王宇競(綜述),敖敏高娃,劉恩才(審校)
(呼倫貝爾市人民醫(yī)院檢驗科,內蒙古呼倫貝爾021008)
眾所周知,缺氧是惡性實體腫瘤的重要生物學特征之一,與腫瘤的生長、侵襲、凋亡密切相關。腫瘤組織氧濃度顯著低于周圍其他正常組織,例如,在乳腺腫瘤中,平均氧分壓大約為10 mmHg(1 mmHg=0.133 kPa),而在正常乳腺組織氧分壓大約為60 mmHg[1]。缺氧時,通過對氧分壓敏感基因的調控來改變腫瘤細胞的表型。而缺氧誘導因子1(hypoxia inducible factor 1,HIF1)在此過程中起重要作用。低氧除能干擾正常細胞新陳代謝外,還會導致缺氧相關基因失調,這種失調可產(chǎn)生大量致癌因素,包括腫瘤細胞的轉化、入侵和轉移、化療和放療治療抵抗[2]。微 RNAs(microRNAs,miRNAs)是一類內源性的,由18~24個核苷酸組成的非編碼的小RNA分子,其在轉錄翻譯水平調節(jié)真核生物的基因表達。它們廣泛參與許多正常的和病理的細胞過程,參與轉錄后基因調控,與細胞分化、代謝和癌變、臨床分期及預后密切相關[3]。在眾多的研究中已經(jīng)證實,miRNAs在腫瘤發(fā)生過程中所起的作用類似于致癌基因和抑癌基因的功能。然而,對于miRNAs在惡性疾病中所扮演的角色并不是十分了解。特別指出的是,對于腫瘤微環(huán)境下miRNAs與缺氧是如何相互作用的缺乏相關明確研究。近期一些研究表明,miRNAs的幾個關鍵的信號通路與低氧反應相關聯(lián),并為適應低氧環(huán)境發(fā)揮了重要作用?,F(xiàn)對這些缺氧條件下miRNAs與腫瘤相關性進行綜述,說明miRNAs與低氧之間的相互作用機制,以便更好地理解其在腫瘤發(fā)生中的作用。
以往研究已經(jīng)通過芯片法發(fā)現(xiàn)一些miRNAs對于缺氧的差異性表達,此類miRNAs稱為缺氧調節(jié)miRNAs(hypoxia regulator miRNAs,HRMs)。例如miR-210、miR-155、miR-372/373、miR-10b、miR-185-3P 和 miR-216a-5P認為是上調的 miRNAs,而miR-20b、miR-200b、miR-625-5P是 下 調 的 miRNAs[4-13]。 除 了HRMs miR-210外,其他大部分HRMs缺少相關表型一致性的研究,這種缺乏一致性的研究可能歸因于技術變量因素,包括敏感性篩選方法中所述的持續(xù)時間和缺氧嚴重程度的劃分[14]。除外種類繁多的miRNA表達譜平臺外,研究認為,對于miRNA的檢測缺乏適當?shù)臉藴驶姆椒?,也是造成miRNA測量誤差的重要原因[15-19]。目前為止,大約有3000種人類miRNA被命名,而大部分用于miRNA的分析方法均建立在這樣的假設情況下,即該芯片技術標準化方法所用的陣列探針數(shù)足夠大(>5000),并能夠獲得高通量的結果,但事實上,信息量大并不等同于質量高。因此顯然目前建立的方法不能滿足miRNA表達譜的分析要求,如miR-210-3P僅通過微陣列平臺不能檢測到,需要即時聚合酶鏈反應可探測到[5],所以除外有具體的標準化檢測作業(yè)體系外,從陣列數(shù)據(jù)庫中準確、有效地識別出有功能的 HRMs也十分重要。自從 Kulshreshtha等[20]在2007年第1次報道m(xù)iRNA可被缺氧誘導后,隨后其他大量關于HRMs的研究也相繼展開。目前已知報道的缺氧誘導上調的 miRNAs 如 下:miR-10b,miR-152,miR-191,miR-206,miR-224,miR-103,miR-155,miR-193b,miR-21,miR-23,miR-107,miR-125a,miR-181b,miR-188,miR-203,miR-205,miR-210,miR-213,miR-24,miR-26,miR-27,miR-30a-5p,miR-30c,miR-30d,miR-322,miR-333,miR-335,miR-339,miR-373,miR-451,miR-491,miR-497,miR-185-3P,miR-216a-5P。下調的 miRNAs 有 miR-22,miR-25,miR-30,miR-424,miR-449,miR-489,let-7f,miR-128b,miR-150,miR-159,miR-17-92,miR-181d, miR-196a, miR-196b, miR-199a, miR-199b,miR-200a,miR-200b,miR-20b,miR-625-5P。
缺氧反應原件(hypoxic response element,HRE)位于HRM啟動子區(qū),能與HIF1的α和β亞基結合,同時缺氧又增強此復合物的親和力,繼而促使 HRM轉錄。許多 HRMs,miR-210,miR-155,miR-373,已被證實含有 HRE,并通過 HIF1調節(jié) HRMs 的表達[4,6,11]。
類似于蛋白編碼基因,miRNA的轉錄也同樣遵循RNA聚合酶參與的傳統(tǒng)轉錄機制,因而轉錄因子在調節(jié)miRNA表達中起決定作用。如TWIST、過氧化物增殖物激活受體γ和轉錄因子GATA1在轉錄水平均可被HIF1所調節(jié)[21-23],其結果是,HIF1可以通過這些轉錄因子參與miRNA表達調控。例如,在低氧時HIF1參與調控下,TWIST可誘導上調miR-10b。miR-10b是一個眾所周知的介導不同種人類癌癥轉移的致癌miRNA[8]。相反,Lei等[12]發(fā)現(xiàn)敲除HIF1后導致miR-20b表達增加,同時Chan等[13]則報道m(xù)iR-200b表達則降低。由低氧激活的復雜性分子鉸鏈機制中,miRNA不僅直接受缺氧調控,還能調節(jié)缺氧相關基因的表達。例如,Kelly等[24]發(fā)現(xiàn)缺氧誘導miR-210抑制甘油醛-3-磷酸脫氫酶1表達,進而通過降低超羥化穩(wěn)定HIF1α的表達,同理cullin2,泛素連接酶系統(tǒng)的一個支架蛋白,可以被miR-424所抑制。假設缺氧能誘導人類內皮細胞中miR-424表達,cullin2的表達下降則可能穩(wěn)定 HIF1α[25]。因此在低氧誘導的HRMs中,一些miRNAs靶基因通過形成正反饋環(huán)穩(wěn)定HIF1,此外一些缺氧下調的HRMs,如miR-18a、miR-20b、miR-199、miR-17-92則通過直接靶向作用抑制HIF1表達[26-29]。Brunning等[6]也研究指出在體內和體外模型中,缺氧誘導的miR-155可能對HIF1α的穩(wěn)定性和活性有負面作用。另外,一些非HRMs,miR-519c和miR-107分別以HIF1α和HIF1β為靶位點。目前,HIF2作為另一種重要的亞基,在缺氧方面已廣泛研究,但很少有報道HIF2與miRNA之間的關聯(lián)性。最新研究表明,含有3-非編碼區(qū)的 HIF-3α包含miR-485-5P和miR-210-3P的靶點,并因缺氧而表達上調[5]。除HIF1外,其他基因和信號通路也可能有助于增加腫瘤細胞對缺氧的適應性。如缺氧可經(jīng)由AKT2依賴性過程誘導miR-21,由AKT2轉導的低氧誘導信號能提高核因子κB和環(huán)磷腺苷效應原件結合蛋白活性,繼而轉錄上調miR-21的表達[29]。缺氧還參與 miRNA的生物源性,蛋白 Argonaute2(Ago2)是RNA誘導沉寂復合物的核心元件,而Ago2蛋白羥化是Ago2蛋白聚集成RNA誘導沉寂復合物中的熱激蛋白90的關鍵一步。以往研究表明低氧能增加Ⅰ型膠原脯氨酸-4-羥化酶水平,這可能導致脯氨酸羥基化和Ago2的累積,因此通過任意HIF1獨立或依賴途徑均可增加Ago2核酸內切酶活性[30-31]。
血管生成是通過組織重塑的高度協(xié)調導致新生血管生成,缺氧區(qū)域通過促血管生成因子誘導血管生成[32-33]。當細胞缺氧時,HIF1通過轉錄調控機制上調多種血管因子生成,包括血管內皮生長因子(vascular endothelial growth factor,VEGF)和血管生成素2,基質細胞衍生因子和干細胞因子[32-35]。這些因子與血管內皮與平滑肌細胞表面的特殊受體結合時,在原有血管上開始有新生毛細血管生成,而血管生成對于腫瘤生長和轉移具有重要作用。近期研究揭示,特殊的HRMs在血管生成調控中具有輔助作用,研究指出miR-210以酪氨酸激酶的配體肝配蛋白A3為靶點,并促進人臍靜脈內皮細胞分化[36]。同時缺氧誘導miR-424通過靶基因CUL2促進血管生成,CUL2是支架蛋白泛素連接酶系統(tǒng)的關鍵組成成分,這個過程穩(wěn)定了 HIF1α活性,并同時轉錄激活VEGF[25]。相反的,miR-20b則通過VEGF和HIF1α對血管生成有負向調節(jié)作用[12,37]。在低氧環(huán)境下,miR-20b 經(jīng)由HIF1α使miR-20b表達下調,并減弱對VEGF和HIF1α的抑制作用。這種miR-20b、HIF1α和VEGF之間的相互調節(jié)作用可使腫瘤細胞適應不同的缺氧濃度[12,37]。此外,miR-519c也直接以HIF1α為靶點抑制血管生成,miR-21也已證實能夠以抑癌基因為靶點,激活 AKT2和 ERK1/2信號通路,繼而HIF1α和VEGF表達增加,以誘導腫瘤血管生成[38]。在體外培養(yǎng)的富含miR-200b的人微血管內皮細胞模型中,表現(xiàn)出抑制血管生長反應性的特性,相反在miR-200b缺乏的人微血管內皮細胞模型中則出現(xiàn)血管生成反應性升高的特性,而氧含量不足和HIF1α穩(wěn)定的活性亦可抑制miR-200b的表達[13]。此外,缺氧環(huán)境下miR-107表達下調則可促進腫瘤血管生成,其原因可能是由于miR-107對HIF1α抑制減少造成的[39]。
miR-210基因被證實抑制E2F3和MNT表達。E2F3屬于E2F家族,是通過影響G1/S期所需DNA合成控制細胞周期的進程。MNT是已知c-myc的拮抗劑,參與細胞周期的調控和增殖。通過誘導miR-210使MNT表達抑制,進而加快G1/S期轉換,促進腫瘤細胞增殖[40]。因此,缺氧誘導miR-210可能參與腫瘤細胞的一些重要的細胞過程。
當氧水平不足時,細胞新陳代謝由線粒體的氧化磷酸化轉變?yōu)樘墙徒庑问?,同時HIF1可能參與對新陳代謝水平改變起關鍵作用的激酶和酶的誘導。研究表明,miRNA-126以胰島素受體底物1為靶基因,抑制惡性間皮瘤并妨礙線粒體功能[41]。最近一些研究小組也已證實miR-210通過抑制線粒體代謝中若干個步驟,特別是電子傳遞鏈復合物來協(xié)助這種代謝轉變[42-45]。miR-210以鐵硫簇同源支架和細胞色素C氧化酶聚集因子為靶點抑制線粒體呼吸。此外,miR-210還以在細胞代謝中起重要作用的還原型煙酰胺腺嘌呤二核苷酸脫氫酶(輔酶)1α-復型4(NDUFA4)和琥珀酸復合物以及GDP-1為靶點[44],參與細胞代謝。
Ma等[46]在近期在對前列腺癌細胞的研究中指出缺氧誘導的自噬作用在一定程度上受控于miR-96,miR-96能通過哺乳動物雷帕霉素靶蛋白或自噬相關蛋白7起到抑制或促進自噬的作用。而此相反作用取決于miR-96的表達水平:miR-96通過抑制雷帕霉素靶蛋白而刺激自噬,當抑制miR-96時會消除缺氧誘導的自噬;相反高表達的miR-96則通過抑制自噬相關蛋白7來抑制自噬。而自噬作用在腫瘤中則使腫瘤細胞失去活力,從而抑制腫瘤的生長。此外,F(xiàn)asanaro等[36]發(fā)現(xiàn)在正常和缺氧條件下,以肝配蛋白A3為靶基因的miR-210抑制內皮細胞凋亡,另外 Kim等[47]發(fā)現(xiàn)miR-210表達凋亡組分CASP8AP2通過缺血預處理可以增加間充質干細胞的存活性。近期發(fā)現(xiàn),miR-497是一種與細胞凋亡相關的miRNAs。在缺氧的環(huán)境下,神經(jīng)膠質瘤細胞中,過表達的miR-497通過程序性細胞凋亡因子4對因缺氧誘導的細胞凋亡表現(xiàn)出保護性機制[48]。其他研究也表明miR-21可能通過人第10號染色體缺失的磷酸酶及張力蛋白同源基因和Fas配體調節(jié)細胞凋亡[49]。
Ying等[50]報道在肝細胞癌細胞中,缺氧誘導的miR-210可促進肝細胞癌轉移。液泡膜蛋白1被確定為miR-210的直接靶基因,在缺氧條件下,液泡膜蛋白1的下調與肝細胞癌細胞的轉移有關。Chen等[51]發(fā)現(xiàn)缺氧時,miR103/107在結腸腫瘤細胞中表達升高,并抑制了腫瘤轉移的抑制物-凋亡相關蛋白酶和Kruppel樣因子。Loayza-Puch等[11]研究指出,在缺氧條件下,miR372/373通過HIF1α和TWIST的轉錄調節(jié)和表達上調,而 miR-210則通過 RAS/ERK信號上調,這些HRMs相繼降低膜錨定金屬蛋白酶調節(jié)物RECK基因表達,而RECK則是腫瘤細胞轉移的抑制物。缺氧是腫瘤微環(huán)境的標志,缺氧與抗癌療法中放/化療相關已經(jīng)明確。但是在缺氧條件下,癌細胞如何抵抗抗癌治療的機制還不十分明確。Gee等[52]通過大量數(shù)據(jù)說明miRNAs是腫瘤適應低氧反應的重要成分,超表達的miR-210,典型的缺氧相關基因轉與腫瘤的不良預后相關。通過反義基因療法,穩(wěn)定轉染的miR-210反義寡核苷酸能顯著增強人肝癌細胞對放射性的敏感性,從而抑制細胞增殖和促進細胞凋亡。如前所述,神經(jīng)膠質瘤細胞中,異常過表達miR-497以程序性細胞凋亡因子4為靶基因增強對化療藥物的抵抗性,相反,抑制其會促進腫瘤細胞的凋亡,并提高神經(jīng)膠質瘤細胞對 TMZ的敏感性[48]。因此HRMs可能成為未來放/化療治療中關鍵的生物標志物和治療靶點。
雖然目前有許多關于缺氧和人類癌癥的報道,但缺氧對于生理學和病理生理學上的調節(jié)機制還知之甚少。而對于miRNAs的研究有望揭示缺氧條件下的調節(jié)機制,原因有:①細胞水平上,miRNAs通過轉錄和翻譯調節(jié)對由缺氧引起的壓力反應快速響應;②miRNAs能同時調節(jié)大量基因并影響到多個組件的信號通路。因此,針對未來HRMs的研究,可能側重于以下幾個方面:①新的HRMs的發(fā)現(xiàn)及其靶基因的識別;②驗證新發(fā)現(xiàn)的HRMs及其在缺氧條件下的功能;③以HRMs為靶位點的新型治療和預防藥物的發(fā)展。近期人類癌癥中關于缺氧調節(jié)miRNAs的研究,以及癌癥微環(huán)境中miRNAs所扮演調節(jié)角色的闡述會對今后抗癌藥物的發(fā)展有所幫助。
[1]Marxsen JH,Schmitt O,Metzen E,et al.Vascular endothelial growth factor gene expression in the human breast cancer cell line MX-1 is controlled by O2availability in vitro and in vivo[J].Ann Anat,2001,183(3):243-249.
[2]Semenza GL.HIF-1 and tumor progression:pathophysiology and therapeutics[J].Trends Mol Med,2002,8(4 Suppl):S62-67.
[3]Greco S,Martelli F.MicroRNAs in Hypoxia Response[J].Antioxid Redox Signal,2014,21(8):1164-1166.
[4]Huang X,Ding L,Bennewith KL,et al.Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation[J].Mol Cell,2009,35(6):856-867.
[5]Gits CM,van Kuijk PF,de Rijck JC,et al.MicroRNA response to hypoxic stress in soft tissue sarcoma cells:microRNA mediated regulation of HIF3α[J].BMC Cancer,2014,14:429.
[6]Bruning U,Cerone L,Neufeld Z,et al.MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia[J].Mol Cell Biol,2011,31(19):4087-4096.
[7]Crosby ME,Kulshreshtha R,Ivan M,et al.MicroRNA regulation of DNA repair gene expression in hypoxic stress[J].Cancer Res,2009,69(3):1221-1229.
[8]Haque I,Banerjee S,Mehta S,et al.Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5(CCN5)/Wnt-1-induced signaling protein-2(WISP-2)regulates microRNA-10b via hypoxia-inducible factor-1α-TWIST signaling networks in human breast cancer cells[J].J Biol Chem,2011,286(50):43475-43485.
[9]Mathieu J,Zhang Z,Zhou W,et al.HIF induces human embryonic stem cell markers in cancer cells[J].Cancer Res,2011,71(13):4640-4652.
[10]Neal CS,Michael MZ,Rawlings LH,et al.The VHL-dependent regulation of microRNAs in renal cancer[J].BMC Med,2010,8:64.
[11]Loayza-Puch F,Yoshida Y,Matsuzaki T,et al.Hypoxia and RAS-signaling pathways converge on,and cooperatively downregulate,the RECK tumor-suppressor protein through microRNAs[J].Oncogene,2010,29(18):2638-2648.
[12]Lei Z,Li B,Yang Z,et al.Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration[J].PLoS One,2009,4(10):e7629.
[13]Chan YC,Khanna S,Roy S,et al.miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells[J].J Biol Chem,2011,286(3):2047-2056.
[14]Chan SY,Loscalzo J.MicroRNA-210:a unique and pleiotropic hypoxamir[J].Cell Cycle,2010,9(6):1072-1083.
[15]Huang X,Le QT,Giaccia AJ.MiR-210--micromanager of the hypoxia pathway[J].Trends Mol Med,2010,16(5):230-237.
[16]Wang B,Howel P,Bruheim S,et al.Systematic evaluation of three microRNA profiling platforms:microarray,beads array,and quantitative real-time PCR array[J].PLoS One,2011,6(2):e17167.
[17]Wang B,Wang XF,Howell P,et al.A personalized microRNA microarray normalization method using a logistic regression model[J].Bioinformatics,2010,26(2):228-234.
[18]Wang B,Wang XF,Xi Y.Normalizing bead-based microRNA expression data:a measurement error model-based approach[J].Bioinformatics,2011,27(11):1506-1512.
[19]Wang B,Zhang SG,Wang XF,et al.Testing for differentiallyexpressed microRNAs with errors-in-variables nonparametric regression[J].PLoS One,2012,7(5):e37537.
[20]Kulshreshtha R,F(xiàn)erracin M,Wojcik SE,et al.A microRNA signature of hypoxia[J].Mol Cell Biol,2007,27(5):1859-1867.
[21]Yang MH,Wu MZ,Chiou SH,et al.Direct regulation of TWIST by HIF-1alpha promotes metastasis[J].Nat Cell Biol,2008,10(3):295-305.
[22]Krishnan J,Suter M,Windak R,et al.Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy[J].Cell Metab,2009,9(6):512-524.
[23]Zhang FL,Shen GM,Liu XL,et al.Hypoxia-inducible factor 1-mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions[J].J Cell Mol Med,2012,16(8):1889-1899.
[24]Li X,Gao L,Cui Q,et al.Sulindac inhibits tumor cell invasion by suppressing NF-κB-mediated transcription of microRNAs[J].Oncogene,2012,31(48):4979-4986.
[25]Ma L.Role of miR-10b in breast cancer metastasis[J].Breast Cancer Res,2010,12(5):210.
[26]Taguchi A,Yanagisawa K,Tanaka M,et al.Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster[J].Cancer Res,2008,68(14):5540-5545.
[27]Rane S,He M,Sayed D,et al.Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes[J].Circ Res,2009,104(7):879-886.
[28]Krutilina R,Sun W,Sethuraman A,et al.MicroRNA-18a inhibits hypoxia-inducible factor 1-alpha activity and lung metastasis in basal breast cancers[J].Breast Cancer Res,2014,16(4):R78.
[29]Polytarchou C,Iliopoulos D,Hatziapostolou M,et al.Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation[J].Cancer Res,2011,71(13):4720-4731.
[30]Wu C,So J,Davis-Dusenbery BN,et al.Hypoxia potentiates microRNA-mediated gene silencing through posttranslational modi-fication of Argonaute2[J].Mol Cell Biol,2011,31(23):4760-4774.
[31]Hofbauer KH,Gess B,Lohaus C,et al.Oxygen tension regulates the expression of a group of procollagen hydroxylases[J].Eur J Biochem,2003,270(22):4515-45122.
[32]Forsythe JA,Jiang BH,Iyer NV,et al.Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1[J].Mol Cell Biol,1996,16(9):4604-4013.
[33]Simon MP,Tournaire R,Pouyssegur J.The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1[J].J Cell Physiol,2008,217(3):809-818.
[34]Ceradini DJ,Kulkarni AR,Callaghan MJ,et al.Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J].Nat Med,2004,10(8):858-864.
[35]Kelly BD,Hackett SF,Hirota K,et al.Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1[J].Circ Res,2003,93(11):1074-1081.
[36]Fasanaro P,D'Alessandra Y,Di Stefano V,et al.MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3[J].J Biol Chem,2008,283(23):15878-15883.
[37]Cascio S,D'Andrea A,F(xiàn)erla R,et al.miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells[J].J Cell Physiol,2010,224(1):242-249.
[38]Liu LZ,Li C,Chen Q,et al.MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression[J].PLoS One,2011,6(4):e19139.
[39]Yamakuchi M,Lotterman CD,Bao C,et al.P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis[J].Proc Natl Acad Sci U S A,2010,107(14):6334-6339.
[40]Zhang Z,Sun H,Dai H,et al.MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT[J].Cell Cycle,2009,8(17):2756-2768.
[41]Tomasetti M,Nocchi L,Staffolani S,et al.MicroRNA-126 suppresses mesothelioma malignancy by targeting IRS1 and interfering with the mitochondrial function[J].Antioxid Redox Signal,2014,21(15):2109-2125.
[42]Chan SY,Zhang YY,Hemann C,et al.MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the ironsulfur cluster assembly proteins ISCU1/2[J].Cell Metab,2009,10(4):273-284.
[43]Fasanaro P,Greco S,Lorenzi M,et al.An integrated approach for experimental target identification of hypoxia-induced miR-210[J].J Biol Chem,2009,284(50):35134-35143.
[44]Favaro E,Ramachandran A,McCormick R,et al.MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU[J].PLoS One,2010,5(4):e10345.
[45]Chen Z,Li Y,Zhang H,et al.Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression[J].Oncogene,2010,29(30):4362-4368.
[46]Ma Y,Yang HZ,Dong BJ,et al.Biphasic regulation of autophagy by miR-96 in prostate cancer cells under hypoxia[J].Oncotarget,2014,5(19):9169-9182.
[47]Kim HW,Haider HK,Jiang S,et al.Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2[J].J Biol Chem,2009,284(48):33161-33168.
[48]Lan J,Xue Y,Chen H,et al.Hypoxia-induced miR-497 decreases glioma cell sensitivity to TMZ by inhibiting apoptosis[J].FEBS Lett,2014,588(18):3333-3339.
[49]Sayed D,He M,Hong C,et al.MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression ofFas ligand[J].JBiolChem,2010,285(26):20281-20290.
[50]Ying Q,Liang L,Guo W,et al.Hypoxia-inducible microRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma[J].Hepatology,2011,54(6):2064-2075.
[51]Chen HY,Lin YM,Chung HC,et al.miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4[J].Cancer Res,2012,72(14):3631-3641.
[52]Gee HE,Ivan C,Calin GA,et al.HypoxamiRs and cancer:from biology to targeted therapy[J].Antioxid Redox Signal,2014,21(8):1220-1238.