為銅線密度;ρsteel為鐵密度;Pin為輸入功率;Pout為輸出功率;Ploss為功率損失;I為電流強(qiáng)度;Rs為電樞電阻;Ra為線圈電阻;Ф為磁通量;L為疊厚;lgap為空氣槽間隙.
為方便求解,用電動(dòng)機(jī)的效率損失代替效率,將電動(dòng)機(jī)產(chǎn)品族的設(shè)計(jì)模型轉(zhuǎn)化為求兩個(gè)目標(biāo)最小值的多目標(biāo)約束優(yōu)化問(wèn)題.獲取電動(dòng)機(jī)產(chǎn)品的主要設(shè)計(jì)參數(shù)及其取值范圍如表1所示,獲取設(shè)計(jì)約束條件如表2所示.
表1 電動(dòng)機(jī)的主要設(shè)計(jì)參數(shù)及其取值范圍Table 1 Main design parameters and their ranges of electromotor
表2 電動(dòng)機(jī)產(chǎn)品的設(shè)計(jì)約束條件Table 2 Design constraints of electromotor product
第一階段通過(guò)對(duì)設(shè)計(jì)參數(shù)的敏感度進(jìn)行分析,并計(jì)算參數(shù)的變差指數(shù),劃分出產(chǎn)品平臺(tái)常量和設(shè)計(jì)變量,建立通用性較高的產(chǎn)品平臺(tái).式(5)~式(8)建立了電動(dòng)機(jī)產(chǎn)品設(shè)計(jì)優(yōu)化的多目標(biāo)優(yōu)化模型,電動(dòng)機(jī)產(chǎn)品族遞進(jìn)式優(yōu)化設(shè)計(jì)的第一階段采用SPEA2+進(jìn)化算法求解模型,設(shè)定SPEA2+進(jìn)化算法的優(yōu)化群規(guī)模Pop=500,循環(huán)迭代數(shù)G=1000,設(shè)定算法的交叉概率Uc=0.6,算法的變異概率Um=0.05.改變電動(dòng)機(jī)的扭矩T,分別求得不同扭矩下電動(dòng)機(jī)產(chǎn)品的Pareto集及綜合最優(yōu)點(diǎn)如圖4所示.
圖4 電機(jī)產(chǎn)品族優(yōu)化設(shè)計(jì)的Pareto集及綜合最優(yōu)點(diǎn)Fig.4 Pareto set of electromotor product family optimization design and the comprehensive best point
采用SPEA2+進(jìn)化算法對(duì)不同扭矩下的電動(dòng)機(jī)產(chǎn)品進(jìn)行優(yōu)化求解,選取不同轉(zhuǎn)矩下電動(dòng)機(jī)產(chǎn)品設(shè)計(jì)參數(shù)對(duì)效率η和電動(dòng)機(jī)質(zhì)量W的局部敏感度,并按照式(3)計(jì)算其全局敏感度,計(jì)算結(jié)果如表3、表4所示.
根據(jù)式(4)計(jì)算各設(shè)計(jì)參數(shù)的均值、方差和變差指數(shù),如表5所示.設(shè)定電動(dòng)機(jī)質(zhì)量的全局敏感度MGW閾值λ1=0.20,設(shè)定電動(dòng)機(jī)運(yùn)行效率的全局敏感度MGη閾值λ2=0.15,設(shè)定設(shè)計(jì)參數(shù)變差指數(shù)d的閾值β=10%.由設(shè)計(jì)結(jié)果可知,工作效率全局敏感度小于0.15的參數(shù)有{Awf,Awa,ro,t},電動(dòng)機(jī)質(zhì)量的全局敏感度小于0.20的參數(shù)有{Awf,Awa,ro,t,I},變差指數(shù)小于 10% 的參數(shù)為{Awf,Awa,ro,t}.選擇全局敏感度小于 λ2并且變差指數(shù)小于β的參數(shù)作為平臺(tái)常量,其余參數(shù)作為設(shè)計(jì)變量,得到電動(dòng)機(jī)產(chǎn)品平臺(tái)常量集合{Awf,Awa,ro,t}和設(shè)計(jì)變量集合{L,Nc,Ns,I},對(duì)于平臺(tái)常量的取值,可通過(guò)計(jì)算原數(shù)據(jù)中對(duì)應(yīng)參數(shù)的平均值獲得,計(jì)算結(jié)果為{I=4.1,Awf=0.35,t=5.6,Awa=0.22}.
表3 設(shè)計(jì)參數(shù)對(duì)電動(dòng)機(jī)工作效率的敏感度Table 3 Sensibility of electromotor design parameters and efficiency
表4 設(shè)計(jì)參數(shù)對(duì)電動(dòng)機(jī)質(zhì)量的敏感度Table 4 Sensibility of electromotor’s design parameters and weight
表5 電動(dòng)機(jī)設(shè)計(jì)參數(shù)的均值、方差和變差指數(shù)Table 5 Mean value,variance and diversity factor of electromotor design parameters
根據(jù)電動(dòng)機(jī)產(chǎn)品族遞進(jìn)式優(yōu)化設(shè)計(jì)流程,在第二階段,采用NSGA-II算法在已有的產(chǎn)品平臺(tái)基礎(chǔ)上進(jìn)一步優(yōu)化求解設(shè)計(jì)模型,采用與電動(dòng)機(jī)產(chǎn)品族遞進(jìn)式設(shè)計(jì)第一階段相同的運(yùn)算參數(shù),優(yōu)化求取各電動(dòng)機(jī)的優(yōu)化結(jié)果如表6所示.
表6 電動(dòng)機(jī)實(shí)例產(chǎn)品設(shè)計(jì)優(yōu)化結(jié)果Table 6 Optimization result of electromotor design product instance
Simpson等[11]提出了參數(shù)化產(chǎn)品族設(shè)計(jì)的(Product Platform Concept Exploration Method,PPCEM)方法,Dai等[2]提出了參數(shù)化產(chǎn)品族的單階段優(yōu)化方法.將本文提出的基于混合進(jìn)化算法的產(chǎn)品族遞進(jìn)式設(shè)計(jì)方法與上述兩種方法在同一運(yùn)算環(huán)境下進(jìn)行對(duì)比分析,表7為采用不同方法優(yōu)化電動(dòng)機(jī)質(zhì)量和效率的對(duì)比結(jié)果.為比較本文提出方法與PPCEM及單階段獨(dú)立優(yōu)化方法的求解效率與運(yùn)算性能,引用Pareto解的趨近前沿標(biāo)準(zhǔn)[17]和解集分散多樣性標(biāo)準(zhǔn)[15].對(duì)于 Pareto 解的趨近前沿標(biāo)準(zhǔn),趨近前沿度數(shù)值越大表征解集的收斂程性越好,對(duì)于解集分散多樣性標(biāo)準(zhǔn),其數(shù)值越小表征解集的分散程度越佳.表8所示為不同算法求解獲得的Pareto解趨近前沿度、分散多樣性以及運(yùn)算時(shí)間的比較.
表7 混合進(jìn)化算法的產(chǎn)品族遞進(jìn)式優(yōu)化設(shè)計(jì)方法與其他設(shè)計(jì)方法的結(jié)果對(duì)比Table 7 Comparison of product family progressive optimization design approach based on mix-evolution algorithm and other approaches
表8 不同算法獲得的結(jié)果比較Table 8 Comparison of results obtained by different optimization algorithms
綜合算法的對(duì)比結(jié)果可知,基于混合進(jìn)化算法的遞進(jìn)式優(yōu)化設(shè)計(jì)方法在解決參數(shù)化產(chǎn)品族設(shè)計(jì)的多目標(biāo)優(yōu)化問(wèn)題上,能夠在獲得分布性和收斂性更好的Pareto解同時(shí),縮短算法的運(yùn)算時(shí)間.
對(duì)于更為復(fù)雜的產(chǎn)品,隨著產(chǎn)品設(shè)計(jì)參數(shù)的增加,本算法在解的多樣性方面會(huì)有所提升,但收斂性會(huì)隨參數(shù)的增加而降低.
1)本文提出了參數(shù)化產(chǎn)品族的遞進(jìn)式優(yōu)化設(shè)計(jì)方法,構(gòu)建了穩(wěn)健的產(chǎn)品平臺(tái).所提出的多目標(biāo)混合進(jìn)化算法,能夠在提高產(chǎn)品平臺(tái)通用性的同時(shí)優(yōu)化產(chǎn)品設(shè)計(jì)參數(shù).
2)混合進(jìn)化算法解決了同步進(jìn)化帶來(lái)的數(shù)據(jù)擾動(dòng)問(wèn)題,使得運(yùn)算求解更有效.通過(guò)與產(chǎn)品族PPCEM方法及單階段獨(dú)立優(yōu)化設(shè)計(jì)方法的仿真結(jié)果對(duì)比分析,本文提出的基于多目標(biāo)混合進(jìn)化算法的遞進(jìn)式優(yōu)化設(shè)計(jì)方法在解決電動(dòng)機(jī)產(chǎn)品族設(shè)計(jì)問(wèn)題上,能夠獲得更好的設(shè)計(jì)結(jié)果.
References)
[1]樊蓓蓓,紀(jì)楊建,祁國(guó)寧,等.產(chǎn)品族零部件關(guān)系網(wǎng)絡(luò)實(shí)證分析及演化[J].浙江大學(xué)學(xué)報(bào):工學(xué)版,2009,43(2):213-219.Fan B B,Ji Y J,Qi G N,et al.Demonstration analysis and evolution of parts relationship network for product family[J].Journal of Zhejiang University:Engineering Science,2009,43(2):213-219(in Chinese).
[2] Dai Z,Scoot M.Product platform design through sensitivity analysis and cluster analysis[J].Journal of Intelligent Manufacturing,2007,18(1):97-113.
[3] Nomaguchi Y,Askh?j A,Madsen K F,et al.Study on how to select appropriate design methods for product platform and family design[J].Nihon Kikai Gakkai Ronbunshu,C Hen/Transactions of the Japan Society of Mechanical Engineers,Part C,2013,79:866-879.
[4] Akundi S V K,Simpson T W,Reed P M.Multi-objective design optimization for product platform and product family design using genetic algorithms[C]∥Proceedings of ASME International Design Engineering Technical Conferences&Computers and Information in Engineering Conference.167 Jalan Bukit Merah:American Society of Mechanical Engineers,2005,2B:999-1008.
[5] Khajavirad A,Michalek J J,Simpson T W.A decomposed genetic algorithm for solving the joint product family optimization Problem[C]∥Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Reston:AIAA,2007,2:2111-2124.
[6] Kumar R,Allada V.Scalable platforms using ant colony optimization[J].Journal of Intelligent Manufacturing,2007,18(1):127-142.
[7] Alizon F,Shooter S,Simpson T W.Improving an existing product family based on commonality/diversity,modularity,and cost[J].Design Studies,2007,28(4):387-409.
[8]張換高,趙文燕,江屏,等.基于相似性與結(jié)構(gòu)敏感性分析的產(chǎn)品平臺(tái)設(shè)計(jì)過(guò)程模型[J].機(jī)械工程學(xué)報(bào),2012,48(11):104-118.Zhang H G,Zhao W Y,Jiang P,et al.Product platform design process model based on similarity and structural sensitivity analysis[J].Mechanical Engineering,2012,48(11):104-118(in Chinese).
[9]李柏姝,唐加福,雒興剛.面向細(xì)分市場(chǎng)的產(chǎn)品族規(guī)劃方法及應(yīng)用[J].計(jì)算機(jī)集成制造系統(tǒng),2009,15(6):1055-1061.Li B S,Tang J F,Lou X G.Method and application of product family design for market niche[J].Computer Integrated Manufacturing Systems,2009,15(6):1055-1061(in Chinese).
[10]李中凱,朱真才,程志紅,等.基于聯(lián)合分析和定量指數(shù)的柔性產(chǎn)品平臺(tái)多目標(biāo)規(guī)劃方法[J].計(jì)算機(jī)集成制造系統(tǒng),2011,17(8):1757-1765.Li Z K,Zhu Z C,Cheng Z H,et al.Multiobjective planning for flexible product platform based on conjoint analysis and quantitative indices[J].Computer Integrated Manufacturing Systems,2011,17(8):1757-1765(in Chinese).
[11] Simpson T,Seepersad C,Mistree F.Balancing commonality and performance within the concurrent design of multiple products in a product family[J].Concurrent Engineering:Research and Applications,2001,10(11):1-14.
[12] Scott M,Antonsson E.Using indifference points in engineering decisions[C]∥Proceedings of 2000 ASME Design Engineering Technical Conferences.167 Jalan Bukit Merah:American Society of Mechanical Engineers,2000:225-243.
[13]陳永亮,褚巍麗,徐燕申.面向可適應(yīng)性的參數(shù)化產(chǎn)品平臺(tái)設(shè)計(jì)[J].計(jì)算機(jī)集成制造系統(tǒng),2007,13(5):877-884.Chen Y L,Chu W L,Xu Y S.Adaptability-oriented parametric product platform design[J].Computer Integrated Manufacturing Systems,2007,13(5):877-884(in Chinese).
[14] Kim M,Hiroyasu T,Miki M.SPEA2+:Improving the performance of the strength Pareto evolutionary algorithm2[J].Parallel Problem Solving from Nature-PPSN VIII,2004,3242:742-751.
[15] Deb K,Pratap A,Agarwal S.A fast and elitist multi-objective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[16] Simpson T W,Maier J R,Mistree F.Product platform design:Method and application[J].Research in Engineering Design,2001,13(1):2-22.
[17] Zitzler E,Deb K,Thiele L.Comparison of multi-objective evolutionary algorithms:Empirical results[J].IEEE Transactions on Evolutionary Computation,2000,18(2):173-195.