国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

潮間帶濕地碳循環(huán)及其環(huán)境控制機(jī)制研究進(jìn)展

2015-12-05 09:37:02仲啟鋮王開(kāi)運(yùn)周凱來(lái)琦芳
關(guān)鍵詞:鹽沼潮間帶碳循環(huán)

仲啟鋮,王開(kāi)運(yùn),周凱,來(lái)琦芳*

1. 中國(guó)水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所鹽堿地漁業(yè)工程技術(shù)研究中心,上海 200090;2. 華東師范大學(xué)上海市城市化生態(tài)過(guò)程和生態(tài)恢復(fù)重點(diǎn)實(shí)驗(yàn)室,上海 200241

潮間帶濕地碳循環(huán)及其環(huán)境控制機(jī)制研究進(jìn)展

仲啟鋮1,2,王開(kāi)運(yùn)2,周凱1,來(lái)琦芳1*

1. 中國(guó)水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所鹽堿地漁業(yè)工程技術(shù)研究中心,上海 200090;2. 華東師范大學(xué)上海市城市化生態(tài)過(guò)程和生態(tài)恢復(fù)重點(diǎn)實(shí)驗(yàn)室,上海 200241

有高等植被覆蓋的潮間帶濕地(紅樹(shù)林沼澤、鹽沼)植被生產(chǎn)力高,有機(jī)碳分解速率低,CH4排放較弱,碳沉積速度快,是單位面積碳封存速率最高的生態(tài)系統(tǒng)之一。作為全球“藍(lán)色碳匯”的主要貢獻(xiàn)者,潮間帶濕地在減緩含碳溫室氣體排放,降低全球溫室效應(yīng)方面具有重要潛力。潮間帶濕地大多地處經(jīng)濟(jì)發(fā)達(dá)和人口密集的河口海岸地區(qū),近年來(lái)其碳匯功能受到了越來(lái)越多人為干擾的威脅,正在發(fā)生著的氣候變化則更增加了這種碳匯功能的不確定性。在全球變化背景下,對(duì)潮間帶濕地碳循環(huán)及其環(huán)境控制機(jī)制的深入了解可以幫助更好地管理這種具有重要碳減排潛力的生態(tài)系統(tǒng)。文章綜述國(guó)內(nèi)外的相關(guān)研究,分析了潮間帶濕地碳循環(huán)的基本過(guò)程和環(huán)境影響因素,探討了多種人為干擾和氣候變化要素對(duì)潮間帶濕地碳循環(huán)的影響。潮間帶濕地碳循環(huán)的基本過(guò)程主要包括垂直方向土壤(水)-大氣界面和植被-大氣界面CO2、CH4交換和沉積過(guò)程驅(qū)動(dòng)的碳封存,以及水平方向與近海的碳交換。潮間帶濕地的碳循環(huán)主要受潮汐/流、光合有效輻射、溫度、鹽度、水位、植物群落特征等非生物和生物因素的影響。圍墾、富營(yíng)養(yǎng)化、放牧很可能削弱潮間帶濕地的碳匯功能,而外來(lái)植物入侵卻可能在一定程度上增加其碳匯潛能。海平面上升、氣溫升高會(huì)增加潮間帶濕地碳匯功能的脆弱性,CO2濃度升高的作用依賴于優(yōu)勢(shì)植物群落的光合作用途徑,而多種并存氣候變化要素的作用則更為復(fù)雜。全球范圍內(nèi)大量潮間帶濕地已經(jīng)遭受破壞甚至喪失,水文調(diào)控是對(duì)受損潮間帶濕地碳匯功能進(jìn)行修復(fù)和重建的有效措施。未來(lái)的研究需要更好的理解多種并存氣候變化要素,及人為干擾和氣候變化同時(shí)存在對(duì)潮間帶濕地碳循環(huán)的交互效應(yīng),利用過(guò)程模型預(yù)測(cè)不同人為干擾和氣候變化情境下潮間帶濕地碳收支變化規(guī)律,并完善受損潮間帶濕地碳匯功能修復(fù)的基礎(chǔ)理論和實(shí)施方法。

潮間帶濕地;碳循環(huán);碳匯;氣候變化;人為干擾

IPCC報(bào)告顯示,由于化石燃料的大量使用和土地利用的急劇變化,從 1750年開(kāi)始,大氣中含碳溫室氣體(CO2、CH4)濃度持續(xù)增加,到 2011年,大氣中CO2、CH4的體積分?jǐn)?shù)已達(dá)到319×10-6、1803×10-9,分別比工業(yè)革命前上升40%和150%。在1880年到2012年間,陸地與海洋表面的氣溫已經(jīng)升高了0.85 ℃,到21世紀(jì)末,全球溫度可能超過(guò) 1850─1900年水平 1.5 ℃甚至更高(IPCC,2013)。為避免氣候變化給人類生存和發(fā)展帶來(lái)的潛在威脅,碳減排(carbon mitigation)是當(dāng)前最迫切的工作,而保育和修復(fù)包括森林和濕地在內(nèi)的各種具有碳匯功能的生態(tài)系統(tǒng)是其中的重要措施之一。

近年來(lái),作為全球“藍(lán)色碳匯”的主要貢獻(xiàn)者,有高等植被覆蓋的潮間帶濕地(紅樹(shù)林沼澤和鹽沼)的碳循環(huán)受到了極大的關(guān)注(Chmura等,2003; Moffett等,2010;Laffoley和Grimsditch,2009;Mcleod等,2011)。鹽沼廣泛存在于世界中高緯度地區(qū)濱海淤泥質(zhì)海岸的潮間帶(Chmura等,2003;Friess等,2011),以溫帶分布最為廣泛,其植被類型以多年生維管束草本植物為主;據(jù)不完全統(tǒng)計(jì),全球現(xiàn)存鹽沼的面積約為 0.22×106km2(Laffoley和Grimsditch,2009)。而在大部分亞熱帶和熱帶地區(qū)的潮間帶,紅樹(shù)林沼澤取代了鹽沼,其植被類型以紅樹(shù)植物為主體的常綠灌木或喬木為主(Mitsch和Gosselink,2000),最新的數(shù)據(jù)清單表明全球現(xiàn)存紅樹(shù)林面積約為 0.152×106km2(FAO,2007)。

盡管全球潮間帶總面積比陸地森林要小1~2個(gè)數(shù)量級(jí),但是其單位面積的碳封存能力卻不容忽視(Mcleod等,2011)。除了擁有高植被生產(chǎn)力和低有機(jī)質(zhì)分解速率以外,潮間帶濕地植被的根冠比較大,大量碳被儲(chǔ)存在地下生物量及通過(guò)根系周轉(zhuǎn)而儲(chǔ)存在土壤中。潮間帶濕地較高SO42-含量還可以限制厭氧微生物產(chǎn)生CH4(Bartlett和Harriss,1993)。最關(guān)鍵的是,河口海岸獨(dú)特的泥沙沉積過(guò)程會(huì)將大量?jī)?nèi)源或外源有機(jī)碳快速掩埋(Chapman,1977)。因此,潮間帶濕地的碳匯功能通常比較顯著(Livesley和 Andrusiak,2012)。據(jù)統(tǒng)計(jì),全球范圍內(nèi)紅樹(shù)林沼澤、鹽沼和海草床的總碳封存速率超過(guò)100 Tg·a-1(以C計(jì)),因此潮間帶濕地在減緩含碳溫室氣體排放,降低全球溫室效應(yīng)方面具有重要潛力(Hopkinson等,2012)。

然而,過(guò)去一個(gè)世紀(jì),隨著河口海岸地區(qū)的人口迅速增長(zhǎng)和經(jīng)濟(jì)快速發(fā)展,潮間帶濕地受到了嚴(yán)重的人為干擾,大量被破壞及喪失(Kirwan和Megonigal,2013)。據(jù)估計(jì),世界范圍內(nèi)有高等植被覆蓋的潮間帶濕地正以每年 1%~7%的速率喪失(Hopkinson等,2012)。在我國(guó),近幾十年來(lái)也有大量潮間帶濕地由于港口和住宅區(qū)的建設(shè)而消失,或被轉(zhuǎn)為種植業(yè)和水產(chǎn)業(yè)用地(He等,2014)。這些人為干擾給潮間帶濕地的碳匯功能帶來(lái)了極大威脅(Pendleton等,2012)。同時(shí),多種氣候變化要素也增加了潮間帶濕地碳匯功能的不確定性(Hopkinson等,2012)。因此,了解潮間帶濕地碳循環(huán)的基本過(guò)程和環(huán)境影響因素,探討人為干擾和氣候變化對(duì)植被光合、土壤呼吸、生態(tài)系統(tǒng)凈碳交換等碳循環(huán)過(guò)程的影響,對(duì)于預(yù)測(cè)未來(lái)潮間帶濕地碳收支的變化趨勢(shì),加強(qiáng)對(duì)其碳匯功能的可持續(xù)管理與利用具有重要意義。

本文主要關(guān)注有高等植被覆蓋的潮間帶濕地,綜述了國(guó)內(nèi)外的相關(guān)研究,初步總結(jié)了潮間帶濕地碳循環(huán)的基本過(guò)程,評(píng)述了這些過(guò)程的主要特征和關(guān)鍵影響因素,重點(diǎn)分析了人為干擾和氣候變化對(duì)潮間帶濕地碳匯功能的潛在影響,介紹了保育或修復(fù)受損潮間帶濕地碳匯功能的主要手段,并提出了未來(lái)潮間帶濕地碳循環(huán)的研究重點(diǎn)。在全球變化背景下,對(duì)潮間帶濕地碳循環(huán)及其環(huán)境控制機(jī)制的深入了解可以幫助更好地管理這種具有重要碳減排潛力的生態(tài)系統(tǒng)。

1 潮間帶濕地碳循環(huán)的基本過(guò)程

潮間帶濕地碳循環(huán)涉及一系列發(fā)生在不同時(shí)空尺度上的過(guò)程,其涵蓋時(shí)間從短期到長(zhǎng)期,涵蓋空間從個(gè)體到景觀。

其中與CO2有關(guān)的過(guò)程包括1)凈生態(tài)系統(tǒng)CO2交換(NEE:Net ecosystemexchange of CO2):表示生態(tài)系統(tǒng)和大氣之間的CO2交換量。一般定義當(dāng)生態(tài)系統(tǒng)凈固定CO2時(shí),NEE為負(fù)值;凈排放CO2時(shí),NEE為正值。2)凈生態(tài)系統(tǒng)生產(chǎn)力(NEP: Net ecosystem productivity):表示生態(tài)系統(tǒng)通過(guò)光合作用凈固定大氣中CO2的能力,NEP和NEE在數(shù)值上相等。3)總生態(tài)系統(tǒng)生產(chǎn)力(GEP:gross ecosystem productivity):是減去光呼吸后單位時(shí)間內(nèi)生態(tài)系統(tǒng)光合同化CO2的量,決定了進(jìn)入生態(tài)系統(tǒng)的初始碳量。4)總初級(jí)生產(chǎn)力(GPP:gross primary productivity):表示植被同化的有機(jī)碳總量,又稱總第一性生產(chǎn)力,在生態(tài)系統(tǒng)尺度上,可以認(rèn)為GPP與GEP相等。5)生態(tài)系統(tǒng)呼吸(Re:Ecosystem respiration):表示生態(tài)系統(tǒng)所有組分的總CO2排放量,主要包括植物地上部分呼吸(Ra:Aboveground plant respiration)和土壤呼吸(Rs:Soil respiration)。6)凈初級(jí)生產(chǎn)力(NPP:Net primary productivity):表示植被同化的有機(jī)碳扣除其本身呼吸產(chǎn)生的CO2,用于植被的生長(zhǎng)和生殖,也被稱為凈第一性生產(chǎn)力。

以上過(guò)程主要涉及發(fā)生在潮間帶濕地土壤(水)-大氣界面和植被-大氣界面垂直方向的CO2交換(FCO2),另外,在這些界面也可能同時(shí)存在CH4交換(Matthews和Fung,1987)。除了垂直方向的氣態(tài)碳交換以外,土壤中可溶性有機(jī)碳(DOC)和可溶性無(wú)機(jī)碳(DIC),及顆粒有機(jī)碳(POC)也會(huì)隨著潮汐/流遷移進(jìn)出潮間帶濕地而形成水平方向碳交換(Flc),并在潮間帶濕地的碳收支中占據(jù)重要地位(Wetzel,1992;Stern等,2007;Guo等,2009)。

對(duì)于潮間帶濕地,河口海岸潮汐/流介導(dǎo)的碳沉積實(shí)現(xiàn)了在垂直方向的碳封存(Fsq),這個(gè)過(guò)程會(huì)使大量碳在短時(shí)間內(nèi)離開(kāi)碳循環(huán)而被掩埋在沉積物中。這種潮汐/流驅(qū)動(dòng)的碳封存是潮間帶濕地與內(nèi)陸濕地碳獲取方式的重要區(qū)別之一(Chapman,1977)。

綜上,潮間帶濕地的碳收支可以用下式表示:

上式也可以演變成下式:

其中:

而:

式(2)中,CA和SA分別表示植被-大氣界面和土壤(水)-大氣界面的CO2和CH4交換。

2 潮間帶濕地碳循環(huán)的特征及其影響因素

2.1 潮間帶濕地碳循環(huán)的主要特征

鹽沼和紅樹(shù)林沼澤的生產(chǎn)力都很高,可以媲美生產(chǎn)性的農(nóng)業(yè)用地(Odum,1971)。不同地區(qū)鹽沼植被地上生產(chǎn)力有很大差異,在北美地區(qū),鹽沼植被的地上生產(chǎn)力范圍可從加拿大北部和阿拉斯加的60 g·m-2·a-1(以C計(jì))到中北墨西哥灣的812g·m-2·a-1(以C計(jì))(Mendelssohn和Morris,2002)。鹽沼植被的根冠比較大(1.4~50),有大量的初級(jí)生產(chǎn)力被儲(chǔ)存在地下生物量中,進(jìn)而通過(guò)根系周轉(zhuǎn)進(jìn)入土壤碳庫(kù)(Smith和 DeLaune,1983)。鹽沼植被根冠比一般大于淡水沼澤,這有利于其垂直方向的碳積累(Murphy等,2009)。另外,鹽沼中的光合微生物和浮游植物同樣是初級(jí)生產(chǎn)力的重要來(lái)源(Sullivan和Currin,2002)。對(duì)于紅樹(shù)林沼澤,據(jù) Bouillon等(2012)估算,全球范圍紅樹(shù)林沼澤平均NPP大約為1360 g·m-2·a-1(以C計(jì)),其碳積累也主要通過(guò)地下生物量的分解和周轉(zhuǎn)實(shí)現(xiàn)。

盡管潮間帶濕地的土壤碳含量偏低,但由于這類濕地土壤容重較大,故其土壤碳密度往往相當(dāng)可觀(Laffoley和 Grimsditch,2009)。潮間帶濕地的土壤碳動(dòng)態(tài)還具有其特殊性。一方面,潮間帶濕地淹水程度通常會(huì)伴隨潮汐而變化,使土壤有機(jī)碳分解也產(chǎn)生與潮汐協(xié)同的周期性(Guo等,2009;馬安娜等,2011)。另一方面,潮間帶濕地土壤中SO42-含量一般較高,在通氣性較差的土層,高SO42-含量會(huì)限制產(chǎn)CH4細(xì)菌的活性而降低CH4產(chǎn)生;較深不飽和土層產(chǎn)生的CH4也可能會(huì)在向上傳輸?shù)倪^(guò)程中被氧化(Bridgham等,2006)。因此,潮間帶濕地的 CH4排放通常較弱(Forster等,2007;Poffenbarger等,2011)。另外,由于河口海岸潮汐/流驅(qū)動(dòng)的沉積過(guò)程對(duì)碳的掩埋作用,潮間帶濕地的碳封存速率可達(dá)到北方泥炭沼澤的 10倍以上(Chmura等,2003)。

因此,潮間帶濕地植被生產(chǎn)力高,有機(jī)碳分解速率低,CH4排放較弱,碳沉積速度快,是單位面積碳封存速率最高的生態(tài)系統(tǒng)之一(Chmura等,2003;Donato等,2011;Hopkinson等,2012)。潮間帶濕地大部分穩(wěn)定形態(tài)的碳儲(chǔ)存在土壤中(78%~99%)。據(jù)Chmura等(2003)估算,在全球范圍內(nèi)至少有430 Tg碳儲(chǔ)存在鹽沼表層0~50 cm的土壤中;紅樹(shù)林沼澤同一土層碳儲(chǔ)量則可以達(dá)到(5000±400)Tg C。

潮間帶濕地還會(huì)將部分同化碳以多種形式輸出到近岸海域中,從而形成水平方向的碳通量(Richard,1982)。Teal(1962)估測(cè)有 45%的鹽沼生物量會(huì)通過(guò)潮汐作用進(jìn)入近岸海域以支持其較高的動(dòng)物多樣性。對(duì)于紅樹(shù)林沼澤,DIC隨潮汐從系統(tǒng)中遷出可能尤為重要,Bouillon等(2012)預(yù)測(cè)這一水平碳通量能達(dá)到紅樹(shù)林初級(jí)生產(chǎn)力的一半。另外,紅樹(shù)林沼澤還是海洋中DOC的主要來(lái)源(Dittmar等,2006)。

2.2 潮間帶濕地碳循環(huán)關(guān)鍵影響因素

潮汐/流、光合有效輻射、溫度、鹽度等是影響潮間帶濕地碳循環(huán)的關(guān)鍵非生物因素。潮汐/流可以通過(guò)沉積物的供給直接影響潮間帶濕地碳封存能力(Chmura等,2001),還可以通過(guò)周期性淹水直接作用于植被生產(chǎn)力(Ewanchuk和 Bertness,2004)和土壤呼吸(Barr等,2010),或通過(guò)影響營(yíng)養(yǎng)物質(zhì)可用性、土壤溫度、鹽度和氧化還原電位等環(huán)境因素間接作用于這些碳過(guò)程(Armstrong等,1985;Pennings和Callaway,1992)。Guo等(2009)采用渦度協(xié)方差技術(shù)觀測(cè)了上海崇明東灘鹽沼植被—大氣界面CO2通量,發(fā)現(xiàn)其在10~20 d的時(shí)間尺度上表現(xiàn)出由潮汐驅(qū)動(dòng)的規(guī)律性變化。Kathilankal等(2008)在美國(guó)弗吉尼亞?wèn)|海岸互花米草鹽沼發(fā)現(xiàn)潮汐淹水會(huì)使 CO2通量下降(46%±26%)。Moffett等(2010)研究認(rèn)為,潮汐對(duì)鹽沼-大氣界面 CO2通量的影響是周期性的,持續(xù)短暫但卻作用強(qiáng)烈。

在有高等植被覆蓋的潮間帶濕地,光合有效輻射的強(qiáng)度直接決定植被碳同化能力的強(qiáng)弱。光合有效輻射的變化往往驅(qū)動(dòng)植被生產(chǎn)力的晝夜和季節(jié)變化。光合有效輻射越大,潮間帶濕地NEP也越大,兩者通常展現(xiàn)出良好的非線性正相關(guān)(Guo等,2009;Zhou等,2009;馬安娜等,2011)。

作為酶促反應(yīng),潮間帶濕地植物自養(yǎng)呼吸對(duì)溫度變化有很強(qiáng)的敏感性,溫度變化會(huì)通過(guò)影響植物自養(yǎng)呼吸而改變濕地NPP。另外,潮間帶濕地土壤呼吸的溫度敏感性也很強(qiáng),通常會(huì)隨溫度增加而呈指數(shù)型增長(zhǎng),溫度變化往往驅(qū)動(dòng)土壤呼吸的日變化和季節(jié)變化(Zhong等,2013)。Kirwan和Blum(2011)在美國(guó)弗吉尼亞州鹽沼研究發(fā)現(xiàn),溫度每升高 1 ℃會(huì)將互花米草凋落物的分解速率提高12%。聶明華等(2011)在長(zhǎng)江口的研究則發(fā)現(xiàn),土壤呼吸季節(jié)變化是溫度以及近岸水體鹽度季節(jié)變化協(xié)同作用的結(jié)果。

高鹽度是潮間帶濕地的獨(dú)特環(huán)境因素,過(guò)高的鹽度會(huì)通過(guò)滲透壓脅迫使植物失水,只有適應(yīng)高鹽度的植物才能存活,并形成潮間帶濕地多樣的植物分布格局和生產(chǎn)力狀況(Heinsch等,2004)。Barr等(2012)研究發(fā)現(xiàn),紅樹(shù)林沼澤的光利用效率在高鹽度(>34 ppt)比低鹽度(<17 ppt)低46%。Neubauer(2013)在美國(guó)南卡萊羅那潮間帶濕地通過(guò)原位試驗(yàn)發(fā)現(xiàn),鹽度增加會(huì)使NEP降低55%。另外,鹽度增加也會(huì)通過(guò)滲透壓脅迫抑制土壤微生物活性而降低有機(jī)質(zhì)分解速率(Wichern等,2006)。潮間帶濕地鹽度和土壤水分對(duì) NEP的作用可能耦合在一起,Heinsch等(2004)研究發(fā)現(xiàn)美國(guó)德克薩斯灣的潮間帶濕地在鹽度較低、土壤水分較高的情況下固定CO2,而在鹽度較高、土壤水分較低的情況下則排放CO2。

植被則是影響潮間帶濕地碳循環(huán)的關(guān)鍵生物因素,Rothman和Bouchard(2007)對(duì)比了美國(guó)俄亥俄州伊利湖沿岸蘆葦、香蒲(Typha spp.)和寬葉慈姑(Sagittaria latifolia)3種植物群落的碳動(dòng)態(tài),發(fā)現(xiàn)慈姑被另外兩種植物取代會(huì)顯著影響該濕地的碳循環(huán)。植物群落的空間差異會(huì)導(dǎo)致潮間帶濕地碳匯功能的空間變異(Guo等,2009)。Magenheimer等(1996)研究發(fā)現(xiàn),植被生物量和水位可以共同解釋鹽沼CO2通量 63%的變異。另外,多種濕地植物的氣生組織也是溫室氣體排放的重要通路(Ford等,2012)。

潮間帶濕地 CH4排放受到植物生物量、水位、溫度、鹽度和SO42-含量等環(huán)境因素的影響。植物生物量和 CH4排放之間通常具有較強(qiáng)的正相關(guān)性(Whiting等,1991)。水位決定了土壤缺氧狀況,而溫度決定了微生物活性,在相似水位下,溫度越高,CH4排放量越大(Bartlett等,1985)。CH4排放不僅受水位影響,還隨鹽度變化而改變(King和Wiebe,1978;DeLaune等,1983)。在芬迪灣的鹽沼,當(dāng)水位較高且鹽度較低時(shí),CH4釋放量較高,CH4排放量和鹽度呈顯著負(fù)相關(guān)(Magenheime等,1996)。原位試驗(yàn)表明CH4的產(chǎn)生對(duì)SO42-含量很敏感,高濃度SO42-會(huì)顯著限制CH4的產(chǎn)生(DeLaune等,1983)。

3 人為干擾對(duì)潮間帶濕地碳循環(huán)的影響

盡管潮間帶濕地具有卓越的碳匯功能,然而這種重要的生態(tài)功能卻可能會(huì)由于各種人為干擾(圍墾等土地利用變化、生物入侵、富營(yíng)養(yǎng)化、放牧等)而退化或喪失(Farnsworth和 Ellison,1996;Pendleton等,2012)。受損潮間帶濕地的碳庫(kù)規(guī)模會(huì)迅速降低,Pendleton等(2012)估算表明鹽沼、紅樹(shù)林沼澤及海草床在全球尺度上每年有150~1020 Tg C因?yàn)橥恋乩米兓尫诺酱髿庵?,這一數(shù)字等同于全球森林砍伐導(dǎo)致碳排放的3%~19%,造成經(jīng)濟(jì)損失每年可達(dá)60~420億美元。然而,到目前為止,人為干擾導(dǎo)致潮間帶濕地的碳損失沒(méi)有被包括在任何碳排放核算和市場(chǎng)協(xié)議中。近幾十年來(lái),人口迅速增長(zhǎng)和經(jīng)濟(jì)快速發(fā)展對(duì)工農(nóng)業(yè)用地的需求使全球海岸帶地區(qū)的土地利用發(fā)生著劇烈的變化(Kirwan和Megonigal,2013)。作為獲取新生土地資源的重要手段,圍墾(land reclamation)是對(duì)潮間帶濕地影響最大的人為干擾方式。以中國(guó)為例,Yang和Chen(1995)指出中國(guó)在近現(xiàn)代被圍墾鹽沼面積大約為1.167×105hm2,超過(guò) 1995年中國(guó)擁有鹽沼的總面積。除了直接導(dǎo)致潮間帶濕地面積的快速下降,圍墾還會(huì)顯著改變其多種碳循環(huán)過(guò)程。一方面,圍墾區(qū)不再受潮汐活動(dòng)的影響,水位下降,厭氧環(huán)境減弱,土壤微生物群系的結(jié)構(gòu)和活性均會(huì)發(fā)生變化,好氧微生物活性加強(qiáng)會(huì)加速有機(jī)質(zhì)分解,使?jié)竦卦趪鷫ㄇ胺獯嬗谕寥赖奶即罅颗欧?。一?xiàng)在杭州灣的研究發(fā)現(xiàn),2003年圍墾區(qū)土壤有機(jī)碳含量顯著低于天然鹽沼所有植被類型(邵學(xué)新等,2011)。對(duì)西班牙沖積沼澤的研究也發(fā)現(xiàn)圍墾顯著降低了土壤總有機(jī)碳、微生物碳和土壤酶活性,并增加了土壤微生物的呼吸商(Laudicina等,2009)。另一方面,圍墾區(qū)的鹽水動(dòng)態(tài)也會(huì)發(fā)生改變,在地勢(shì)低洼的地方土表常有鹽漬化發(fā)生。鹽水動(dòng)態(tài)的改變會(huì)影響濕地植物群落結(jié)構(gòu),降低初級(jí)生產(chǎn)力(葛振鳴等,2005;鞏晉楠等,2009)。另外,圍墾區(qū)和近岸海域之間的物質(zhì)能量交換基本停滯,潮汐/流驅(qū)動(dòng)的泥沙沉積過(guò)程也不復(fù)存在,潮間帶濕地的快速碳封存過(guò)程和水平碳通量受到極大干擾(Wang等,2010)。

生物入侵也會(huì)在很大程度上影響潮間帶濕地的碳循環(huán)。研究表明,鹽沼的入侵植物通常較本地植物具有更強(qiáng)的光合能力和初級(jí)生產(chǎn)力(趙廣琦等,2005;Valéry等,2004)。入侵植物還會(huì)改變鹽沼的凋落物數(shù)量和質(zhì)量,改變土壤微生物群系和土壤酶活性,從而影響凋落物分解、營(yíng)養(yǎng)物質(zhì)還原和碳輸出(Liao等,2008)。在上海九段沙濕地,入侵種互花米草增進(jìn)了引進(jìn)區(qū)域的土壤微生物呼吸(賈建偉等,2010),但互花米草群落土壤有機(jī)碳含量明顯高于土著種海三棱藨草(Scirpus Mariqueter)群落(Cheng等,2006)。Liu等(2007)發(fā)現(xiàn)互花米草的擴(kuò)展顯著增強(qiáng)了江蘇省潮間帶濕地的碳匯潛能。Zhang等(2010)也認(rèn)為互花米草入侵導(dǎo)致土壤碳儲(chǔ)量的增加,并指出這主要由互花米草凋落物和根系新產(chǎn)生碳的積累實(shí)現(xiàn)。但也有研究得出互花米草入侵沒(méi)有顯著影響土壤碳庫(kù)(Windham和Lathrop,1999),甚至降低了土壤有機(jī)碳含量的結(jié)論(邵學(xué)新等,2011)。

富營(yíng)養(yǎng)化能夠顯著促進(jìn)鹽沼植物的地上生物量(Wigand等,2004)并改變其根冠比(Morris,1982),地下生物量下降會(huì)導(dǎo)致鹽沼沉積速率下降及灘面高程下降,使其更容易受海平面上升的影響(Darby和Turner,2008)。富營(yíng)養(yǎng)化還能增加鹽沼植物凋落物產(chǎn)量并改變植被群落結(jié)構(gòu)(Valiela等,1985)。在美國(guó)納拉甘西特海灣,Wigand等(2004)研究發(fā)現(xiàn)提高的養(yǎng)分(氮、磷)負(fù)荷會(huì)增加狐米草的葉綠素含量并增強(qiáng)其葉綠素?zé)晒鈩?dòng)力。對(duì)于土壤呼吸,Morris和Bradley(1999)在美國(guó)南卡萊羅那州貧營(yíng)養(yǎng)鹽沼的施肥試驗(yàn)中,發(fā)現(xiàn)施加氮、磷顯著增強(qiáng)了土壤呼吸速率。Wigand等(2009)對(duì)美國(guó)納拉甘西特海灣鹽沼的研究也發(fā)現(xiàn),土壤呼吸速率在流域內(nèi)沿著氮濃度的升高而增加。

還有一些研究評(píng)估了放牧對(duì)潮間帶濕地碳循環(huán)的影響。Olsen等(2011)發(fā)現(xiàn)放牧能夠顯著增加溫帶鹽沼土壤微生物量和土壤呼吸,改變土壤微生物群落儲(chǔ)存、利用碳的方式,從而影響碳在土壤中的壽命。而Ford等(2012)在溫帶鹽沼研究則發(fā)現(xiàn),放牧顯著降低了CO2排放,但對(duì)由CH4和CO2排放一起核算的升溫潛勢(shì)卻沒(méi)有顯著影響。

4 氣候變化對(duì)潮間帶濕地碳循環(huán)的影響

多種氣候變化要素(海平面上升、氣溫升高、CO2濃度升高等)均可能會(huì)對(duì)潮間帶濕地碳匯功能產(chǎn)生顯著影響。由于全球變暖導(dǎo)致冰川融化、海水膨脹,從1901年到2010年,全球海平面平均上升了0.19 m,而且這種上升還在繼續(xù)。根據(jù)IPCC報(bào)告,即使在減排強(qiáng)度最大的預(yù)估情景下,到 21世紀(jì)末,海平面也會(huì)比 20世紀(jì)末升高 0.26~0.55 m(IPCC,2013)。上升的海平面會(huì)不斷侵蝕海岸線,淹沒(méi)潮間帶濕地(Nicholls,2004)。與此同時(shí),當(dāng)前普遍存在的河流大型水利工程(如長(zhǎng)江三峽水電站)會(huì)大大消減泥沙下泄量,從而可能加劇海平面上升條件下潮間帶濕地的侵蝕(仲啟鋮等,2010)。針對(duì)海平面上升對(duì)潮間帶濕地碳匯功能的潛在影響,Mudd等(2006)采用模型模擬研究指出,由于鹽沼的垂直沉積,碳積累會(huì)隨著海平面的上升而增加,直到海水完全淹沒(méi)鹽沼植被,這種積累才會(huì)停止;因此,鹽沼碳匯功能的維持依賴于其垂直沉積能力和海平面上升水平之間的平衡。針對(duì)不斷上升的海平面,人們采取了一系列的應(yīng)對(duì)策略,如修建護(hù)岸堤壩,但堤壩等工程設(shè)施會(huì)阻斷潮間帶濕地向內(nèi)陸擴(kuò)展,在海平面繼續(xù)上升的情況下,潮間帶濕地可能會(huì)因?yàn)椴荒芟騼?nèi)陸擴(kuò)展而逐漸被海水淹沒(méi),從而削弱其碳匯功能。另一項(xiàng)對(duì)美國(guó)佛羅里達(dá)州鹽沼植被和土壤穩(wěn)定同位素比率的研究發(fā)現(xiàn),因?yàn)楹F矫嫔仙龑?dǎo)致了濕地的向陸性擴(kuò)展,當(dāng)?shù)刂脖粌?yōu)勢(shì)種經(jīng)歷了由C3植物轉(zhuǎn)變?yōu)镃4植物的演替過(guò)程(Choi等,2001)。海平面上升還可能會(huì)增加風(fēng)暴潮等惡劣天氣的強(qiáng)度,從而使潮間帶濕地碳匯功能變得更為脆弱(DeLaune和White,2012;Barr等,2012)。

在全球溫度升高與潮間帶濕地碳循環(huán)的關(guān)系方面,現(xiàn)有的控溫試驗(yàn)表明溫度升高會(huì)增強(qiáng)鹽沼入侵植物物種的擴(kuò)散(Loebl等,2006),影響植物生長(zhǎng)(Zhong等,2014),改變植被群落結(jié)構(gòu)和地理分布等(Bertness等,2002)。在美國(guó)馬薩諸塞州鹽沼進(jìn)行的升溫試驗(yàn)結(jié)果表明,白天適度的升溫顯著提高了互花米草群落地上生物量,同時(shí)稍增加了有機(jī)質(zhì)分解速率。這項(xiàng)研究認(rèn)為,只要鹽沼不會(huì)因?yàn)楹F矫嫔仙谎蜎](méi),那么未來(lái)變暖的條件將有利于鹽沼植物的生長(zhǎng),并進(jìn)一步增加其固碳能力(Charles和Dukes,2009)。另一項(xiàng)控溫試驗(yàn)則表明,低于3 ℃的升溫幅度可以在生長(zhǎng)季末期將鹽沼植物群落優(yōu)勢(shì)種互花米草和狐米草的生產(chǎn)力增加15%~54%(Gedan和Bertness,2010)。然而,在生態(tài)系統(tǒng)尺度上,Hopkinson等(2012)依據(jù)通用代謝理論認(rèn)為,由于呼吸作用的活化能顯著高于光合作用的活化能,溫度升高對(duì)呼吸作用的影響高于光合作用,因此必然會(huì)導(dǎo)致潮間帶濕地 NEP的下降,進(jìn)而降低其碳匯功能和碳庫(kù)儲(chǔ)量。另外,升溫可能會(huì)改變潮間帶濕地土壤鹽度,土壤鹽度改變不僅會(huì)影響土壤呼吸對(duì)升溫的響應(yīng)(Zhong等,2013),而且還會(huì)通過(guò)改變植物群落結(jié)構(gòu)而影響植被生產(chǎn)力(Zhong等,2014)。升溫還有可能使冬季霜凍的發(fā)生頻率降低,使不耐北方霜凍的紅樹(shù)林往北擴(kuò)展進(jìn)入鹽沼,從而改變潮間帶濕地植物群落結(jié)構(gòu)及生產(chǎn)力(Guo等,2013)。

在美國(guó)的Chesapeake灣鹽沼,在將CO2濃度升高340 ppm的條件下,C3植物群落的光合速率、凈CO2吸收(Drake等,1996)及生態(tài)系統(tǒng)碳交換(Rasse等,2005)都會(huì)增加,而光合速率的增加促進(jìn)了細(xì)根生產(chǎn)力(Dakora和 Drake,2000)及甲烷產(chǎn)生(Dacey等,1994)。在另一項(xiàng)類似研究中,CO2濃度升高將C3植物群落的生物量增加了大約35%,對(duì)C4植物群落無(wú)顯著影響,但卻顯著增加了C3-C4混合植物群落的生物量(Erickson等,2007)。Marsh等(2005)對(duì)C3和C4兩種植物群落碳循環(huán)的研究發(fā)現(xiàn),CO2濃度升高會(huì)使兩種群落0~30 cm土壤中的DIC含量顯著升高;對(duì)于C3植物群落,CO2濃度升高增加了土壤中DOC和溶解性CH4,并通常會(huì)促進(jìn)CO2和CH4排放;而C4植物群落碳循環(huán)對(duì)CO2濃度升高的響應(yīng)則很微弱或者不存在;總體上CO2濃度升高可以通過(guò)影響潮間帶植物群落而增加對(duì)近海的DIC輸出。鑒于C3和C4植物對(duì)CO2濃度響應(yīng)的差異,在CO2濃度升高的條件下,鹽沼的優(yōu)勢(shì)種可能會(huì)從C3轉(zhuǎn)變成C4植物,進(jìn)而改變鹽沼碳循環(huán)(Anderson等,2004)。對(duì)于紅樹(shù)植物,CO2濃度升高也會(huì)顯著增加其生物量、相對(duì)生長(zhǎng)速率和凈同化速率等(Farnsworth和Elliso,1997)。

多種氣候變化要素可能會(huì)同時(shí)作用于潮間帶濕地的碳循環(huán)。Langley等(2009)在美國(guó)Chesapeake灣研究發(fā)現(xiàn),兩年CO2濃度升高處理通過(guò)促進(jìn)植物地下部分生產(chǎn)力將鹽沼高程提高了3.9 mm·a-1,而海平面上升帶來(lái)的鹽度和淹水程度增加會(huì)進(jìn)一步增強(qiáng)CO2濃度升高的效果,使鹽沼高程持續(xù)增加來(lái)抵抗海平面上升。然而Kirwan和Blum(2011)卻發(fā)現(xiàn),鹽沼有機(jī)質(zhì)分解對(duì)升溫響應(yīng)程度大約為植被生產(chǎn)力對(duì)升溫響應(yīng)程度的2倍,接近于植被生產(chǎn)力對(duì)CO2濃度升高響應(yīng)程度,因此氣溫升高條件下有機(jī)質(zhì)分解速率的增加會(huì)抵消植被生產(chǎn)力和土壤碳積累速率的增加。Kirwan和Mudd(2012)研究則認(rèn)為氣溫升高對(duì)土壤碳積累速率的直接影響相對(duì)于升溫導(dǎo)致海平面上升的間接影響是很微弱的,他們采用模型模擬表明氣候變化的凈效應(yīng)會(huì)在 21世紀(jì)前半段增加鹽沼碳積累速率,但這種正反饋可能會(huì)隨著時(shí)間的推移而逐漸消失。在中西佛羅里達(dá)的潮間帶濕地,海平面上升導(dǎo)致的淹水增加降低了土壤礦化速率,而溫度從 23 ℃增加到 27 ℃能夠?qū)撛诘V化碳提高40%,兩種氣候變化要素對(duì)土壤有機(jī)質(zhì)礦化產(chǎn)生了相反的影響(Lewis等,2014)。另外,CO2濃度和溫度同時(shí)升高會(huì)減緩鹽度對(duì)潮間帶濕地植物的影響,有利于它們擴(kuò)展進(jìn)入鹽度更高的區(qū)域從而改變植物群落結(jié)構(gòu)和生產(chǎn)力(Eller等,2014)。Luo等(2010)采用生化模型Biome-BGC模擬了未來(lái)氣候條件下紅樹(shù)林沼澤NPP動(dòng)態(tài),發(fā)現(xiàn)CO2濃度升高對(duì)NPP的影響僅有不到7%;而CO2濃度和氣溫同時(shí)升高能夠?qū)?個(gè)不同地理類群紅樹(shù)林沼澤的生產(chǎn)力提高14%~19%。

5 受損潮間帶濕地碳匯功能保育和修復(fù)

潮間帶濕地在遭受到人為干擾破壞或轉(zhuǎn)化,以及在后續(xù)的開(kāi)墾、種養(yǎng)等過(guò)程中,原本穩(wěn)定存在的土壤有機(jī)碳會(huì)快速損失。最有效地維持潮間帶濕地碳匯功能的方式是對(duì)其進(jìn)行保育,避免進(jìn)一步破壞。另一方面,對(duì)受損潮間帶濕地進(jìn)行修復(fù)或重建也可以減緩或反轉(zhuǎn)其碳匯功能喪失(Morris等,2012)。在受損濕地修復(fù)過(guò)程中,水文因子是人為可以控制的最直接、有效的環(huán)境因素。隨著人們逐漸意識(shí)到潮間帶濕地碳匯功能重要性,采用水文調(diào)控對(duì)濱海圍墾區(qū)或潮汐隔絕區(qū)等受損潮間帶濕地進(jìn)行修復(fù)或重建的案例也多有報(bào)道(Bernhardt等,2003;Wolters等,2005)。Cui等(2009)和Song等(2012)在中國(guó)黃河口和東北濱海平原分別采用水文調(diào)控對(duì)受損蘆葦濕地進(jìn)行修復(fù),發(fā)現(xiàn)土壤有機(jī)碳、微生物生物量碳及土壤酶的含量都持續(xù)增加。仲啟鋮等(2013,2014)在長(zhǎng)江口崇明東灘圍墾區(qū)灘涂濕地的研究也發(fā)現(xiàn),提高水位可以降低土壤呼吸速率,減緩圍墾后土壤有機(jī)碳損失速率;另外還可以提高濕生植物蘆葦在群落中的優(yōu)勢(shì)度,并增加植被生產(chǎn)力。Howe等(2009)研究也表明,與天然潮間帶濕地相比,采用恢復(fù)潮汐淹水對(duì)受損潮間帶濕地進(jìn)行修復(fù)會(huì)增加其碳封存速率,這種增加主要由修復(fù)后相對(duì)更高的垂直沉積速率實(shí)現(xiàn)。

然而,即便采取了修復(fù)措施,受損潮間帶濕地的碳匯功能在短期內(nèi)也并不能完全恢復(fù)到初始狀態(tài)。Crooks等(2011)對(duì)一個(gè)重新?tīng)I(yíng)造的半咸水鹽沼研究發(fā)現(xiàn),植被地上生物量恢復(fù)速率相對(duì)較快,但土壤碳存儲(chǔ)的恢復(fù)至少需要幾十年時(shí)間。Burden等(2013)對(duì)英國(guó)埃塞克斯一個(gè)從農(nóng)田到鹽沼過(guò)渡帶的研究也發(fā)現(xiàn),圍墾樣地在采用修復(fù)措施(managed realignment:將沿海防護(hù)設(shè)施后撤,使先前被圍墾濕地再次被潮水淹沒(méi))后預(yù)計(jì)需要100年的時(shí)間才能積累到等同于天然鹽沼的碳儲(chǔ)量。無(wú)論如何,這種對(duì)受損潮間帶濕地進(jìn)行修復(fù)的措施可能比單純的植樹(shù)造林在增加碳封存方面更加有效。Connor等(2001)估計(jì)如果加拿大芬迪灣被圍墾用于農(nóng)業(yè)的濕地面積可以全部被修復(fù),其每年封存CO2的速率相當(dāng)于加拿大在京都議定書框架下基于1990年減排目標(biāo)的4%~6%。IPCC同樣推薦修復(fù)退化或受損濕地作為增加碳封存的重要戰(zhàn)略。以英國(guó)為例,政府計(jì)劃在1999─2015年間,采用managed realignment重新創(chuàng)造2240 ha鹽沼(Burden等,2013)。人類介入去修復(fù)受損潮間帶濕地是增加全球自然碳匯的有效措施,但是這種措施必須被擴(kuò)大到產(chǎn)業(yè)規(guī)模時(shí)才可能產(chǎn)生明顯效果(Irving等,2011)。

6 總結(jié)

盡管對(duì)全球潮間帶濕地總碳封存能力的評(píng)估還存在很大不確定性(因總面積和單位面積碳封存速率估算尚不精確),但這類生態(tài)系統(tǒng)在全球碳收支中無(wú)疑扮演著重要角色。然而,全球潮間帶濕地的碳匯功能和碳庫(kù)儲(chǔ)量在過(guò)去一個(gè)世紀(jì)已顯著降低,并且未來(lái)很有可能在圍墾、富營(yíng)養(yǎng)化等人為干擾,和海平面上升、氣溫升高等氣候變化要素作用下持續(xù)下降。管理者在認(rèn)清這一趨勢(shì)的同時(shí),必須采取有效的保育或修復(fù)措施來(lái)緩解這種重要自然碳匯的喪失。只有對(duì)潮間帶濕地的碳匯功能進(jìn)行可持續(xù)管理和利用,才能充分發(fā)揮其在碳減排方面的生態(tài)功能。

在全球變化背景下,未來(lái)的研究需要更好的理解不同類型、不同地域的潮間帶濕地碳循環(huán)與人為干擾和氣候變化的關(guān)系,分析并預(yù)測(cè)其對(duì)全球碳循環(huán)的貢獻(xiàn),為潮間帶濕地碳匯功能的可持續(xù)管理和利用提供更加精準(zhǔn)和有效的依據(jù)。例如開(kāi)展長(zhǎng)期生態(tài)系統(tǒng)控制實(shí)驗(yàn),研究多種并存的氣候變化要素對(duì)潮間帶濕地碳循環(huán)的交互效應(yīng),研究人為干擾和氣候變化同時(shí)存在對(duì)潮間帶濕地碳循環(huán)的潛在影響;開(kāi)發(fā)基于水動(dòng)力-生化過(guò)程的潮間帶濕地碳收支模型,結(jié)合遙感手段,對(duì)潮間帶濕地碳源/匯時(shí)空格局進(jìn)行分析評(píng)估,并預(yù)測(cè)不同人為干擾和氣候變化情境下潮間帶濕地碳收支變化規(guī)律;加強(qiáng)受損潮間帶濕地碳匯功能修復(fù)和重建的基礎(chǔ)研究、工程示范和效果評(píng)估,完善該類受損濕地碳匯功能修復(fù)的基礎(chǔ)理論和實(shí)施方法。

ANDERSON M C, NEALE C M U, LI F, et al. 2004. Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery[J]. Remote Sensing of Environment, 92(4): 447-464.

ARMSTRONG W, WRIGHT E J, LYTHE S, et al. 1995. Plant zonation and the effects of the spring-neap tidal cycle on soil aeration in a Humber salt marsh[J]. The Journal of Ecology, 73(1): 323-339.

BARTLETT K B, HARRISS R C, SEBACHER D I. 1985. Methane flux from coastal salt marshes[J]. Journal of Geophysical Research: Atmospheres (1984─2012), 90(D3): 5710-5720.

BARTLETT K B, HARRISS R C. 1993. Review and assessment of methane emissions from wetlands[J]. Chemosphere, 26(1): 261-320.

BARR, J G, ENGEL V, FUENTES J D, et al. 2010. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park[J]. Journal of Geophysical Research, 115(G2): G02020.

BERNHARDT K G, KOCH M. 2003. Restoration of a saltmarsh system: Temporal change of plant species diversity and composition[J]. Basic and Applied Ecology, 4(5): 441-451.

BERTNESS M D, EWANCHUK P J, SILLIMAN B R. 2002. Anthropogenic modification of New England salt marsh landscapes[J]. Proceedings of the National Academy of Sciences, 99(3): 1395-1398.

BOUILLON S, BORGES A V, CASTA?EDA-MOYA E, et al. 2008. Mangrove production and carbon sinks: a revision of global budget estimates[J]. Global Biogeochemical Cycles, 22(2): 1-12.

BRIDGHAM S D, MEGONIGAL J P, KELLER J K, et al. 2006. The carbon balance of North American wetlands[J]. Wetlands, 26(4): 889-916.

BURDEN A, GARBUTTA, EVANS C, et al. 2013. Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment[J]. Estuarine, Coastal and Shelf Science, 120: 12-20.

CHARLES H, DUKES J S. 2009. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh[J]. Ecological Applications, 19(7): 1758-1773.

CHENG X, LUO Y, CHEN J, et al. 2006. Short-term C4plant Spartina alterniflora invasions change the soil carbon in C3plant-dominated tidal wetlands on a growing estuarine Island[J]. Soil Biology and Biochemistry, 38(12): 3380-3386.

CHOI Y, WANG Y, HSIEH Y P et al. 2001. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes[J]. Global Biogeochemical Cycles, 15(2): 311-319.

CHMURA G L, HELMER L L, BEECHER C B, et al. 2001. Historical rates of salt marsh accretion on the outer Bay of Fundy[J]. Canadian Journal of Earth Sciences, 38(7): 1081-1092.

CHMURA G L, ANISFELD S C, CAHOON D R, et al. 2003. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 17(4): 1111.

CHAPMAN V J. 1977. Wet coastal ecosystems[M]. Amsterdam: Elsevier scientific publishing company: 428.

CONNOR R F, CHMURA G L, BEECHER C B. 2001. Carbon accumulation in Bay of Fundy salt marshes: Implications for restoration of reclaimed marshes[J]. Global Biogeochemical Cycles, 15(4): 943-954.

CROOKS S, HERR D, TAMELANDER J, et al. 2011. Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: challenges and opportunities[R]. Environment Department Paper 121. Washington, DC: World Bank.

CUI B, YANG Q, YANG Z, et al. 2009. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China[J]. Ecological Engineering, 35(7): 1090-1103.

DACEY J W H, DRAKE B G, KLUG M J. 1994. Stimulation of methane emission by carbon dioxide enrichment of marsh vegetation[J]. Nature, 370: 47-49.

DAKORA F D, DRAKE B G. 2000. Elevated CO2stimulates associative N2fixation in a C3plant of the Chesapeake Bay wetland[J]. Plant, Cell & Environment, 23(9): 943-953.

DONATO D C, KAUFFMAN J B, MURDIYARSO D, et al. 2011. Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience, 4(5): 293-297.

DARBY F A, TURNER R E. 2008. Effects of eutrophication on salt marsh root and rhizome biomass accumulation[J]. Marine Ecology Progress Series, 363: 63-70.

DELAUNE R D, SMITH C J, PATRICK W H. 1983. Methane release from Gulf coast wetlands[J]. Tellus B, 35(1): 8-15.

DELAUNE R D, WHITE J R. 2012. Will coastal wetlands continue to sequester carbon in response to an increase in global sea level? A case study of the rapidly subsiding Mississippi river deltaic plain[J]. Climatic Change, 110(1-2): 297-314.

DITTMAR T, HERTKORN N, KATTNER G, et al. 2006. Mangroves, a major source of dissolved organic carbon to the oceans[J]. Global Biogeochemical Cycles, 20(1): 1-7.

DRAKE B G, PERESTA G, BEUGELING E, et al. 1996. Long-term elevated CO2exposure in a Chesapeake Bay wetland: ecosystem gas exchange, primary production, and tissue nitrogen[M]. San Diego : Academic Press: 197-214.

ERICKSON J E, MEGONIGAL J P, PERESTA G, et al. 2007. Salinity and sea level mediate elevated CO2effects on C3-C4plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland[J]. Global Change Biology, 13(1): 202-215.

ELLER F, LAMBERTINI C, NGUYEN L X, et al. 2014. Increased invasive potential of non-native Phragmites australis: elevated CO2and temperature alleviate salinity effects on photosynthesis and growth[J]. Global Change Biology, 20(2): 531-543.

EWANCHUK P J, BERTNESS M D. 2004. The role of waterlogging in maintaining forb pannes in northern New England salt marshes[J]. Ecology, 85(6): 1568-1574.

FARNSWORTH E J, ELLISON A M. 1997. The global conservation status of mangroves[J]. Ambio, 26(6): 328-334.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). 2007. The World's Mangroves, 1980-2005: A Thematic Study in the Framework of the Global Forest Resources Assessment[R]. Rome, Italy: FAO.

FORD H, GARBUTT A, JONES L, et al. 2012. Methane, carbon dioxide and nitrous oxide fluxes from a temperate salt marsh: Grazing management does not alter Global Warming Potential[J]. Estuarine, Coastal and Shelf Science, 113: 182-191.

FORSTER P, RAMASWAMY V, ARTAXO P, et al. 2007. Changes in atmospheric constituents and in radiative forcing[J]. Climate Change, 20: 129-234.

FRIESS D A, KRAUSS K W, HORSTMAN E M, et al. 2012. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems[J]. Biological Reviews, 87(2): 346-366.

GEDAN K B, BERTNESS M D. 2010. How will warming affect the salt marsh foundation species Spartina patens and its ecological role[J]? Oecologia, 164(2): 479-487.

GUO H, NOORMETS A, ZHAO B, et al. 2009. Tidal effects on net ecosystem exchange of carbon in an estuarine wetland[J]. Agricultural and Forest Meteorology, 149(11): 1820-1828.

GUO H, ZHANG Y, LAN Z, et al. 2013. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change[J]. Global Change Biology, 19(9): 2765-2774.

HE Q, BERTNESS M D, BRUNO J F, et al. 2014. Economic development and coastal ecosystem change in China[J]. Scientific Reports, 4: 5995.

HEINSCH F A, HEILMAN J L, MCINNES K J, et al. 2004. Carbon dioxide exchange in a high marsh on the Texas Gulf Coast: effects of freshwater availability[J]. Agricultural and Forest Meteorology, 125(1): 159-172.

HOWE A J, RODRIGUEZ J F, SACO P M. 2009. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia[J]. Estuarine, Coastal and Shelf Science, 84(1): 75-83.

HOPKINSON C S, CAI W J, HU X. 2012. Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude[J]. Current Opinion in Environmental Sustainability, 4(2): 186-194.

IRVING A D, CONNELL S D, RUSSELL B D. 2011. Restoring coastal plants to improve global carbon storage: reaping what we sow[J]. PloS one, 6(3): e18311.

KATHILANKAL J C, MOZDZER T J, FUENTES J D, et al. 2008. Tidal influences on carbon assimilation by a salt marsh[J]. Environmental Research Letters, 3(4): 044010.

KIRWAN M L, BLUM L K. 2011. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change[J]. Biogeosciences Discussions, 8(1): 707-722.

KIRWAN M L, MUDD S M. 2012. Response of salt-marsh carbon accumulation to climate change[J]. Nature, 489(7417): 550-553.

KIRWAN M L, MEGONIGAL J P. 2013. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 504(7478): 53-60.

KING G M, WIEBE W J. 1978. Methane release from soils of a Georgia salt marsh[J]. Geochimica et Cosmochimica Acta, 42(4): 343-348.

LAFFOLEY D, GRIMSDITCH, G D. 2009. The management of natural coastal carbon sinks[R]. Gland, Switzerland: IUCN.

LANGLEY J A, MCKEE K L, CAHOON D R, et al. 2009. Elevated CO2stimulates marsh elevation gain, counterbalancing sea-level rise[J]. Proceedings of the National Academy of Sciences, 106(15): 6182-6186.

LAUDICINA V A, HURTADO M D, BADALUCCO L, et al. 2009. Soil chemical and biochemical properties of a salt-marsh alluvial Spanish area after long-term reclamation[J]. Biology and Fertility of Soils, 45(7): 691-700.

LEWIS D B, BROWN J A, JIMENEZ K L. 2014. Effects of flooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt marshes[J]. Estuarine, Coastal and Shelf Science, 139: 11-19.

LIAO C, PENG R, LUO Y, et al. 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis[J]. New Phytologist, 177(3): 706-714.

LIVESLEY S J, ANDRUSIAK S M. 2012. Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store[J]. Estuarine, Coastal and Shelf Science, 97: 19-27.

LIU J, ZHOU H, QIN P, et al. 2007. Effects of Spartina alterniflora salt marshes on organic carbon acquisition in intertidal zones of Jiangsu Province, China[J]. Ecological Engineering, 30(3): 240-249.

LOEBL M, VAN BEUSEKOM J E E, REISE K. 2006. Is spread of the neophyte Spartina anglica recently enhanced by increasing temperatures[J]? Aquatic Ecology, 40(3): 315-324.

LUO Z, SUN O J, WANG E, et al. 2010. Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using Biome-BGC[J]. Ecosystems, 13(7): 949-965.

MAGENHEIMER J F, MOORE T R, CHMURA G L, et al. 1996. Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick[J]. Estuaries, 19(1): 139-145.

MATTHEWS E, FUNG I. 1987. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources[J]. Global Biogeochemical Cycles, 1(1): 61-86.

MARSH A S, RASSE D P, DRAKE B G, et al. 2005. Effect of elevated CO2on carbon pools and fluxes in a brackish marsh[J]. Estuaries, 28(5): 694-704.

MOFFETT K B, WOLF A, BERRY J A, et al. 2010. Salt marsh–atmosphere exchange of energy, water vapor, and carbon dioxide: Effects of tidal flooding and biophysical controls[J]. Water Resources Research, 46(10): W10525.

MENDELSSOHN I A, MORRIS J T. 2002. Eco-physiological controls on the productivity of Spartina alterniflora Loisel[C] // MICHAEL P W, DANIEL A K. Concepts and controversies in tidal marsh ecology. Netherlands: Springer: 59-80.

MORRIS J T. 1982. A model of growth responses by Spartina Alterniflora to nitrogen limitation[J]. The Journal of Ecology, 71(1): 25-42.

MORRIS J T, BRADLEY P M. 1999. Effects of nutrient loading on the carbon balance of coastal wetland sediments[J]. Limnology and Oceanography, 44(3): 699-702.

MORRIS J T, EDWARDS J, CROOKS S, et al. 2012. Assessment of carbon sequestration potential in coastal wetlands[C]//LAL R, LORENZ K, HüTTL R F, et al. Recarbonization of the Biosphere. Netherlands: Springer: 517-531.

MUDD S M, HOWELL S M, MORRIS J T. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation[J]. Estuarine, Coastal and Shelf Science, 82(3): 377-389.

MURPHY P, THACKRAY D, WILSON E. 2009. Coastal heritage and climate change in England: assessing threats and priorities[J]. Conservation and Management of Archaeological Sites, 11(1): 9-15.

NEUBAUER S C. 2013. Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology[J]. Estuaries and Coasts, 36(3): 491-507.

NICHOLLS R J. 2004. Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios[J]. Global Environmental Change, 14(1): 69-86.

ODUM E P. 1971. Fundamentals of Ecology[M]. 3rd ed. Philadelphia: WB Saunders: 546.

OLSEN Y S, DAUSSE A, GARBUTT A, et al. 2011. Cattle grazing drives nitrogen and carbon cycling in a temperate salt marsh[J]. Soil Biology and Biochemistry, 43(3): 531-541.

PENDLETON L, DONATO D C, MURRAY B C, et al. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems[J]. PloS one, 7(9): e43542.

PENNINGS S C, CALLAWAY R M. 1992. Salt marsh plant zonation: the relative importance of competition and physical factors[J]. Ecology, 73(2): 681-690.

POFFENBARGER H J, NEEDELMAN B A, MEGONIGAL J P. 2011. Salinity influence on methane emissions from tidal marshes[J]. Wetlands, 31(5): 831-842.

RASSE D P, PERESTA G, DRAKE B G. 2005. Seventeen years of elevated CO2exposure in a Chesapeake Bay wetland: Sustained but contrasting responses of plant growth and CO2uptake[J]. Global Change Biology, 11(3): 369-377.

RICHARD F D. 1982. The flux of floating macrodetritus in the North inlet estuarine ecosystem[J]. Estuarine, Coastal and Shelf Science, 15(3): 337-344.

ROTHMAN E, BOUCHARD V. 2007. Regulation of carbon processes by macrophyte species in a Great Lakes coastal wetland[J]. Wetlands, 27(4): 1134-1143.

STERN J, WANG Y, GU B, et al. 2007. Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades[J]. Applied Geochemistry, 22(9): 1936-1948.

SMITH C J, DELAUNE R D, PATRICK JR W H. 1983. Nitrous oxide emission from Gulf Coast wetlands[J]. Geochimica Cosmochimica Acta, 47(10): 1805-1814.

SONG Y, SONG C, YANG G, et al. 2012. Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in northeast China[J]. Environmental Management, 50(3): 418-426.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). 2013. Climate Change 2013: The physical science basis: Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change[R]. London: Cambridge University Press: IPCC.

SULLIVAN M J, CURRIN C A. 2002. Community structure and functional dynamics of benthic microalgae in salt marshes[C]//WEINSTEIN M P, KREEGER D A. Concepts and controversies in tidal marsh ecology. Netherlands: Springer: 81-106.

TEAL J M. 1962. Energy flow in the salt marsh ecosystem of Georgia[J]. Ecology, 43(4): 614-624.

VALéRY L, BOUCHARD V, LEFEUVRE J C. 2004. Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh[J]. Wetlands, 24(2): 268-276.

VALIELA I, WILSON J, BUCHSBAUM R, et al. 1984. Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores[J]. Bulletin of Marine Science, 35(3): 261-269.

WANG L, SONG C, SONG Y, et al. 2010. Effects of reclamation of natural wetlands to a rice paddy on dissolved carbon dynamics in the Sanjiang Plain, Northeastern China[J]. Ecological Engineering, 36(10): 1417-1423.

WETZEL R G. 1992. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems[C]//SALONEN K, KAIRESALO T, JONES R I. Dissolved Organic Matter in Lacustrine Ecosystems. Netherlands: Springer: 181-198.

WHITING G J, CHANTON J P, BARTLETT D S, et al. 1991. Relationships between CH4emission, biomass, and CO2exchange in a subtropical grassland[J]. Journal of Geophysical Research: Atmospheres, 96(D7): 13067-13071.

WICHERN J, WICHERN F, JOERGENSEN R G. 2006. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils[J]. Geoderma, 137(1/2): 100-108.

WIGAND C, MCKINNEY R A, CHINTALA M M, et al. 2004. Denitrification enzyme activity of fringe salt marshes in New England (USA)[J]. Journal of Environmental Quality, 33(3): 1144-1151.

WIGAND C, BRENNAN P, STOLT M, et al. 2009. Soil respiration rates in coastal marshes subject to increasing watershed nitrogen loads insouthern New England, USA[J]. Wetlands, 29(3): 952-963.

WINDHAM L, LATHROP R G. 1999. Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey[J]. Estuaries, 22(4): 927-935.

WOLTERS M, GARBUTT A, BAKKER J P. 2005. Salt-marsh restoration: Evaluating the success of de-embankments in north-west Europe[J]. Biological Conservation, 123(2): 249-268.

YANG S L, CHEN J Y. 1995. Coastal salt marshes and mangrove swamps in China[J]. Chinese Journal of Oceanology and Limnology, 13(4): 318-324.

ZHANG Y, DING W, LUO J, et al. 2010. Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4plant Spartina alterniflora[J]. Soil Biology and Biochemistry, 42(10): 1712-1720.

ZHOU L, ZHOU G, JIA Q. 2009. Annual cycle of CO2exchange over a reed (Phragmites australis) wetland in Northeast China[J]. Aquatic Botany, 91(2): 91-98.

ZHONG Q, DU Q, GONG J, et al. 2013. Effects of in situ experimental air warming on the soil respiration in a coastal salt marsh reclaimed for agriculture[J]. Plant and soil, 371(1/2): 487-502.

ZHONG Q, GONG J, WANG K, et al. 2014. Effects of 3-year air warming on growth of two perennial grasses (Phragmites australis and Imperata cylindrica) in a coastal salt marsh reclaimed for agriculture[J]. Aquatic Botany, 117: 18-26.

葛振鳴, 王天厚, 施文彧, 等. 2005. 崇明東灘圍墾堤內(nèi)植被快速次生演替特征[J].應(yīng)用生態(tài)學(xué)報(bào), 16(9): 1677-1681.

鞏晉楠, 王開(kāi)運(yùn), 張超, 等. 2009. 圍墾灘涂濕地旱生耐鹽植物的入侵和影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 20(1): 33-39.

賈建偉, 王磊, 唐玉姝, 等. 2010. 九段沙不同演替階段濕地土壤微生物呼吸的差異性及其影響因素[J]. 生態(tài)學(xué)報(bào), 30(17): 4529-4538.

馬安娜, 陸健健. 2011. 長(zhǎng)江口崇西濕地生態(tài)系統(tǒng)的二氧化碳交換及潮汐影響[J]. 環(huán)境科學(xué)研究, 24(7): 716-721.

聶明華, 劉敏, 侯立軍, 等. 2011. 長(zhǎng)江口潮灘土壤呼吸季節(jié)變化及其影響因素[J]. 環(huán)境科學(xué)學(xué)報(bào), 31(4): 824-831.

邵學(xué)新, 楊文英, 吳明, 等. 2011. 杭州灣濱海濕地土壤有機(jī)碳含量及其分布格局[J]. 應(yīng)用生態(tài)學(xué)報(bào), 22(3): 658-664.

趙廣琦, 張利權(quán), 梁霞. 2005. 蘆葦與入侵植物互花米草的光合特性比較[J]. 生態(tài)學(xué)報(bào), 25(7): 1604-1611.

仲啟鋮, 杜欽, 張超, 等. 2010. 濱岸不同植物配置模式的根系空間分布特征[J]. 生態(tài)學(xué)報(bào), 22: 6135-6145.

仲啟鋮, 關(guān)閱章, 劉倩, 等. 2013. 水位調(diào)控對(duì)崇明東灘圍墾區(qū)灘涂濕地土壤呼吸的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 24(8): 2141-2150.

仲啟鋮, 王江濤, 周劍虹, 等. 2014. 水位調(diào)控對(duì)崇明東灘圍墾區(qū)灘涂濕地蘆葦和白茅光合, 形態(tài)及生長(zhǎng)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 25(2): 408-418.

Research Advances on Carbon Cycling and Its Environmental Controlling Mechanisms in Intertidal Wetlands

ZHONG Qicheng1,2, WANG Kaiyun2, ZHOU Kai1, LAI Qifang1*
1. Research Center for Saline-alkali Water Fisheries Technology, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; 2. Shanghai Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai, 200241, China

Vegetated intertidal wetlands (mangrove and salt marsh) often have high vegetation productivity, low organic carbon decomposition rate, low CH4emission rate and high carbon deposition rate, thereby performing as one of the ecosystems with the fastest carbon sequestration rate per unit area. As a major contributor to global “blue carbon” sink, intertidal wetlands have great potential in mitigating carbon greenhouse gas emission and eliminating the global greenhouse effect. Intertidal wetlands are mainly distributed at coast and estuary areas with developed economy and dense population. In recent years, the carbon sink function of intertidal wetlands has been threatened by more and more human disturbances, and the ongoing climate changes also added uncertainties to their function of carbon sink. In the context of global change, an insight into the carbon cycling and its environmental controlling mechanisms in intertidal wetlands can help the authorities better manage these ecosystems possessing important carbon mitigation potential. Related studies at home and aboard were summarized, in which the basic processes of the carbon cycling and its environmental affecting factors in intertidal wetlands were analyzed, and the effects of multiple human disturbances and climate change elements on the carbon cycling in intertidal wetlands were investigated. The main processes of the carbon cycling in intertidal wetlands include CO2and CH4exchanges across the soil (water)-atmosphere and the canopy-atmosphere interfaces, and sediment deposition-derived carbon sequestration at the vertical direction, as well as the carbon exchanges with offshore sea at the lateral direction. The carbon cycling in intertidal wetlands can be influenced by many abiotic and biotic factors, such as tide, photosynthetically active radiation (PAR), temperature, salinity, water level, and plant community characteristics. Land reclamation, eutrophication, and grazing are likely to weaken the carbon sink function of intertidal wetlands, whereas the exotic plant invasions may bring a higher carbon acquisition capacity to some degree. Sea level rise and global warming can increase the vulnerability of the carbon sink function of intertidal wetlands, while the effects from elevated CO2concentration are dependent on the photosynthetic pathways of dominant plant communities. The influences of multiple synchronous climate change elements on the carbon sink function of intertidal wetlands are much more complex. In the globe scope, large areas of intertidal wetlands have been suffering severe damages or even been lost, and the hydrological regulation is a promising measure to remedy and restore the carbon sink function of the disturbed intertidal wetlands. Future studies should: (1) Focus on understanding the interactive effects of multiple synchronous climate change elements, together with those of human disturbances coexisted with climate changes on the carbon cycling in intertidal wetlands. (2) Predict possible changes of carbon balances of intertidal wetlands that under different scenarios of human disturbances and climate changes. (3) Improve the basic theories and implementation methods for the carbon sink remediation of the disturbed intertidal wetlands.

intertidal wetland; carbon cycling; carbon sink; climate changes; human disturbances

X142

A

1674-5906(2015)01-0174-09

10.16258/j.cnki.1674-5906.2015.01.025

仲啟鋮,王開(kāi)運(yùn),周凱,來(lái)琦芳. 潮間帶濕地碳循環(huán)及其環(huán)境控制機(jī)制研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào), 2015, 24(1): 174-182. ZHONG Qicheng, WANG Kaiyun, ZHOU Kai, LAI Qifang. Research Advances on Carbon Cycling and Its Environmental Controlling Mechanisms in Intertidal Wetlands [J]. Ecology and Environmental Sciences, 2015, 24(1): 174-182.

農(nóng)業(yè)部中國(guó)水產(chǎn)科學(xué)研究院基本科研業(yè)務(wù)費(fèi)項(xiàng)目(2013A01YY02)

仲啟鋮(1986年生),男,助理研究員,博士,主要從事濕地生態(tài)學(xué)研究。E-mail:dddzqc@163.com *通訊作者:來(lái)琦芳,研究員,E-mail: laiqf@ecsf.ac.cn

2014-10-15

猜你喜歡
鹽沼潮間帶碳循環(huán)
走進(jìn)潮間帶
食物網(wǎng)與碳循環(huán)
基于海陸融合DEM的大尺度潮間帶提取方法
福建閩江口潮間帶大型底棲動(dòng)物次級(jí)生產(chǎn)力時(shí)空特征
天空之鏡
潮間帶4.0MW風(fēng)機(jī)吊裝技術(shù)研究與應(yīng)用
玻利維亞——烏尤尼鹽沼
南京城市系統(tǒng)碳循環(huán)與碳平衡分析
多措并舉構(gòu)筑綠色低碳循環(huán)發(fā)展的制造業(yè)體系
天空之鏡
陕西省| 抚宁县| 始兴县| 边坝县| 道孚县| 万盛区| 高淳县| 晋城| 江华| 昆明市| 商水县| 乌苏市| 姚安县| 焦作市| 大方县| 积石山| 德兴市| 甘孜县| 岳池县| 墨脱县| 甘泉县| 蓝田县| 浪卡子县| 神木县| 泸州市| 元阳县| 雷州市| 团风县| 响水县| 历史| 柘荣县| 桦甸市| 织金县| 黑山县| 靖边县| 大余县| 米泉市| 武强县| 泰来县| 分宜县| 冷水江市|