潘 盼,蔡炳余,譚愛林,郭朝陽,謝書鴻
(中天科技海纜有限公司,江蘇 南通 226010)
子母管結(jié)構(gòu)中海纜渦激振動特性研究
潘 盼,蔡炳余,譚愛林,郭朝陽,謝書鴻
(中天科技海纜有限公司,江蘇 南通 226010)
采用流固耦合分析方法,對某海洋石油開采項目采用的子母管結(jié)構(gòu)進行渦激振動特性研究,并與相同海纜在自由懸跨狀態(tài)下振動特性進行比較。數(shù)值仿真結(jié)果顯示,受母管影響,子母管中海纜由于渦街效應產(chǎn)生的升力振幅隨時間變化不一致,而單根海纜升力幅值穩(wěn)定;子母管中海纜產(chǎn)生的拖曳力高出單根海纜65%,振動幅值加大,并且沿整根海纜尾流中湍動能分布呈現(xiàn)隨機性,導致水動力沿整根海纜分布不均勻。提取海纜升力與垂直水流方向振幅進行比較,發(fā)現(xiàn)渦激升力是導致垂直方向振動的主要原因。子母管中海纜在水流阻力和渦激升力共同作用下產(chǎn)生較大的位移和應變,應進一步調(diào)整夾具間距和剩余張力來減緩海纜疲勞損傷。
子母管;渦激振動;自由懸跨;流固耦合;湍流動能
隨著陸上可用資源日益短缺和近海資源開發(fā)日益成熟,海上資源勘探、開發(fā)和利用正迅速向深海領域發(fā)展。作為勘探和輸送海洋油氣資源的海底電纜和柔性管道在布放過程中,若不能充分被沙土掩蓋,便存在大量懸跨狀態(tài)。波浪和洋流繞過懸跨段的海底電纜或管道時,在兩側(cè)周期性地脫落旋轉(zhuǎn)方向相反、排列規(guī)則的雙列線渦,即卡門渦街,使得結(jié)構(gòu)表面在垂直于流動方向生成交變水動力,造成渦激振動。若振動頻率與海纜或柔性管道的整數(shù)倍自振頻率接近,便發(fā)生共振。渦激振動是造成海洋管道、海底電纜疲勞破壞的主要因素[1-3]。
為提高海洋油氣田開發(fā)的經(jīng)濟效益,海洋技術人員開發(fā)了管束結(jié)構(gòu),將主管道和附屬管道捆綁于一體,即子母管(piggy-back),其中主管道用于輸送碳氫化合物,附屬管道或海纜用于傳輸化學試劑、電能或控制信號[4],如圖1(a)所示。
相對于單根海底管道,子母管周圍流場和水動力特征分布更為復雜,大管和小管之間的相互干擾更增加了整體結(jié)構(gòu)的設計、安裝難度。近年來,許多學者對子母管水動力特性開展了廣泛的理論分析和模型試驗研究。Chung等[5]試驗觀察了深海管束結(jié)構(gòu)中海纜綁捆方式對渦抑制能力的影響;Kalahatgi等[6]研究發(fā)現(xiàn)子管的存在使得母管拖曳力強度增加了50%~100%;Zang等[7-8]采用水槽試驗和粒子圖像測試技術研究了溫流下子母管拖曳渦流抑制因素和渦激振動特性,并指出了尾流結(jié)構(gòu)中渦強與子管振幅之間的聯(lián)系;成小飛等[9]通過物理試驗研究了子母管結(jié)構(gòu)分別在規(guī)則波和不規(guī)則波作用下的水動力特性,并基于“等效直徑法”分析得到了子母管各水動力系數(shù)。
依據(jù)科威特某海洋石油開采項目,提取子母管結(jié)構(gòu)中關鍵結(jié)構(gòu)參數(shù)如圖1(b)所示,其中,海底與母管間隙e根據(jù)實際地理勘測設定,約為1.54 m。海纜與母管夾具間隔為4 m。
圖1 子母管結(jié)構(gòu)Fig. 1 Piggy-back structure
為分析子母管在真實工作環(huán)境下的結(jié)構(gòu)性能,采用MFX-ANSYS/CFX流固耦合計算方法,依據(jù)子母管結(jié)構(gòu)的海洋環(huán)境實地勘察資料,提取10年回歸期的波浪和洋流參數(shù)如表1所示,計算其在波流共同作用下的流場分布特征和渦激振動特性,并與單根海纜在相同海洋環(huán)境下的工作性態(tài)進行比較。
表1 環(huán)境參數(shù)Tab. 1 Environment parameters
1.1數(shù)值計算模型
母管相對剛度較大,在計算過程中被設定為剛體。海纜為雙層鎧裝鋼絲絞合結(jié)構(gòu),根據(jù)力學設計指標,提取等效彈性模量為7.59×1010N/m2。建立子母管中海纜有限元模型如圖2(a),圖中海纜長度為12 m,對四處夾具位置截面節(jié)點進行全約束,模型考慮重力影響。子母管長方體流體域計算模型如圖2(b)所示,設定尺寸約為12 m×20 m×80 m。整個計算域采用結(jié)構(gòu)化網(wǎng)格劃分方法,為了體現(xiàn)邊界層黏性流動特征,對子母管附面層網(wǎng)格進行加密處理,第一層網(wǎng)格厚度Δy[10]由式(1)確定。
其中,L為特征長度,值為管的直徑;y+為壁面無量綱量,值為1;Re為雷諾數(shù);V為流體速度;υ為運動黏性系數(shù)。根據(jù)子母管所處海洋環(huán)境,Δy約為10-2mm,整個計算域網(wǎng)格單元為210萬。
圖2 子母管計算模型Fig. 2 Meshing model of piggy-back structure
1.2控制方程
子母管中海纜在水流作用下的渦激振動計算過程包括流場的非定常計算和結(jié)構(gòu)的瞬態(tài)動力分析。海纜振動計算采用ANSYS中瞬態(tài)動力分析方法,流動介質(zhì)采用CFX中Water模塊。選用可壓縮的連續(xù)方程和雷諾平均的N-S方程,采用二階迎風后插方法,對整個計算域進行瞬態(tài)模擬,并使用動網(wǎng)格技術。在笛卡爾坐標系下,三維可壓縮雷諾時均N-S方程:
海纜在瞬態(tài)分析過程中,其結(jié)構(gòu)動力學方程:
式中:Mg為質(zhì)量矩陣;Cg為阻尼矩陣;Kg為剛度矩陣;Fg為利用CFD法計算得出的外表面流體壓強分布。
海纜渦激振動計算過程中,結(jié)構(gòu)和流場采用相同的時間步長,基于弱耦合求解方式,在每個時間步長內(nèi),先求解三維瞬態(tài)流場分布,再將流體載荷耦合至結(jié)構(gòu)模型上,分析振動特性。湍流模型選取剪切應力運輸模型(SST),該模型整合了k-ε模型和k-ω模型的優(yōu)勢,充分利用了k-ω模型在低雷諾數(shù)時無需壁面函數(shù)的優(yōu)勢,而在主流區(qū)域內(nèi)采用標準的k-ε模型,壁面了k-ω模型對來流的敏感型,模型表達式和參數(shù)見文獻[11]。
1.3邊界條件
在計算域上游入口位置,速度分布考慮波浪和洋流的共同影響。根據(jù)DNV設計規(guī)范[12],波浪對海底管道位置處的流速采用線性波理論,洋流的速度分布需考慮海床邊界層的影響,見式(5):
圖3 子母管高度處水流速度廓線分布Fig. 3 Current velocity profile around piggy-back structure
式中:V(zr)為參考高度處的速度,θc為洋流方向與管道方向夾角,通常取值為90°。計算域下游出口給定平均靜壓,子母管結(jié)構(gòu)外表面及計算域底面設定為無滑移邊界,計算域其余外表面設定為對稱邊界。
將表1工況下,海纜高度處合成水流速度輸入計算域Inlet邊界,其速度廓線分布如圖3所示。由于海床邊界層效應,此處水流降至0.31 m/s,而遠離海床位置處合成水流速度約為0.75 m/s。設定時間步長為0.01 s,進行瞬態(tài)模擬,收斂準則選取計算域內(nèi)所有控制體積的平均殘差(RMS),殘差目標設定值為5.0×10-5。
由于海纜尾流中拖曳渦系影響其展向水動力分布,本文提取計算域整根海纜(12 m)上水動力隨時間變化,即與水流方向垂直(Cross_line)升力和與水流方向平行(In_line)拖曳阻力,如圖4所示。由圖可見,受到母管影響,子母管結(jié)構(gòu)中海纜水動力隨時間呈現(xiàn)雜亂無章變化特征。相比于單獨海纜狀態(tài)下,子母管結(jié)構(gòu)中海纜拖曳阻力振幅加大,最大峰值約為325 N,對應振幅約為40 N。而單獨海纜在相同水流條件下最大拖曳阻力為200 N,對應振幅為5 N,由此,海纜在母管影響下,拖曳阻力增加了62.5%。子母管結(jié)構(gòu)中海纜垂直水流方向升力在自身渦激勵作用下,還受到母管的交替渦激影響,水動力峰值約為143 N,谷值約為-58 N,幅值為201 N,整個計算過程平均值為正值,起到提升海纜的效果。單獨海纜的升力交替變化分布均勻,峰值為98 N,受到速度廓線影響,谷值為-93 N,幅值為191 N,與子母管中海纜升力幅值接近。與此同時,子母管結(jié)構(gòu)中海纜拖曳阻力和升力交替頻率接近,約為0.13 s。而單獨海纜順水流方向水動力交替頻率約為0.07 s,垂直水流方向交替頻率為0.15 s。
圖4 海纜上水動力時程分布Fig. 4 Hydrodynamic variation with time along the cable
圖5為子母管結(jié)構(gòu)在17.71 s時沿展向各個截面流線分布圖,各截面以管中心截面對稱分布。由圖可見,波浪和洋流合成水流流經(jīng)母管后,在母管上下兩側(cè)形成速度增強區(qū)域,處于該位置的海纜生成了相對于單根海纜較高的水動力。從該12 m長子母管結(jié)構(gòu)的各個截面可看到,母管后方生成的渦系具有較大的差別,渦系進而影響局部位置海纜的水動力特性,使得其沿展向分布呈不對稱性,且偏差較大,在r=1 m、-1 m、5 m和-5 m截面,海纜頂部生成速度增強區(qū),而在r=3 m和-3 m時,海纜底部生成速度增強區(qū)。各個截面對應的水動力參數(shù)見表2所示,其中,整根纜上的拖曳阻力分布大致相同,可見該方向的水動力主要是由水流阻力造成的。
圖5 子母管各截面流線分布Fig. 5 Streamlines of different sections of the piggy-back structure
截面位置r/m135-1-3-5Cross_line/N22.7854-25.252331.968225.8741-2.361127.4771In_line/N27.065733.877828.755630.298828.743727.8650
圖6為子母管結(jié)構(gòu)中海纜和單根海纜在相同工況下,生成最大升力時尾流中湍流動能分布。湍流動能是流體力學中一個重要變量,是湍流強度的度量[13],其表達式:
由圖6可見,由于母管的影響,使得結(jié)構(gòu)中海纜尾流中的湍流動能分布沿展向存在較大的差異,使得海纜整體水動力呈現(xiàn)不均勻的特征。而單根海纜,如圖6(b)所示,由于不受外界干擾,其尾流中湍流動能呈現(xiàn)對稱分布特征。
圖6 海纜湍流動能分布Fig. 6 Turbulence kinetic energy distribution
圖7為子母管結(jié)構(gòu)中海纜中間截面受到升力和沿升力方向的位移時程變化,海纜在洋流和波浪聯(lián)合作用下發(fā)生沿洋流方向和垂直方向的耦合振動。提取垂直方向位移變化可看出,海纜中間截面升力和位移變化在計算一段時間后,保持穩(wěn)定狀態(tài),峰值大于谷值絕對值,海纜的振動頻率與海纜升力保持一致,約為0.15 s。由于海纜自重,其向上振動最大位移值約為4.23 mm,向下振動最大位移值約為7.01 mm。由此可見,渦激水動升力是造成海纜豎向振動的首要原因。
圖7 海纜中間截面升力和位移時程變化Fig. 7 Lift force and displacement of the middle section of cable
圖8為海纜結(jié)構(gòu)模型在第14.32 s和14.37 s時,受到渦激水動力發(fā)生位移形變示意圖。由圖8(a),由于4個截面位置節(jié)點被全約束,其最大位移發(fā)生在約束截面中間位置,在14.32 s時刻,最大位移r=0 m處,約為10.54 mm,而在r=±4 m截面處,位移相對變化較小。0.05 s后,截面位移出現(xiàn)相反的情況,最大值發(fā)生在r=±4 m截面處,約為11.67 mm。
圖8 海纜結(jié)構(gòu)模型位移變化Fig. 8 The displacement of cable FEM model
圖9為海纜在第14.32 s和14.37 s時,截面分別在r=0,±4 m處位移變化和周圍流線分布示意圖。與圖8中海纜位移變化分布一致,在第14.32 s時,最大位移發(fā)生在海纜中間截面(r=0 m),而在14.37 s時,位移發(fā)生最大位置為r=±4 m處。由圖可見,海纜在發(fā)生上下振動的同時也伴隨著順著水流方向的位移。海纜截面一側(cè)流體流速的增加,降低了該處的壓強,迫使海纜向該處移動。在圖9(b)中,r=0 m位置,海纜截面上下水流流速大致相同,因此位移表現(xiàn)不明顯。渦街的形成帶來海纜兩側(cè)交替變化的壓強降,在水流阻力作用下,形成交替變化的振動。在該工況下,海纜被夾具約束的4 m長海纜中間截面出現(xiàn)了較大的振動位移,該振動位移勢必帶來較高頻率變化的循環(huán)應力,因此應進一步調(diào)整子母管夾具間距,并增強其中海纜的鋪設張力,以緩解疲勞損傷。
圖9 海纜結(jié)構(gòu)模型各截面位移和流線分布Fig. 9 Streamlines and displacement of each section of cable model
通過流固耦合分析方法,分析了子母管結(jié)構(gòu)中海纜在洋流和波浪聯(lián)合作用下的渦激振動特性,得到以下結(jié)論:
1) 在10年回歸期的波浪與洋流條件作用下,22 m水深處子母管中12米長海纜水動力幅值變化呈現(xiàn)不穩(wěn)定特性,而單根海纜在相同條件下,水動力幅值變化保持一致;
2) 受母管影響,海纜所在位置出現(xiàn)水流流速增強區(qū)域,使得該結(jié)構(gòu)中海纜產(chǎn)生拖曳力值相對于相同條件下單根海纜高出65%,升力高出45.9%,并且升力峰值為143 N,而單根海纜為98 N;
3) 結(jié)構(gòu)中海纜尾流中湍流動能分布沿展向存在較大的差異,使得海纜整體水動力呈現(xiàn)不均勻分布的特征;
4) 渦街的形成帶來海纜兩側(cè)交替變化的壓強降,伴隨著水流拖曳力作用下,使得海纜形成交替變化的振動。應進一步調(diào)整夾具間距和海纜剩余張力,以緩解海纜疲勞損傷,提升使用壽命。
[1] Recommended Practice DNV-RP-F105, Free spanning pipelines[S]. 2006.
[2] YANG Bing, GAO Fuping, WU Yingxiang, et al. Experimental study on vortex-induced vibrations of submarine pipeline near seabed boundary in ocean currents[J]. China Ocean Engineering, 2006,20(1):113-121.
[3] CHEN Weimin, ZHENG Zhongqin, LI Min. Multi-mode vortex-induced vibration of slender cable experiencing shear flow[J]. Procedia Engineering, 2010(4):145-152.
[4] JAKOBSEN M L, SAYER M L. Hydrodynamic forces on piggyback pipelines[C]//Proceedings of the Fifth International Offshore and Polar Engineering Conference. 1995.
[5] CHUNG J S, CONTI R J. Flow-induced torsional moment and vortex suppression for a circular cylinder with cables[C]//Proceedings of the Fourth International Offshore and Polar Engineering Conference, ISOPE. 1994(3):447-459.
[6] KALAHATGI S G, SAYER P G. Hydrodynamic forces on piggyback pipeline configurations[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1997, 123(2):16-22.
[7] ZANG Zhipeng, GAO Fuping, CUI Jinsheng. Physical modeling and swirling strength analysis of vortex shedding from near-bed piggyback pipelines[J]. Applied Ocean Research, 2013,40:50-59.
[8] ZANG Zhipeng, GAO Fuping. Steady current induced vibration of near-bed piggyback pipelines: Configuration effects on VIV suppression[J]. Applied Ocean Reasearch, 2014,46:62-69.
[9] 成小飛, 王永學, 王國玉. 波流共同作用下海底子母管線水動力的物理模型試驗研究[J]. 海洋學報, 2012,34(4):172-180. ( CHENG Xiaofei, WANG Yongxue, WANG Guoyu. Physical model experimental study of hydrodynamic forces on submarine piggyback pipeline under wave-current coexisting action[J].Acat Oceanlolgica Sinica,2012,34(4):172-180.(in Chinese))
[10] APOSTOLOS T P. Investigation of boundary layer suction on a wind turbine airfoil using CFD[D]. Technical University of Denmark,2010.
[11] MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model turbulence[R]. Heat and Mass Transfer 4, 2003.
[12] Recommended Practice DNV-RP-F109, On-bottom stability design of submarine pipelines[S]. 2010.
[13] TILDEN P M, DENNIS D B. The budgets of turbulent kinetic energy and reynolds stress within and above a deciduous forest[J].Agricultural and Forest Meteorlogy, 1991,53:207-222.
Research on vortex induced vibration of cable in piggy-back configuration
PAN Pan, CAI Bingyu, TAN Ailing, GUO Chaoyang, XIE Shuhong
(Zhongtian Technology Submarine Cables Co., Ltd., Nantong 226010, China)
The vortex-induced vibration characteristic of the piggy-back configuration adopted in the oil production was studied with the FSI method, and the results were compared with the single cable vibration under free span condition. The numerical simulation revealed that the amplitude of the lift force caused by the vortex street of the secondary cable varied over time due to the main pipe’s influence, but the lift force of the single cable was constant. The drag force of the cable in piggy-back was about 65% higher than the single cable with larger amplitude, and the turbulent kinetic energy in the wake along the cable showed random feature, thereby impacted the hydrodynamic force. By comparing the lift force and amplitude of the vibration perpendicular to the flow direction of the middle section of the cable, it revealed that the lift force due to vortex was the main reason for vertical vibration. The flow drag force combined with the vortex induced lift caused significant displacement and strain of the cable, and much effort must be taken to adjust the interval of the clamps and residual tension to relieve the fatigue damage of the cable in the piggy-back configuration.
piggy-back; vortex-induced vibration; free span; fluid-structure interaction; turbulence kinetic energy
P754
A
10.16483/j.issn.1005-9865.2015.06.006
1005-9865(2015)06-045-07
2014-08-19
國家高技術研究發(fā)展計劃(863計劃)(2012AA09A401)
潘 盼(1986-),男,江蘇句容人,博士,從事海洋柔性立管和臍帶纜的研發(fā)。 E-mail:panp@chinaztt.com