夏斐+范佩+張明菊+夏啟中
摘要:植物對病原菌的抗性依賴于組成性和誘導性防衛(wèi)屏障所形成的復雜網絡。植物細胞壁是病原菌成功侵染植物組織必須克服的障礙之一。傳統(tǒng)觀點認為植物細胞壁只是一個被動的屏障,但最新研究認為細胞壁是一種調控組成性和誘導性防衛(wèi)反應機制的動力學結構,而且可以作為信號分子源啟動植物的內在免疫反應。通過破壞相關的合成蛋白質而進行的細胞壁完整性的修飾或重構也會對植物的抗病性產生影響。對植物細胞壁抗病的功能進行了系統(tǒng)的介紹,并重點探討了木質素在抗病過程中的作用。
關鍵詞:次生細胞壁; 植物病原菌; 植物免疫性; 纖維素; 木質素
中圖分類號:Q241;S432 ? ? ? ?文獻標識碼:A ? ? ? ?文章編號:0439-8114(2015)23-5797-07
DOI:10.14088/j.cnki.issn0439-8114.2015.23.002
Advances in Roles of the Secondary Cell Wall in Plant Resistance to Pathogens
XIA Fei,F(xiàn)AN Pei,ZHANG Ming-ju,XIA Qi-zhong
(Life Science Department, Huanggang Normal University, Huanggang 438000, Hubei,China)
Abstract: Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The plant cell wall is just a passive barrier in traditional view, but the latest researches provide us a concept that the cell wall is a dynamic structure that regulates both constitutive and inducible defense mechanisms, and a source of signaling molecules that trigger immune responses as well. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact plants resistance to pathogens. This review summarizes the role of the plant cell wall in resistance to pathogens and focuses on the significant effect of lignin on the resistant process.
Key words:secondary cell wall;plant pathogen;plant immunity;cellulose;lignin
在自然環(huán)境中,植物持續(xù)地受到包括病原菌和病毒等在內的生物脅迫,影響植物的生存和繁殖。同時,植物也進化了多種組成性或病原菌攻擊后誘導性的抗性機制以應對各種脅迫[1]。植物細胞壁是存在于植物細胞外圍的一層厚壁,是植物區(qū)別于動物細胞的主要特征之一,由胞間層、初生壁、次生壁三部分構成。處于發(fā)育伸展中的植物細胞都有可不斷重構的初生細胞壁,初生細胞壁由碳水化合物多聚體(分為纖維素、半纖維素和果膠質)和富含羥脯氨酸的糖蛋白如伸展蛋白和阿拉伯糖半乳糖蛋白組成。已經完成伸展的植物細胞,又能形成由纖維素、半纖維素和木質素組成的次生細胞壁,以強化其結構和實現(xiàn)其功能,例如形成木質部小室或纖絲細胞[2]。細胞壁對維持細胞的形態(tài)、增強細胞的機械強度,調控細胞的生長速度,調節(jié)質外體運輸?shù)乃俾屎蛥⑴c細胞間的信息傳遞等方面起著重要的作用[3]。同時,細胞壁還是植物重要的防衛(wèi)因子之一,在防止病原菌入侵中發(fā)揮重要作用。其一,細胞壁作為被動屏障,細胞壁基質局部或較大范圍的破壞是病原菌侵染所必須的[4]。其次,細胞壁是抗病化合物的貯存庫,在細胞壁降解中釋放出來[5]。第三,與真菌類似,植物具備特定細胞壁完整性(CWI)維持機制,在植物發(fā)育和對外部刺激的反應中可以啟動CWI的調控反應[6]。病原菌攻擊或損傷對CWI的破壞會導致信號分子的釋放,被稱為損傷相關分子模式(Damage-associated molecular patterns,DAMPs)[5]。DAMPs通過植物模式識別受體(Plant Pattern recognition receptors,PRRs)調節(jié)植物內在免疫反應,其分子機制類似于來自于病原菌的病原菌相關分子模式(Pathogen-associated molecular patterns, PAMPs)的激活機制。PRRs對DAMPs和PAMPs的識別激活了蛋白質激酶級聯(lián)反應,激酶級聯(lián)反應調控下游免疫反應,導致細胞壁加厚[7]。除了保護植物免遭病原菌侵染以外,植物細胞壁還能充當病原菌的氮源,還可以促進病原菌的生長和發(fā)育[4]。
大量的研究已闡明了植物細胞壁修飾對病原菌感染的影響[7]。與直覺相反,通過敲除細胞壁生物合成相關的一些關鍵基因而弱化細胞壁結構有時反而會增強植物對特定病原菌的抗性[8]。由于木質素是脅迫誘導和發(fā)育過程中沉積在次生加厚細胞壁上的,同時木質素也是木質纖維素生物量基因工程的主要目標,因此,木質素數(shù)量和組成改變會對病原菌侵染和傳播產生影響。
1 ?細胞壁多糖改變對抗病性的影響
次生細胞壁在植物免疫反應中所起的作用已通過對一些次生細胞壁組成受破壞的植物突變體的鑒定而得以證實[9]。例如,纖維素合成酶對次生細胞壁形成是必須的,一系列擬南芥纖維素合成酶(Cellulose synthase,CASA)亞基缺陷的突變體所形成的纖維素很少,導致產生坍塌的木質部小室(Xylem vessels),這些被稱之為不規(guī)則木質部突變體(分別為irx5、 irx3、irx1)對不同病原菌表現(xiàn)出增強的抗性,包括死體營養(yǎng)真菌,如黃瓜萎蔫病菌(Plectospherella cucumerina)、腐生真菌如灰霉菌(Botrytis cinerea)等,維管束病害細菌,如茄科雷爾氏菌(Ralstonia solanacearum)及活體營養(yǎng)細菌,如丁香假單胞菌(Pseudomonas syringae)[10]。又如,轉錄因子MYB40直接調控次生細胞壁形成相關基因的表達,包括木質素和纖維素合成相關基因如CESA4,CESA7和CESA8等,擬南芥轉錄因子MYB40缺陷突變體也對死體營養(yǎng)真菌表現(xiàn)為增強抗性[11]。irx5、irx3、irx1和myb46突變體的抗病表型可能是植物免疫反應組成性激活而不是細胞壁被動屏障的改變造成的。在這些突變體中,脫落酸信號代謝途徑組成性激活,抗微生物多肽和色氨酸衍生代謝物等比野生型植株積累多[10,12]。CESAs亞基對初生細胞壁的纖維素合成是必須的,CESA突變的擬南芥突變體對病原菌的抗性也會發(fā)生變化,如irx1/cev1突變體比野生型植株對灰霉菌、丁香假單胞菌和二孢白粉菌(Erysiphe cichoracearum)等具有更強的抗性[13],而對茄科雷爾氏菌和黃瓜萎蔫病菌的抗性與野生型相比沒有改變,這與次生細胞壁纖維素突變體irx1、irx3、irx5等的抗性表型形成鮮明對照[10]。在irx1/cev1突變株中,乙烯和茉莉酸信號途徑被組成性激活,而脫落酸信號途徑則未被啟動。綜上結果表明,無論是初生細胞壁還是次生細胞壁的CWI的改變均可激活植物特異性免疫反應[10,13]。
擬南芥wat1(WALLS ARE THIN1)突變體會導致次生細胞壁纖維厚度大幅度降低,但也能同時增強對維管束病原菌的抗性,包括細菌類維管束病原菌,如茄科雷爾氏菌和野油菜黃單胞菌(Xanthomonas campestris pv. Campestris),真菌類維管束病原菌,如大麗輪枝菌(Verticillium dahliae)和黑白輪枝菌(Verticillium alboatrum),以及死體營養(yǎng)真菌,如黃瓜萎蔫病菌等[14]。wat1編碼一個定位液泡膜的吲哚乙酸(生長素)運載體[15]。wat1突變株中根部的生長素含量比野生型植株中低,葉片中無差異;但突變株根部水楊酸含量比野生型根部要高。NahG是細菌中編碼水楊酸水解酶的基因,在wat1突變株中導入NahG基因,可以完全恢復突變株對細菌的感病性。這與對wat1和野生型植株轉錄組分析比較結果一致,暗示著wat1介導的抗病性可能不是作為被動屏障的細胞壁強度改變造成的,而是由植株免疫反應激活形成的,而且這免疫反應主要定位于植株的維管系統(tǒng),部分依賴于水楊酸代謝途徑,有人稱這種防衛(wèi)反應為維管束免疫性(Vascular immunity)[14]。
木糖是細胞壁多糖的主要組分,葡萄糖醛酸木聚糖和木糖葡聚糖的改變或細胞壁木糖含量的改變均會對擬南芥的抗病性產生影響。在det3和irx6突變體中與細胞壁結合的木糖水平提高了[16],在xyll-2突變體中木糖葡聚糖結構發(fā)生了改變[17],這些突變體均表現(xiàn)出對死體營養(yǎng)型真菌黃瓜萎蔫病菌抗性增強[18]。ERECTA(ER)基因是編碼一種PRR蛋白,ER基因的損壞除了其他細胞壁特性改變外還會導致擬南芥中木糖含量的下降[19]。er突變體比野生型植株對幾種病原菌更感病,包括死體營養(yǎng)型真菌如黃瓜萎蔫病菌、維管束病原細菌如茄科雷爾氏菌和維管束卵生菌如畸雌腐霉菌(Pythium irregulare)等[20]。這一結果暗示著在細胞壁木糖含量和植株對病原菌的抗性之間存在著一定的聯(lián)系,并且可以通過SER1和SER2的突變使er突變體對黃瓜萎蔫病菌感病性和木糖含量恢復到野生型水平[19]。雖然在ser1和ser2突變體一些防衛(wèi)基因組成性上調表達,但它們抗性的精確分子基礎還未充分揭示,而且SER基因也還未克隆出來[19],擬南芥雜合三聚體G蛋白Gβ和Gr1/r2亞基突變也會導致細胞壁木聚糖含量下降,而且對死體營養(yǎng)真菌如黃瓜萎蔫病菌和甘藍鏈格孢菌(Alternaria brassicicola)、活體營養(yǎng)細菌如丁香假單胞菌和維管束真菌如枯萎病菌 (Fusarium oxysporum) 等表現(xiàn)為超敏感[18, 20,21]。有趣的是agb1單基因突變體和agg1/agg2雙突變體的抗病性下降不依賴于產生抗病性的相關代謝途徑如脫落酸、水楊酸、茉莉酸和乙烯等所調控,也不依賴于色氨酸衍生的代謝物的生物合成的調控,而是病原菌感染后細胞壁削弱和活性氧(ROS)產生缺陷的直接結果[18,21]。這說明細胞壁中木糖含量變化,如葡萄糖木聚糖和木糖葡聚糖含量的改變,至少部分影響了擬南芥次生細胞壁突變體對病原菌的感病性。
細胞壁多糖例如木聚糖、甘露聚糖和木糖葡聚糖可以被乙?;?。四個降低細胞壁多糖乙?;颍≧WA1-RWA4)參與了次生細胞壁生物合成過程中木聚糖的乙?;^程。SND1是次生細胞壁生物合成的轉錄主開關,可以調控上述細胞壁乙酰化基因的表達[22]。擬南芥rwa2突變體,其多糖O-乙?;较陆盗?0%,對其生長和發(fā)育沒有明顯的改變,但比野生型對死體營養(yǎng)真菌灰霉菌具有更強的抗性[23]。轉基因擬南芥和二穗短柄草超量表達來自構巢曲霉(Aspergillus nidulaus)的木聚糖乙酰酯酶基因而使木聚糖乙?;陆?,結果分別對灰霉菌和根腐離蠕蟲胞菌(Bipolaris sorkiniana)的抗病性增強[24]。進一步證實了木聚糖乙?;某潭扰c植物對病原菌的抗性的相關性,同時也表明特異次生細胞壁多聚體乙?;潭瓤赡苁悄承┎≡胁⌒缘臎Q定因素。除了RWA蛋白外,腺毛雙折射(trichome briefringence,TBR)蛋白家族和TBR類似蛋白家族(TBL)也參加了對細胞壁多糖的O-乙?;痆25]。擬南芥白粉病抗性突變體(pmr5),其TBL蛋白受到破壞,其細胞壁酯化下降,但還不知道pmr5突變體是否改變了細胞壁多糖的O-乙酰化。pmr5突變體比野生型植株對白粉病菌抗性更強,但對細菌丁香假單胞菌或蕓苔霜霉菌(Peronospora parasitica)的抗性與野生型的一樣[26]。這些研究表明,擬南芥細胞壁乙?;陆禃е聦σ恍┱婢剐缘奶岣撸@種抗性的分子機制還有待進一步闡明。
初生細胞壁重構也會影響植物對病原菌的抗性。例如,CESA亞基對初生細胞壁纖維素生物合成是必須的,CESA亞基缺陷突變體(ixr1/cev1)對一些病原菌抗性的增強[10,13]。同樣,細胞壁果膠的生物合成或結構甲酯化和乙酰化程度的改變也會影響對病原菌的抗性[26,27]。果膠的數(shù)量和結構對植物內在免疫反應的綜合調控作用已在最近其他文獻中有相關綜述,不同病原菌通過修飾或降解果膠而形成有利于侵染植株的不同致病機制[27,28]。
2 ?酚類物質含量和木質素修飾對抗病性的影響
木質素在次生細胞壁上的生物合成和沉積在發(fā)育上是程序化的,通常認為在病原菌的侵染初期木質素起物理屏障作用[29]。此外,植物通過在細胞壁上合成和沉積木質素或木質素類酚類多聚體以應對生物和非生物脅迫和對細胞壁結構的破壞[30]。感染細胞的木質素沉積可能阻止病原菌的毒素和酶向寄主傳播,同時也阻止水分和養(yǎng)分從寄主向病原菌轉移[31,32]。對轉基因植株和突變株的抗病性分析證實了木質素和可溶性酚類物質在植物防衛(wèi)反應中的作用。在對維管束細菌茄科雷爾氏菌抗病的番茄品種中可溶性酚類物質和木質素含量比感病品種中高很多,且抗病品種抗性增強與細菌感染后根部由水楊酸啟動的木質素的積累相關聯(lián)[33]。PAL下降表達的煙草植株綠原酸水平下降,PAL表達下降的煙草植株受白星病菌(Cercospora nicotianae)感染后,比野生型植株病斑形成更快更明顯。在PAL受抑制的品系中,感病性增加并非是由病原菌誘導反應的抑制所引起的,而是由綠原酸的累積下降造成的。但在PAL受抑制的品系中木質素的含量并沒有測定,因此,也不排除感病性的增加是否是由木質素含量下降或細胞壁削弱所造成的[34]。同樣,組成性表達PAL基因的轉基因煙草對煙草白星病菌和煙草黑脛病菌(Phytophthora parasitica pv. Nicotianae)表現(xiàn)出較強的耐受性[35,36]。COMT和CCoAOMT反義煙草品系與野生型相比對農桿菌感染更具抗性且表現(xiàn)出腫瘤區(qū)和腫瘤塊變小的特性。這些反義植株因受傷而分泌的酚類化合物可能與野生型植株分泌的酚類物質有差異而不能誘導細菌Vir基因的表達[37]。
對陸地棉(Gossypium hirsutum) 抗黃萎病抗性的數(shù)量分析表明,病原菌接種后莖稈中木質化程度增加與抗病性之間存在一定的聯(lián)系[38]。棉花DIRIGENT1基因的過量表達可以增強木質化作用,同時阻礙黃萎病菌的傳播[39]。而在苜蓿 (Medicagosativa)中HCT基因下調表達使植株木質素水平下降,激活組成性防衛(wèi)反應,對真菌炭疽?。–olletotrichumtrifolii)耐受性增強。這種防衛(wèi)反應的變化被假定是由生物活性細胞壁碎片啟動的,這些碎片是從次生細胞壁釋放出來的[40]。在西瓜(Cucumis melo)中,接種后對白粉病真菌棕絲單囊殼菌(Podosphaera fusca)抗病品系比感病品系木質素累積更快、水平更高,且木質素的這種累積差異與PAL水平的提高相關聯(lián)[41]。在亞麻中,木質素組成也對病原菌的抗性產生重要的影響,因為RNAi介導的CAD基因抑制可以增加亞麻對枯萎病菌的感病性[42]。
在一粒小麥(Triticum monococcum)中,木質素單體的生物合成酶基因TmPAL、TmCOMT、TmCCoAOMT和TmCAD的沉默會導致葉片組織對小麥白粉病菌(Blumeria graminis f. sp. tritici)的超敏感性[43]。分別用禾冠柄銹菌燕麥?;秃娃r桿菌接種燕麥和小麥,其細胞壁上單體和二聚體阿魏酸積累的增加與其對該病原菌的抗性緊密相連[44]。在超量表達NPR1HOMOLOG1 (NH1)的轉基因水稻中,進行抑制子突變的篩選,篩選到一個NH1介導病斑和抗性形成基因(SNL6)的突變,SNL6基因編碼CCR類蛋白。snl6突變體木質素含量更低,對白葉枯病菌(Xanthomonas oryzae pv. oryzae)的抗性下降[45]。高粱(Sorghum bicolor L.)的BMR6和BMR12突變將使得一些飼料和谷物品系中木質素含量下降,木質素組成發(fā)生變化[46]。bmr6和bmr12突變體分別缺陷CAD和COMT蛋白,限制不同鐮刀菌(Fusarium spp.)的生長,但不能限制赤霉菌(Gibberella fujikuroi)的生長[47]。但木質素成分的改變或酚類化合物的積累是否會引起高粱突變體對鐮刀菌抗性增強仍未所知。
樹木中,木質素含量和組成對病原菌感病性的影響也已有研究。例如,桉樹感染黑斑病菌(Mycosphaerella)后早期周皮壞死,亮果桉(Eucalyptus nitens)比藍桉(Eucalyptus globulus)更具抗性可能是木質素的沉積造成的[31]。用榆樹枯萎菌(Ophiostoma novo-ulmi)接種榆樹(Ulmus minor)和榆樹雜交種(Ulmus minor×Ulmus pumila)后,木質部組織代謝譜比較研究表明雜交種防衛(wèi)反應更快,且木質素含量增加[48]。同樣枯梢病菌(Sphaeropsis sapinea)接種歐洲黑松(Pinus nigra)后,也能誘導與抗病相關的木質素沉積增加[49]。而在大田生長的反義COMT和CAD品種雜種白楊(Populus tremula×Populus alba)的發(fā)病率與野生型的相比未見提高,表明木質素生物合成的改變對植株抗病性的負面影響并非必須[50]。
總之,通常木質素含量與植株對病原菌抗性之間存在正相關,特別是維管束病原菌與植物之間互作時,如鐮刀菌(Fusarium sp.)、黃單胞菌(Xanthomonas sp.)或輪枝菌(Verticilium sp.)等等,這些病原菌通常是通過次生壁加厚的木質部傳播的。木質素在抗病性中所起的作用是僅僅作為被動屏障還是通過調控特異性的免疫反應而主動發(fā)揮作用還未可知。
3 ?擬南芥中木質素對抗病性的作用
木質素在擬南芥對病原菌的免疫反應中發(fā)揮重要作用。用調控植物防衛(wèi)反應的激素包括水楊酸、脫落酸或茉莉酸處理擬南芥后發(fā)現(xiàn),一些木質素合成基因誘導表達了,木質素的含量提高[51,52]。同樣用特異性病原菌感染擬南芥,如丁香假單胞菌(Pseudomonas syringae pv. Tomato)和野油菜黃單胞菌,會導致木質素合成酶基因增強表達和較高的木質素水平[51,53]。試驗結果還暗示不同基因家族在特定的脅迫反應中通過參與特定酶轉換而發(fā)揮作用。例如,擬南芥CCR2基因在野油菜黃單胞菌接種后上調表達,被認為參與了對該細菌的超敏反應,而相對比,CCR1基因偏向于發(fā)育過程中表達[54]。
木質素缺陷突變體分析和超量表達木質素合成酶基因的轉基因植株分析證明木質素在植物免疫性中起著重要的作用。例如,兩個pal1/2/3/4四組分突變體,木質素水平分別為20%和25%,水楊酸水平為25%,表現(xiàn)為生長矮小,且對丁香假單胞菌超敏感。而且在接種后,pal四組分突變體中總的水楊酸水平為野生型的50%,這暗示著這種突變體中受病原菌誘導的水楊酸介導的抗性可能受到部分的損傷[55]。擬南芥comt突變體比野生型對丁香假單胞菌(DC3000)、灰霉菌、甘藍鏈格孢菌、野油菜黃單胞菌和活體營養(yǎng)真菌大麥白粉菌(Blumeria graminis f. sp. hordei)等略微感病,其中,大麥白粉菌是不能寄生擬南芥的大麥病原菌。卵菌霜霉病菌(Hyaloperonospora arabidopsidis)可以引發(fā)白粉病。卵菌霜霉病菌的無性孢子形成在comt突變體中受到了損傷。這與水楊酸和茉莉酸依賴的防衛(wèi)反應增強沒有關聯(lián),但與comt突變體組織中卵菌高頻率的有性繁殖相關。研究還進一步證明comt突變體中積累了可溶性的5-羥基阿魏酯蘋果酸,這種化合物可以提高離體卵菌的有性繁殖[53]。擬南芥f5h1突變體對核盤菌(Sclerotinia sclerotiorum)和維管束真菌甘藍輪枝菌(Verticillium longisporum)表現(xiàn)感病性增加[55,56]。f5h1突變體與野生型有相似的木質素含量,但缺乏S型木質素,且表現(xiàn)為芥子酸酯缺陷[56,57]。由于芥子酸酯體外能抑制真菌生長,f5h1中芥子酸酯的缺乏可能是引起突變體對真菌感病性增加的原因[57]。有趣的是,UGT72E2過量表達的擬南芥品系,其木質素未改變,但可溶性苯丙烷松柏苷積累了,對甘藍輪枝菌感病性降低[56]。所有這些結果再次表明,不僅僅木質素多聚體而且可溶性酚類物質在植物對病原菌的防衛(wèi)反應中起重要的作用。在擬南芥中,已經通過轉錄組學和代謝組學相結合研究了一系列突變體植物對木質素變化的反應,每個突變都只涉及代謝途徑中的單個基因[57]。其中,c4h,4cl1,ccoaomt1和ccr1突變體產生的木質素少,上調莽草酸、甲基供體和苯丙烷代謝途徑,但f5h1和comt突變體可引起木質素組成的改變,下調上述代謝途徑[57]。而且一些突變等位基因在代謝和基因表達譜中的微小差異可能會導致對病原菌不同的抗性反應的產生[57]。
4 ?有關木質素和次生細胞壁結構的修飾對植物病原菌抗性產生影響的假說
Miedes等[8]將一些突變體和轉基因植株的木質素含量或組成及次生細胞壁修飾對植物抗病性的影響歸納為以下幾個方面(圖1)。
1)次生細胞壁的改變修飾了病原菌侵染植物必須克服的物理障礙。由于病原菌可能缺乏降解這種新物理屏障的酶,或使得病原菌對細胞壁的降解更容易,因此這種木質素或次生細胞壁的改變可能導致抗病性(R)或感病性(S)增強。
2)木質素含量下降或木質素或次生細胞壁組分的改變影響次生細胞壁的強度,導致木質部塌陷。微管傳導下降可能對維管束病原菌侵染植株產生負作用。
3)木質素含量下降和次生細胞壁的修飾使細胞壁結構松弛,使組成性的或病原菌誘導釋放細胞壁DAMPs變得更容易,從而啟動增強抗病性的免疫反應。
4)木質素合成途徑改變可能導致可溶性酚類化合物積累,這些酚類化合物要么對病原菌產生毒性導致病原菌致病力下降,要么作為新的碳源或營養(yǎng)源使病原菌生長更好導致病原菌致病力增強。
5)木質素合成途徑的改變可能會導致可溶性酚類化合物積累或減少,這些酚類化合物可能是植物病原菌識別化合物,可能會導致感病性或抗病性增強。盡管這些假說可以解釋一些表現(xiàn)型,但也不能排除其他的分子機理解釋,為了更好地理解次生細胞壁對病原菌抗性的作用,還需要更深入地闡明其分子和生物化學機制。
5 ?展望
植物次生細胞壁的改變對其抗病性的影響是復雜的,要么提高或降低對病原菌的抗性,要么根本沒有影響,這取決于次生細胞壁的改變和測試的病原菌種類。由于目前對植物細胞壁(初生或次生的)在抗病原菌反應中的作用的了解較為零碎,因此,很難預測細胞壁怎樣的特異性改變會影響植物對病原菌的抗性。未來需要對植物細胞壁在植物抗病性中的作用和與這種抗病性相關的生物化學代謝網絡作更深入的研究。
參考文獻:
[1] PANSTRUGA R,PARKER J E,SCHULZE-LEFERT P.SnapShot:Plant immune response pathways[J]. Cell,2009,136:978-979.
[2] SARKAR P,BOSNEAGA E,AUER M. Plant cell walls throughout evolution:Towards a molecular understanding of their design principles[J].J Exp Bot,2009,60:3615-3635.
[3] 尹增芳,樊汝汶.植物細胞壁的研究進展[J].植物研究,1999,19(4):407-413.
[4] HEMATY K,CHERK C,SOMERVILLE S. Host-pathogen warfare at the plant cell wall[J].Curr Opin Plant Biol,2009,12: 406-413.
[5] VORWERK S,SOMERVILLE S, SOMERVILLE C. The role of plant cell wall polysaccharide composition in plant disease resistance[J]. Trends Plant Sci,2004,9:203-209.
[6] WOLF S,H?魪MATY K,HOFTE H. Growth control and cell wall signaling in plants[J].Annu Rev Plant Biol,2012,63: 381-407.
[7] MALINOVSKY F G,F(xiàn)ANGEL J U,WILLATS W G T. The role of the cell wall in plant immunity[J].Front Plant Sci,2014,5:178.
[8] MIEDES E,VANHOLME R,BOERJAN W,et al. The role of the secondary cell wall in plant resistance to pathogens[J]. Front Plant Sci,2014,5:1-13.
[9] UNDERWOOD W.The plant cell wall:A dynamic barrier against pathogen invasion[J].Front Plant Sci,2012,3:85.doi:10.3389/fpls,2012.00085.eCollection2012.
[10] HERN?魣NDEZ-BLANCO C,F(xiàn)ENG D X,HU J,et al. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance[J]. Plant Cell,2007,19:890-903.
[11] RAM?魱REZ V,AGORIO A,COEGO A,et al. MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis[J]. Plant Physiol, 2011, 155: 1920-1935.
[12] S?魣NCHEZ-VALLET A,RAMOS B,BEDNAREK P,et al.Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi[J]. Plant J,2010,63:115-127.
[13] ELLIS C,KARAFYLLIDIS I,WASTERNACK C,et al.The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses[J].Plant Cell,2002,14:1557-1566.
[14] DENANC?魪N,RANOCHA P,ORIA N,et al.Arabidopsis wat1 (walls are thin1) mediated resistance to the bacterial vascular pathogen,Ralstonia solanacearum,is a ccompanied by cross-regulation of salicylic acid and tryptophan metabolism[J]. Plant J,2013,73:225-239.
[15] RANOCHA P, DIMA O, NAGY R, et al. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homeostasis[J]. Nat Commun, 2013, 4: 2625.
[16] ROGERS L A, DUBOS C, SURMAN C, et al. Comparison of lignin deposition in three ectopic lignification mutants[J]. New Phytol, 2005, 168: 123-140.
[17] SAMPEDRO J,PARDO B,GIANZO C,et al. Lack of α-xylosidase activity in Arabidopsis alters xyloglucan composition and results in growth defects[J]. Plant Physiol,2010,154: 1105-1115.
[18] DELGADO-CEREZO M,S?魣NCHEZ-RODR?魱GUEZ C,ESCUDERO V,et al. Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi[J].Mol Plant,2012,5:98-114.
[19] S?魣NCHEZ-RODR?魱GUEZ C,ESTEVEZ J M,LLORENTE F, ?et al. The ERECTA Receptor-Like Kinase regulates cell wall mediated resistance to pathogens in Arabidopsis thaliana[J]. Mol Plant Microbe Interact,2009,22:953-963.
[20] LLORENTE F,ALONSO-BLANCO C,SANCHEZ-RODRIGUEZ C,et al. ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina[J].Plant J, 2005,43:165-180.
[21] LOREK J,GRIEBEL T,JONES A M,et al. The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity[J].Mol Plant Microbe Interact, 2013,26:991-1003.
[22] LEE C, TENG Q, ZHONG R, et al. The four Arabidopsis REDUCED WALL ACETYLATION genes are expressed in secondary wall-containing cells and required for the acetylation of xylan[J]. Plant Cell Physiol. 2011, 52: 1289-1301.
[23] MANABE Y,NAFISI M,VERHERTBRUGGEN Y,et al. Loss-of-function mutation of REDUCED WALL ACETYLATION in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytiscinerea[J].Plant Physiol,2011, 155:1068-1078.
[24] POGORELKO G,LIONETTI V,F(xiàn)URSOVA O,et al.Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens[J].Plant Physiol,2013,162:9-23.
[25] GILLE S,DESOUZA A,XIONG G,et al. O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain[J]. Plant Cell, 2011, 23: 4041-4053.
[26] VOGEL J P,RAAB T K,SCHIFF C, et al. PMR6,a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis[J].Plant Cell,2002,14:2095-2106.
[27] BETHKE G,GRUNDMAN R E,SREEKANTA S,et al. Arabidopsis PECTIN METHYLESTERASEs contribute to immunity against Pseudomonas syringae[J].Plant Physiol,2014,164: 1093-1107.
[28] LIONETTI V,CERVONE F,BELLINCAMPI D. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases[J]. J Plant Physiol, 2012, 169: 1623-1630.
[29] BONELLO P,STORER A J,GORDON T R,et al. Systemic effects of Heterobasidion annosum on ferulic acid glucoside and lignin of presymptomatic ponderosa pine phloem and potential effects on bark-beetle-associated fungi[J]. J Chem Ecol, 2003,29:1167-1182.
[30] SATTLER S E,F(xiàn)UNNELL-HARRIS,D L. Modifying lignin to improve bioenergy feed-stocks: Strengthening the barrier against pathogens?[J].Front Plant Sci,2013,4:70.
[31] SMITH A H,GILL W M,PINKARD EA,et al. Anatomical and histochemical defence responses induced in juvenile leaves of Eucalyptus globulus and Eucalyptus nitens by Mycosphaerella infection[J].For Pathol,2007,37:361-373.
[32] 王孝坤,王春燕,謝成建,等.黃萎病菌致病及植物抗黃萎病分子機制研究進展[J].河南農業(yè)科學,2014,43(1):1-6.
[33] MANDAL S,DAS R K,MISHRA S. Differential occurrence of oxidative burst and antioxidative mechanism in compatible and in compatible interactions of tomato and Ralstonia solanacearum[J].Plant Physiol Biochem,2011,49:117-123.
[34] MAHER E A, BATE N J, NI W, et al. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products[J]. Proc Natl Acad Sci USA, 1994, 91: 7802-7806.
[35] WAY H M, BIRCH R G, MANNERS J M. A comparison of individual and combined l-phenylalanine ammonia lyase and cationic peroxidase transgenes for engineering resistance in tobacco to necrotrophic pathogens[J]. Plant Biotechnol Rep, 2011, 5: 301-308.
[36] SHADLE G L, WESLEY S W, KORTH K L, et al. Phenylpropanoid compounds and disease resistance intransgenic tobacco with altered expression of l-phenylalanine ammonialyase[J]. Phytochemistry, 2003, 64: 153-161.
[37] MAURY S, DELAUNAY A, MESNARD F, et al. O-methyltransferase(s)-suppressed plants produce lower amounts of phenolic vir inducers and are less susceptible to Agrobacterium tumefaciens infection[J]. Planta, 2010, 232: 975-986.
[38] XU L,ZHU L,TU L,et al. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq dependent transcriptional analysis and histochemistry[J].J Exp Bot,2011,62:5607-5621.
[39] SHI H,LIU Z,ZHU L et al.Overexpression of cotton (Gossypiumhirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae[J]. Acta Biochim Biophys Sin, 2012, 44: 555-564.
[40] GALLEGO-GIRALDO L, JIKUMARU Y, KAMIYA Y, et al. Selective lignin down-regulation leads to constitutive defense response expression in alfalfa (Medicagosativa L.)[J]. New Phytol,2011,190:627-639.
[41] ROMERO D,RIVERA M E,CAZORLA F M, et al. Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon-powdery mildew (Podosphaera fusca) interactions[J]. J Plant Physiol, 2008,165:1895-1905.
[42] WR?魷BEL-KWIATKOWSKA M,STARZYCKI M,ZEBROWSKI J,et al. Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties[J]. J Biotechnol,2007, 128: 919-934.
[43] BHUIYAN N H,SELVARAJ G,WEI Y,et al. Gene expression profiling and silencing reveal that monolignol biosynthesis play sacritical role in penetration defence in wheat against powdery mildew invasion[J].J Exp Bot,2009,60:509-521.
[44] PARROTT D L,ANDERSON A J,CARMAN J G. Agrobacterium induces plant cell death in wheat (Triticum aestivum L.) [J].Physiol Mol Plant Pathol,2002,60:59-69.
[45] BART R S,CHERN M,VEGA-S?魣NCHEZ,et al. Rice Snl6,a cinnamoyl-CoA reductase-Like gene family member,is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae [J].PLoS Genet,2010,6:e1001123.
[46] OLIVER A L,PEDERSEN J F,GRANT R J,et al. Comparative effects of the sorghum bmr-6 and bmr-12 genes:II.Grain yield,stover yield,and stover quality in grain sorghum[J].Crop Sci,2005,45:2240-2245.
[47] FUNNELL-HARRIS D L,PEDERSEN J F,SATTLER S E. Alteration in lignin biosynthesis restricts growth of Fusarium spp.in brown midrib sorghum[J].Phytopathology,2010,100: 671-681.
[48] MARTIN J A,SOLLA A,WOODWARD S, et al. Detection of differential changes in lignin composition of elm xylem tissues inoculated with Ophiostoma novoulmi using fourier transform-infrared spectroscopy[J]. For Pathol,2007,37:187-191.
[49] BONELLO P,BLODGETT J T.Pinus nigra-Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects offungal infection of pines[J]. Physiol Mol Plant Physiol, 2003, 63: 249-261.
[50] PILATE G, GUINEY E, HOLT K, et al. Field and pulping performances of transgenic trees with altered lignification[J]. Nat Biotechnol, 2002, 20:607-612.
[51] MOHR P G,CAHILL D M. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv.tomato[J]. Funct Integr Genomics,2007,7:181-191.
[52] GALLEGO-GIRALDO L,ESCAMILLA-TREVINO L,JACKSON L A,et al. Salicylic acid mediates the reduced growth of lignin down-regulated plants[J]. Proc Natl Acad Sci USA,2011a,108:20814-20819.
[53] QUENTIN M,ALLASIA V,PEGARD A,et al.Imbalanced lignin biosynthesis promotes the sexual reproduction of homothallic oomycete pathogens[J]. PLoS Pathog, 2009, 5: e1000264 .
[54] LAUVERGEAT V,LACOMME C,LACOMBE E,et al. Two cinnamoyl-CoA reductase(CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria[J].Phytochemistry,2001,57:1187-1195.
[55] HUANG J,GU M, LAI ?Z,et al. Function alanalysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress[J]. Plant Physiol,2010, 153:1526-1538.
[56] KONIG S,F(xiàn)EUSSNER K,KAEVER A,et al. Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum[J]. New Phytol,2014, 202:823-837.
[57] VANHOLME R,STORME V,VANHOLME B,et al. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis[J].Plant Cell,2012b,24:3506-3529.