国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于fNIRS的運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象腦激活模式比較*

2016-01-09 23:03:00白學(xué)軍張琪涵彭國(guó)慧
心理學(xué)報(bào) 2016年5期
關(guān)鍵詞:啞鈴皮層想象

白學(xué)軍 張琪涵 章 鵬 周 菘 劉 穎 宋 星 彭國(guó)慧

(天津師范大學(xué)心理與行為研究院,天津 300074)

1 前言

運(yùn)動(dòng)想象(motor imagery,MI)是一個(gè)動(dòng)態(tài)的過程,指人們?cè)谛睦锬M動(dòng)作而不伴隨任何的身體運(yùn)動(dòng)(Jeannerod,1994,2006)。運(yùn)動(dòng)想象包含視覺想象和動(dòng)覺想象,前者需要從第一人稱或第三人稱的視角看到自己完成動(dòng)作;后者需要人們真實(shí)地感覺到自己完成動(dòng)作。目前MI在臨床和專業(yè)領(lǐng)域上被廣泛應(yīng)用。MI是一種基于想象的心理練習(xí),能夠提高運(yùn)動(dòng)員(Cumming &Hall,2002;Murphy,1994;Roure et al.,1999)、音樂家(Langheim,Callicott,Mattay,Duyn,&Weinberger,2002;Meister et al.,2004;Pascual-Leone et al.,1995;Yue &Cole,1992)或者高級(jí)手工技師(例如外科醫(yī)生,Rogers,2006)的行為表現(xiàn)。另外,Decety和Grèzes (2006)認(rèn)為運(yùn)動(dòng)控制是運(yùn)動(dòng)過程與感覺、認(rèn)知過程不斷交互的結(jié)果。皮層可塑性理論認(rèn)為大腦皮層功能、皮層間的聯(lián)結(jié)等可以根據(jù)外界刺激的變化而變化,訓(xùn)練可以改變大腦結(jié)構(gòu)(Fiorio,Tinazzi,&Aglioti,2006)。所以那些運(yùn)動(dòng)功能損傷的病人,可以通過不斷地鍛煉,來(lái)改善、塑造大腦皮層,繼而實(shí)現(xiàn)運(yùn)動(dòng)功能的康復(fù)。因此,運(yùn)動(dòng)想象在神經(jīng)系統(tǒng)損傷病人的康復(fù)治療上也具有一定的影響作用(Braun,Beurskens,Borm,Schack,&Wade,2006;Jackson,Lafleur,Malouin,Richards,&Doyon,2001;Johnson-Frey,2004;Lotze&Halsband,2006;Sharma,Pomeroy,&Baron,2006;Weiss et al.,1994)。

已有研究發(fā)現(xiàn),運(yùn)動(dòng)想象與運(yùn)動(dòng)執(zhí)行有幾點(diǎn)共性:(1)在時(shí)間進(jìn)程上運(yùn)動(dòng)想象與運(yùn)動(dòng)執(zhí)行存在高度相關(guān)(Decety,Jeannerod,&Prablanc,1989);(2)運(yùn)動(dòng)想象任務(wù)下自主神經(jīng)系統(tǒng)的外周反應(yīng)與運(yùn)動(dòng)執(zhí)行任務(wù)下的相似,例如心跳(Decety,Jeannerod,Durozard,&Baverel,1993;Decety,Jeannerod,Germain,&Pastene,1991;Fusi et al.,2005);(3)運(yùn)動(dòng)執(zhí)行和運(yùn)動(dòng)想象任務(wù)引起了相似的皮電反應(yīng)(Guillot,Collet,&Dittmar,2004;Guillot,Haguenauer,Dittmar,&Collet,2005);(4)隨著大腦影像技術(shù)的發(fā)展,研究者使用fMRI (functional magnetic resonance imaging)、PET(positron emission tomography)、TMS (Transcranial magnetic stimulation)等技術(shù),探索這兩種任務(wù)下的腦機(jī)制,發(fā)現(xiàn)運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象基本上激活了相似的神經(jīng)機(jī)制(Guillot et al.,2008;Mellet,Petit,Mazoyer,Denis,&Tzourio,1998)或者這兩者的神經(jīng)網(wǎng)絡(luò)至少部分重疊(Gerardin et al.,2000)。具體來(lái)說(shuō),共享的重疊區(qū)域主要包括輔助運(yùn)動(dòng)皮層(SMA)、前運(yùn)動(dòng)皮層(PMA)、初級(jí)感覺區(qū)(M1/S1)、后頂葉(PPL)、紋狀體、小腦、丘腦(Gerardin et al.,2000;Lotze et al.,1999;Munzert,Lorey,&Zentgraf,2009;Zhang et al.,2011)。

然而,研究者對(duì)初級(jí)感覺區(qū)(M1/S1)激活存在一些爭(zhēng)議。前人研究分別觀察到了主運(yùn)動(dòng)區(qū)的激活(Solodkin,Hlustik,Chen,&Small,2004;Sharma,Jones,Carpenter,&Baron,2008)、短暫激活(Dechent,Merboldt,&Frahm,2004)或者不激活(Lotze,Scheler,Tan,Braun,&Birbaumer,2003)。近期 Hétu 等人(2013)對(duì)運(yùn)動(dòng)想象神經(jīng)網(wǎng)絡(luò)相關(guān)的122個(gè)實(shí)驗(yàn)(來(lái)自75篇論文)進(jìn)行了元分析,發(fā)現(xiàn)其中僅有22個(gè)實(shí)驗(yàn)(來(lái)自 16篇論文)報(bào)告了運(yùn)動(dòng)想象任務(wù)激活主運(yùn)動(dòng)皮層。研究結(jié)果的不一致可能是由以下原因引起的:(1)實(shí)驗(yàn)任務(wù)變量:實(shí)驗(yàn)程序(Sharma et al.,2008)、任務(wù)類型(Dechent et al.,2004;Fourkas,Ionta,&Aglioti,2006;Wolbers,Weiller,&Büchel,2003)、任務(wù)復(fù)雜性(Holpe &Wolf,2011;Kuhtz-Buschbeck et al.,2003)等;(2)個(gè)體差異:專業(yè)水平(Lotze et al.,2003;Milton,Small,&Solodkin,2008;Chang et al.,2011)、想象力(Amedi,Malach,&Pascual-Leone,2005;Cui,Jeter,Yang,Montague,&Eagleman,2007;Guillot et al.,2008;van der Meulen,Allali,Rieger,Assal,&Vuilleumier,2014)、性別(Lissek et al.,2007;Schuster et al.,2011)、年齡(Personnier,Ballay,&Papaxanthis,2010;Schuster et al.,2011)等;(3)探測(cè)方法:相比于fMRI、PET研究,大量的TMS研究都為MI增強(qiáng)主運(yùn)動(dòng)皮層的興奮性提供了實(shí)證證據(jù)(Loporto,McAllister,Williams,Hardwick,&Holmes,2012);(4)最近 Raffin,Mattout,Reilly和 Giraux(2012)的研究發(fā)現(xiàn)在動(dòng)覺運(yùn)動(dòng)想象任務(wù)下輔助運(yùn)動(dòng)皮層對(duì)主運(yùn)動(dòng)皮層起抑制作用。

近期的一些研究發(fā)現(xiàn)運(yùn)動(dòng)強(qiáng)度能夠影響主運(yùn)動(dòng)皮層的激活。例如Shibusawa 等(Shibusawa,Takeda,Nakajima,Ishigami,&Sakatani,2009;Shibusawa et al.,2010)用fNIRS (functional near-infrared spectroscopy)監(jiān)測(cè)人們分別用最大握力的20%、50%、80%的力量進(jìn)行抓握任務(wù)時(shí)主運(yùn)動(dòng)皮層和體感皮層內(nèi)氧合血紅蛋白的濃度變化。發(fā)現(xiàn)不同力量強(qiáng)度的抓握任務(wù)其觀測(cè)皮層上的氧合血紅蛋白濃度差異顯著。還有一些研究也發(fā)現(xiàn)主運(yùn)動(dòng)皮層的激活程度存在隨力量強(qiáng)度水平的增強(qiáng)而升高的趨勢(shì)(Derosière et al.,2013;Shibuya,Kuboyama,&Tanaka,2014)。甚至一些較小的力量強(qiáng)度變化(最大握力的 1%~10%)也會(huì)引起主運(yùn)動(dòng)皮層激活程度的正性改變(Kuhtz-Buschbeck et al.,2008)。那么增強(qiáng)運(yùn)動(dòng)想象任務(wù)的想象強(qiáng)度是否也能夠引起主運(yùn)動(dòng)皮層的激活變化?在運(yùn)動(dòng)執(zhí)行任務(wù)下相關(guān)皮層激活程度隨力量強(qiáng)度變化的原因可能來(lái)源于外周體覺信息的傳入或者是運(yùn)動(dòng)控制。如果變化原因是由體覺信息傳入引起的,那么運(yùn)動(dòng)(想象)強(qiáng)度僅會(huì)影響運(yùn)動(dòng)執(zhí)行任務(wù)下相關(guān)皮層的激活水平;如果是由運(yùn)動(dòng)控制引起的,那么運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象任務(wù)下探測(cè)皮層都會(huì)受到運(yùn)動(dòng)(想象)強(qiáng)度的影響。但目前對(duì)想象強(qiáng)度在運(yùn)動(dòng)想象任務(wù)下的作用情況的研究相對(duì)較少,有些研究者雖采用fNIRS考察了不同力量強(qiáng)度、速度下運(yùn)動(dòng)想象任務(wù)的皮層信號(hào)變化,但其主要探究力量強(qiáng)度和速度對(duì)應(yīng)反應(yīng)信號(hào)的精確分類,沒有單純地比較不同想象強(qiáng)度對(duì)探測(cè)皮層的影響作用。能夠確定的是想象強(qiáng)度影響主運(yùn)動(dòng)皮層內(nèi)氧合血紅蛋白濃度變化,因?yàn)殡S著運(yùn)動(dòng)想象強(qiáng)度的逐步增加,主運(yùn)動(dòng)皮層內(nèi)的氧合血紅蛋白濃度也是逐步增高的,但是否達(dá)統(tǒng)計(jì)學(xué)上顯著還需進(jìn)一步檢驗(yàn)(Xu et al.,2014;Yin et al.,2015)。另外,Mizuguchi,Nakata 和Kanosue (2014)使用fMRI探究了前運(yùn)動(dòng)-頂葉皮層活動(dòng)與想象強(qiáng)度水平的關(guān)系,發(fā)現(xiàn)前額葉皮層、輔助運(yùn)動(dòng)皮層、前運(yùn)動(dòng)皮層、腦島、頂下小葉的激活情況受想象強(qiáng)度的影響,沒有報(bào)告主運(yùn)動(dòng)區(qū)與想象強(qiáng)度間的變化關(guān)系。所以,目前想象強(qiáng)度對(duì)運(yùn)動(dòng)想象腦機(jī)制的影響作用還不明確。

此外,與fMRI、PET等技術(shù)相比,功能性近紅外光譜成像技術(shù)(fNIRS) (Brickman et al.,2005;Hock et al.,1997)有其獨(dú)特的優(yōu)勢(shì)。fNIRS的操作簡(jiǎn)便、造價(jià)低、對(duì)人體無(wú)損傷、便攜性好、時(shí)間分辨率和空間分辨率較高等;適用于自然情境、嬰幼兒童和特殊人群的認(rèn)知神經(jīng)科學(xué)研究(劉寶根,周兢,李菲菲,2011;楊炯炯,駱清銘,2002)。由于fNIRS對(duì)被試實(shí)驗(yàn)過程中的動(dòng)作不是特別敏感,對(duì)運(yùn)動(dòng)具有較高的寬容度,所以相比于對(duì)運(yùn)動(dòng)敏感的 fMRI,fNIRS為運(yùn)動(dòng)領(lǐng)域內(nèi)腦功能活動(dòng)的研究開辟了一條新路,提高了該領(lǐng)域研究的生態(tài)效度。Leff等(2011)曾對(duì)基于 fNIRS的運(yùn)動(dòng)任務(wù)腦活動(dòng)研究進(jìn)行系統(tǒng)性的回顧,認(rèn)為這一技術(shù)有利于自然情境下的運(yùn)動(dòng)技能學(xué)習(xí)、運(yùn)動(dòng)控制、運(yùn)動(dòng)員表現(xiàn)、神經(jīng)疾病康復(fù)等內(nèi)部機(jī)制的探索。

綜上所述,本研究采用fNIRS技術(shù),通過控制運(yùn)動(dòng)(想象)強(qiáng)度來(lái)考察被試完成運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象任務(wù)時(shí)大腦皮層血氧濃度變化。實(shí)驗(yàn)采用舉啞鈴這一簡(jiǎn)單運(yùn)動(dòng)任務(wù)、動(dòng)覺想象這一想象任務(wù)類型來(lái)控制任務(wù)相關(guān)變量對(duì)監(jiān)測(cè)結(jié)果的影響;選取具有一定想象能力、非體育專業(yè)的青年被試參與正式實(shí)驗(yàn),盡可能的排除掉被試相關(guān)變量帶來(lái)的干擾;fNIRS在運(yùn)動(dòng)領(lǐng)域內(nèi)應(yīng)用的生態(tài)效度較高、對(duì)運(yùn)動(dòng)方面的限制較少。所以在控制了這些無(wú)關(guān)變量之后,運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象的激活模式很可能十分相似,運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象任務(wù)下都會(huì)激活主運(yùn)動(dòng)皮層;另外,想象強(qiáng)度對(duì)運(yùn)動(dòng)想象任務(wù)下大腦活動(dòng)的影響也很可能與運(yùn)動(dòng)執(zhí)行任務(wù)下的變化保持一致,即想象強(qiáng)度不會(huì)改變大腦激活模式,但會(huì)影響皮層的激活水平。

2 方法

2.1 被試

(1)使用握力計(jì)篩選被試。其中男性握力在37.7~56.6 kg之中,女性握力在 21.8~35.0 kg之中。

(2)實(shí)驗(yàn)被試非體育專業(yè);在啞鈴運(yùn)動(dòng)或啞鈴運(yùn)動(dòng)相關(guān)腦區(qū)上沒有主觀或客觀癥狀;無(wú)心血管、肺腎、神經(jīng)障礙等方面疾病;沒有進(jìn)行過艱苦訓(xùn)練;實(shí)驗(yàn)前沒進(jìn)食過含咖啡因的食物或飲料。

(3)通過《運(yùn)動(dòng)想象問卷-修訂版》(MIQ-RS)(Gregg,Hall,&Butler,2010)篩選出具有動(dòng)覺想象能力的被試,即選擇動(dòng)覺想象平均難易程度大于4“一般”的被試參與正式實(shí)驗(yàn)。

(4)15名右利手健康的男性志愿者(平均握力47.2 ± 4.08 kg)和15名右利手健康的女性志愿者(平均握力27.1 ± 3.47 kg)參加了正式實(shí)驗(yàn)。男性被試的平均年齡為24.3 ± 1.49歲,女性被試的平均年齡為23.8 ± 0.77歲。每位被試在實(shí)驗(yàn)后獲得25元報(bào)酬。

2.2 實(shí)驗(yàn)設(shè)備

采用島津公司生產(chǎn)的LABNIRS功能性近紅外光譜成像儀(LABNIRS/16,Shimadzu Corporation,Kyoto,Japan),通過三波長(zhǎng)(780 ± 5 nm、805 ± 5 nm、830 ±5 nm)的近紅外線半導(dǎo)體激光(被歸為 IED-60825-1標(biāo)準(zhǔn)下的 1M 級(jí)),根據(jù)修訂后的比爾-朗伯(吸收)定律(modified Beer-Lambert law,MBLL)得到探測(cè)區(qū)域下氧合血紅蛋白濃度(HbO)、脫氧血紅蛋白濃度(HbR)、總血紅蛋白濃度(HbT)的變化。采樣率設(shè)置為11 Hz。因HbO指標(biāo)對(duì)任務(wù)刺激的變化更加敏感(Hoshi,Kobayashi,&Tamura,2001),所以著重分析HbO的變化。

2.3 材料

2.3.1 《運(yùn)功想象問卷-修訂版》

《運(yùn)功想象問卷-修訂版》(MIQ-RS)由7個(gè)視覺想象問題和7個(gè)動(dòng)覺想象問題組成(Gregg et al.,2010)。采用7點(diǎn)評(píng)分,從1“非常困難”到7“非常容易”。使用該想象力問卷篩選出動(dòng)覺想象平均難易程度大于 4“一般”的被試,參與正式實(shí)驗(yàn)。分別有右利手、健康的15名男性志愿者和15名女性志愿者參加了正式實(shí)驗(yàn)。表1是被試想象力的測(cè)試結(jié)果。

表1 想象力測(cè)試結(jié)果

結(jié)果顯示:男性的平均想象力得分為5.98,女性的平均想象力得分為 5.55,都處于 5“有些容易”到 6“容易”之間。經(jīng)統(tǒng)計(jì)檢驗(yàn),男性、女性的動(dòng)覺想象力無(wú)顯著差異,

t

(28)=1.61,

p

>0.05。

2.3.2 自編《運(yùn)動(dòng)想象自評(píng)問卷》

《運(yùn)動(dòng)想象自評(píng)問卷》的目的在于被試完成運(yùn)動(dòng)想象任務(wù)后對(duì)其想象品質(zhì)的評(píng)定。采用7點(diǎn)量表,被試從 1“無(wú)法想象”到 7“非常容易”;以及對(duì)不同強(qiáng)度運(yùn)動(dòng)想象任務(wù)間差異的評(píng)價(jià),從 1“差異巨大”到7“沒有差異”。

2.4 實(shí)驗(yàn)設(shè)計(jì)

本實(shí)驗(yàn)采用 2任務(wù)類型(運(yùn)動(dòng)執(zhí)行任務(wù),運(yùn)動(dòng)想象任務(wù))×2運(yùn)動(dòng)強(qiáng)度(4磅,8磅/2磅,4磅)的被試內(nèi)設(shè)計(jì)。已有研究發(fā)現(xiàn)運(yùn)動(dòng)疲勞時(shí)運(yùn)動(dòng)皮層內(nèi)的氧合血紅蛋白濃度明顯下降(Shibuya &Tachi,2006;Shibuya &Kuboyama,2007)。Kuhtz-Buschbeck 等人(2008)發(fā)現(xiàn)較小強(qiáng)度的力量變化也能夠影響到主運(yùn)動(dòng)皮層的激活水平。所以為了排除疲勞的干擾,本研究采用平均最大握力的3.6%和7.2%的力量強(qiáng)度,即男性與之對(duì)應(yīng)的重量約為4磅、8磅的啞鈴,女性與之對(duì)應(yīng)的重量約為2磅、4磅的啞鈴。

2.5 實(shí)驗(yàn)程序

在正式實(shí)驗(yàn)之前,招募5名男性右利手健康被試,平均年齡24.3歲,平均握力42.7 kg。這些被試不再參與正式實(shí)驗(yàn)。要求他們做6組啞鈴運(yùn)動(dòng),每組啞鈴運(yùn)動(dòng)包括1次4磅啞鈴運(yùn)動(dòng)和1次8磅啞鈴運(yùn)動(dòng),隨機(jī)呈現(xiàn)。被試要分別對(duì)做4組啞鈴運(yùn)動(dòng)和做6組啞鈴運(yùn)動(dòng)的意志疲勞程度進(jìn)行評(píng)價(jià)(7點(diǎn)評(píng)分,1“無(wú)疲勞”,7“非常疲勞”)。結(jié)果顯示,被試做 4 組啞鈴運(yùn)動(dòng)的意志疲勞程度為 4.2,做 6組啞鈴運(yùn)動(dòng)的抑制疲勞程度為5.8。這說(shuō)明4次4磅啞鈴運(yùn)動(dòng)和4次8磅啞鈴運(yùn)動(dòng)達(dá)不到運(yùn)動(dòng)疲勞狀態(tài)。

另外對(duì)于女性來(lái)說(shuō),為了控制被試不達(dá)到運(yùn)動(dòng)疲勞,同樣在正式實(shí)驗(yàn)前招募5名女性右利手健康被試,平均年齡23.5歲,平均握力26.7 kg,不再參與正式實(shí)驗(yàn)。除了將8磅啞鈴換成了2磅啞鈴?fù)?其余同男性的實(shí)驗(yàn)前操作。結(jié)果顯示,被試做4組啞鈴運(yùn)動(dòng)的意志疲勞程度為 4,做6組啞鈴運(yùn)動(dòng)的意志疲勞程度為 5.6。這說(shuō)明4次2磅啞鈴運(yùn)動(dòng)和 4次4磅啞鈴運(yùn)動(dòng)達(dá)不到運(yùn)動(dòng)疲勞狀態(tài)。

正式實(shí)驗(yàn)。為了避免視覺想象的干擾,運(yùn)動(dòng)指令以聲音的形式呈現(xiàn),被試閉眼執(zhí)行實(shí)驗(yàn)任務(wù)。對(duì)于男性來(lái)說(shuō),運(yùn)動(dòng)執(zhí)行任務(wù)(motor execution,ME)包括4組啞鈴運(yùn)動(dòng)。聽到聲音“1”時(shí),拿起4磅的啞鈴按照隨后呈現(xiàn)的節(jié)奏(1 Hz)進(jìn)行鍛煉;聽到聲音“2”時(shí),拿起8磅的啞鈴按照相同的節(jié)奏進(jìn)行鍛煉,聲音“1”和聲音“2”隨機(jī)呈現(xiàn)。聽到聲音“嘟”時(shí),放下啞鈴,全身放松休息,見圖1。右手完成運(yùn)動(dòng)執(zhí)行任務(wù)。

圖1 實(shí)驗(yàn)流程圖

在運(yùn)動(dòng)想象任務(wù)中,聽到聲音“1”,想象拿起 4磅的啞鈴進(jìn)行鍛煉;聽到聲音“2”,想象拿起8磅的啞鈴進(jìn)行鍛煉;想象右手在做啞鈴運(yùn)動(dòng)。除了上述不一致外,其余都與運(yùn)動(dòng)執(zhí)行任務(wù)一樣。

為了使實(shí)驗(yàn)被試獲得運(yùn)動(dòng)想象的標(biāo)準(zhǔn),所有被試都先完成運(yùn)動(dòng)執(zhí)行任務(wù),再進(jìn)行運(yùn)動(dòng)想象任務(wù)。運(yùn)動(dòng)想象任務(wù)完成后,使用自編《運(yùn)動(dòng)想象自評(píng)問卷》,要求被試評(píng)價(jià)自己完成運(yùn)動(dòng)想象任務(wù)時(shí)的想象品質(zhì)。

對(duì)于女性實(shí)驗(yàn)被試來(lái)說(shuō),除了將8磅啞鈴換成2磅啞鈴之外,其余的實(shí)驗(yàn)程序都同男性。

2.6 探頭布置

使用 4×7的多通道探頭架,包括 14個(gè)發(fā)射器和14個(gè)探測(cè)器,探頭間距為3cm,構(gòu)成45個(gè)通道,覆蓋額葉-頂葉皮層。根據(jù)國(guó)際10-20系統(tǒng),將通道23定位于 Cz上(見圖2,其中紅色為發(fā)射探頭,藍(lán)色為接收探頭)。fNIRS測(cè)試后,使用 3D定位儀(FASTRAK,Polhemus,Colchester,VT,USA)確定Cz、Nz、AL、AR點(diǎn)及探頭位置。通過概率配準(zhǔn)方法將 fNIRS通道位置與 MNI空間坐標(biāo)進(jìn)行配準(zhǔn),獲得與布魯?shù)侣謪^(qū)之間的對(duì)應(yīng)關(guān)系。表2、表3列出的通道定位區(qū)域?yàn)樵撏ǖ栏采w概率最大的區(qū)域。本研究主要觀測(cè)區(qū)域?yàn)橹鬟\(yùn)動(dòng)皮層,但也給出了前運(yùn)動(dòng)皮層和輔助運(yùn)動(dòng)皮層、體感皮層和體感聯(lián)合皮層的對(duì)應(yīng)關(guān)系,見圖3,其中綠色代表主運(yùn)動(dòng)皮層,紅色代表前運(yùn)動(dòng)皮層與輔助運(yùn)動(dòng)皮層,藍(lán)色代表體感皮層,黃色代表體感聯(lián)合皮層。定位結(jié)果如表2、表3所示。

2.7 數(shù)據(jù)分析

首先,在Matlab (v2014a)操作環(huán)境下使用NIRSSPM (Near infrared Spectroscopy-Statistical Parametric Mapping)軟件(v4.1) (Ye,Tak,Jang,Jung,&Jang,2009)分析fNIRS數(shù)據(jù)。先使用主成分分析方法(Principal Components Analysis,PCA) (Virtanen,Noponen,&Meril?inen,2009;Wilcox,Bortfeld,Woods,Wruck,&Boas,2008)去噪聲。主成分分析是一種簡(jiǎn)化數(shù)據(jù)集的技術(shù),應(yīng)用正交變換將原始的數(shù)據(jù)集分解成N個(gè)相互無(wú)關(guān)聯(lián)的成分。因此可以通過 PCA過濾掉生理噪聲和運(yùn)動(dòng)偽跡。Cooper等(2012)敏感度分析結(jié)果顯示:PCA的閾限值百分?jǐn)?shù)設(shè)置為97%時(shí)其去噪效果達(dá)最佳,故本研究將其設(shè)置為97%。

圖2 fNIRS通道布局

表2 通道布局與布魯?shù)侣謪^(qū)間的對(duì)應(yīng)關(guān)系(男性)

表3 通道布局與布魯?shù)侣謪^(qū)間的對(duì)應(yīng)關(guān)系(女性)

圖3 通道布局與主要觀測(cè)區(qū)域的對(duì)應(yīng)關(guān)系

其次,根據(jù)血液動(dòng)力響應(yīng)函數(shù)(Haemodynamic Response Functions,HRF)和 Wavelet-MDL 方法(Jang et al.,2009)再次排除掉噪聲(頭動(dòng)、心跳等)和漂移。Wavelet-MDL (Wavelet-minimum description length)分析是一種去除信號(hào)漂移的算法,校正因呼吸、被試運(yùn)動(dòng)、機(jī)器熱噪聲等引起的信號(hào)失真。通過小波變換將fNIRS測(cè)量值分解出整體趨勢(shì)、血液動(dòng)力信號(hào)和無(wú)關(guān)噪聲成分。其中MDL原則有利于整體趨勢(shì)評(píng)估最優(yōu)模型的選擇,阻止過分?jǐn)M合或擬合不足的現(xiàn)象發(fā)生。

再次,通過一般線性模型(General Linear Model,GLM)整合任務(wù)效應(yīng),用任務(wù)擬合參考波推斷參數(shù)估計(jì)(GLM模型中beta值的權(quán)重),precoloring方法調(diào)節(jié)此過程的時(shí)間自相關(guān)。最后,在 SPSS的基礎(chǔ)上根據(jù)實(shí)驗(yàn)設(shè)計(jì),分別對(duì)不同運(yùn)動(dòng)任務(wù)下獲得的beta值進(jìn)行單樣本或配對(duì)樣本

t

檢驗(yàn)。使用 FDR(false discovery rate)校正所有的

p

值,校正后

p

<0.05為顯著(Singh &Dan,2006),對(duì)于沒有進(jìn)行FDR校正的情況,會(huì)在結(jié)果中進(jìn)行說(shuō)明。

3 結(jié)果

3.1 運(yùn)動(dòng)想象自評(píng)問卷

在執(zhí)行完運(yùn)動(dòng)想象任務(wù)后,實(shí)驗(yàn)被試填寫《運(yùn)動(dòng)想象自評(píng)問卷》。其中運(yùn)動(dòng)想象品質(zhì)的評(píng)價(jià)從1“無(wú)法想象”到7“非常容易”;以及對(duì)不同強(qiáng)度運(yùn)動(dòng)想象任務(wù)間差異的評(píng)價(jià),從 1“差異巨大”到 7“沒有差異”。

結(jié)果顯示,男性被試認(rèn)為4磅和8磅啞鈴運(yùn)動(dòng)想象任務(wù)都能較容易的想象出來(lái),評(píng)定分?jǐn)?shù)分別為5.73 (

SD

=0.80)和5.47 (

SD

=1.36);在評(píng)定自己完成4磅與8磅啞鈴運(yùn)動(dòng)想象任務(wù)的想象差異時(shí),都認(rèn)為這兩種想象任務(wù)間存在中等以上程度的差異,評(píng)定分?jǐn)?shù)為 3.40(

SD

=1.30)。女生也能夠較容易地完成2磅和4磅啞鈴運(yùn)動(dòng)想象任務(wù),評(píng)定分?jǐn)?shù)分別為5.73 (

SD

=0.70)和5.33 (

SD

=1.23),兩者間差異的評(píng)定分?jǐn)?shù)為3.60 (

SD

=1.24)。這說(shuō)明被試能夠想象出不同運(yùn)動(dòng)強(qiáng)度下的啞鈴運(yùn)動(dòng)。另外,對(duì)男性、女性在4磅啞鈴運(yùn)動(dòng)想象任務(wù)下的想象品質(zhì)進(jìn)行獨(dú)立樣本

t

檢驗(yàn),結(jié)果顯示男、女性的想象品質(zhì)沒有顯著差異,

t

(28)=1.054,

p

>0.05。

3.2 運(yùn)動(dòng)執(zhí)行任務(wù)

3.2.1 男性在運(yùn)動(dòng)執(zhí)行任務(wù)下的腦激活情況

對(duì)不同強(qiáng)度的運(yùn)動(dòng)執(zhí)行任務(wù)進(jìn)行單樣本

t

檢驗(yàn),檢驗(yàn)值為0。根據(jù)各通道的

t

值,繪制了熱點(diǎn)圖3。其中執(zhí)行 4磅啞鈴運(yùn)動(dòng)沒被顯著激活的通道包括ch8,ch10,ch11,ch21,ch24,ch33,ch35,ch40,ch41、ch42、ch43,其余通道都被顯著激活,見圖4(a);執(zhí)行8磅啞鈴運(yùn)動(dòng)沒被顯著激活的通道有ch35、ch41、ch43,其余通道都被顯著激活,見圖4(b)。這說(shuō)明4磅啞鈴運(yùn)動(dòng)與 8磅啞鈴運(yùn)動(dòng)的激活模式基本相同,都激活了主運(yùn)動(dòng)皮層、前運(yùn)動(dòng)皮層與輔助運(yùn)動(dòng)皮層、體感皮層、體感聯(lián)合皮層。對(duì)運(yùn)動(dòng)執(zhí)行任務(wù)下8磅與4磅啞鈴運(yùn)動(dòng)各通道的beta值進(jìn)行配對(duì)樣本

t

檢驗(yàn),這兩種運(yùn)動(dòng)強(qiáng)度下不存在顯著差異的通道包括:ch4,ch5,ch9,ch10,ch11,ch16,ch24,ch35,ch41,ch42,ch43,其余通道都顯著激活。結(jié)果見圖4(c)。

圖4 運(yùn)動(dòng)執(zhí)行任務(wù)下大腦各通道激活t值熱量圖(男性)

結(jié)果顯示,8磅啞鈴運(yùn)動(dòng)在相關(guān)運(yùn)動(dòng)皮層上的激活水平顯著高于4磅啞鈴運(yùn)動(dòng)。這說(shuō)明運(yùn)動(dòng)強(qiáng)度影響運(yùn)動(dòng)區(qū)域的激活水平。

3.2.2 女性在運(yùn)動(dòng)執(zhí)行任務(wù)下的腦激活情況

對(duì)運(yùn)動(dòng)執(zhí)行任務(wù)下2和4磅啞鈴運(yùn)動(dòng)進(jìn)行單樣本

t

檢驗(yàn),大腦各通道激活

t

值見圖5。其中執(zhí)行2磅啞鈴運(yùn)動(dòng)沒有顯著激活的通道包括ch8,ch9,ch10,ch12,ch16,ch21,ch22,ch24,ch25,其余通道都被顯著激活,見圖5(a);執(zhí)行4磅啞鈴運(yùn)動(dòng)沒有顯著激活的通道包括 ch9,ch10,ch11,ch12,ch16,ch22,ch24,ch42,其余通道都被顯著激活見圖5(b)。結(jié)果顯示:2磅啞鈴運(yùn)動(dòng)與4磅啞鈴運(yùn)動(dòng)的激活模式類似,也都激活了主運(yùn)動(dòng)皮層、前運(yùn)動(dòng)皮層與輔助運(yùn)動(dòng)皮層、體感皮層、體感聯(lián)合皮層。對(duì)不同強(qiáng)度運(yùn)動(dòng)執(zhí)行任務(wù)下各通道的 beta值進(jìn)行配對(duì)樣本

t

檢驗(yàn),執(zhí)行4磅與2磅啞鈴運(yùn)動(dòng)各通道差異不顯著;不進(jìn)行校正時(shí),存在顯著差異的通道包括:ch1,ch2,ch4,ch5,ch7,ch8,ch14,ch17,ch18,ch19,ch21,ch26,ch29,ch30,ch31,ch33,ch34,ch36,ch40,ch41,ch44,見圖5(c)。這說(shuō)明4磅啞鈴運(yùn)動(dòng)的皮層激活水平高于2磅啞鈴運(yùn)動(dòng),運(yùn)動(dòng)強(qiáng)度也同樣影響運(yùn)動(dòng)執(zhí)行任務(wù)下女性大腦觀測(cè)皮層的激活水平,但這一結(jié)果存在一定的假陽(yáng)性。

圖5 運(yùn)動(dòng)執(zhí)行任務(wù)下大腦各通道激活t值熱量圖(女性)

3.3 運(yùn)動(dòng)想象任務(wù)

3.3.1 男性在運(yùn)動(dòng)想象任務(wù)下的腦激活情況

同樣,對(duì)運(yùn)動(dòng)想象任務(wù)中的4磅和8磅啞鈴運(yùn)動(dòng)想象分別進(jìn)行單樣本

t

檢驗(yàn)和配對(duì)樣本

t

檢驗(yàn)(圖6)。

圖6 運(yùn)動(dòng)想象任務(wù)下大腦各通道激活t值熱量圖(男性)

結(jié)果顯示,4磅啞鈴運(yùn)動(dòng)想象任務(wù)顯著激活的通道包括:ch3,ch15,ch17,ch23,ch28,ch30,ch36。說(shuō)明4磅啞鈴運(yùn)動(dòng)想象任務(wù)激活了主運(yùn)動(dòng)皮層、前運(yùn)動(dòng)皮層與輔助運(yùn)動(dòng)皮層,但不進(jìn)行 FDR校正時(shí),4磅啞鈴運(yùn)動(dòng)想象任務(wù)也會(huì)激活這4個(gè)觀測(cè)區(qū)域。8磅啞鈴運(yùn)動(dòng)想象任務(wù)顯著激活的通道包括:ch3,ch7,ch11,ch15,ch16,ch17,ch18,ch20,ch23,ch27,ch28,ch30,ch32,ch33,ch36,ch37,ch38,ch39,ch40,ch43,ch44,ch45。表明8磅啞鈴運(yùn)動(dòng)想象也激活主運(yùn)動(dòng)皮層、前運(yùn)動(dòng)皮層與輔助運(yùn)動(dòng)皮層、體感皮層、體感聯(lián)合皮層。對(duì)8磅和4磅啞鈴運(yùn)動(dòng)想象任務(wù)進(jìn)行配對(duì)樣本

t

檢驗(yàn),發(fā)現(xiàn)通道間差異不顯著,即這兩種任務(wù)下大腦皮層的激活水平無(wú)顯著差異。想象強(qiáng)度的改變沒有影響到運(yùn)動(dòng)想象任務(wù)下男性大腦皮層的激活水平。

3.3.2 女性在運(yùn)動(dòng)想象任務(wù)下的腦激活情況

對(duì)女性在不同強(qiáng)度的想象任務(wù)下各通道的beta值進(jìn)行

t

檢驗(yàn),發(fā)現(xiàn)2磅啞鈴運(yùn)動(dòng)想象任務(wù)沒有顯著激活的通道包括:ch8,ch10,ch12,ch17,ch21,ch22,ch24,ch34,ch42,其余通道都被顯著激活;4磅啞鈴運(yùn)動(dòng)想象任務(wù)沒有顯著激活的通道包括:ch8,ch10,ch21,ch24,ch25,ch26,ch31,ch34,ch35,ch42,其余通道都被顯著激活。這表明2磅啞鈴運(yùn)動(dòng)想象與4磅啞鈴運(yùn)動(dòng)想象皮層激活模式相似,都激活了4個(gè)觀測(cè)皮層。對(duì)4磅和2磅啞鈴運(yùn)動(dòng)想象任務(wù)進(jìn)行配對(duì)樣本

t

檢驗(yàn),同樣發(fā)現(xiàn)不同強(qiáng)度運(yùn)動(dòng)想象任務(wù)下的皮層激活水平無(wú)顯著差異。詳見圖7。

圖7 運(yùn)動(dòng)想象任務(wù)下大腦各通道激活t值熱量圖(女性)

3.4 運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象皮層激活模式的比較

3.4.1 男生在運(yùn)動(dòng)執(zhí)行任務(wù)與運(yùn)動(dòng)想象任務(wù)下的腦激活模式比較

對(duì)4磅啞鈴運(yùn)動(dòng)與4磅啞鈴運(yùn)動(dòng)想象和8磅啞鈴運(yùn)動(dòng)與8磅啞鈴運(yùn)動(dòng)想象進(jìn)行配對(duì)樣本

t

檢驗(yàn)。結(jié)果顯示在執(zhí)行4磅啞鈴運(yùn)動(dòng)與運(yùn)動(dòng)想象任務(wù)下差異不顯著的通道包括:ch10,ch22,ch24,ch41,ch42,ch43,其余通道都顯著;在執(zhí)行 8磅啞鈴運(yùn)動(dòng)與運(yùn)動(dòng)想象任務(wù)下差異不顯著的通道包括:ch22,ch24,ch35,ch41,ch42,ch43,同樣其余通道都顯著,詳見圖8。可見,無(wú)論運(yùn)動(dòng)強(qiáng)度如何變化,運(yùn)動(dòng)執(zhí)行任務(wù)下觀測(cè)皮層內(nèi)相關(guān)通道的激活水平顯著高于運(yùn)動(dòng)想象任務(wù)下相關(guān)通道的激活水平。

3.4.2 女生在運(yùn)動(dòng)執(zhí)行任務(wù)與運(yùn)動(dòng)想象任務(wù)下的腦激活模式比較

對(duì)2磅啞鈴運(yùn)動(dòng)與2磅啞鈴運(yùn)動(dòng)想象和4磅啞鈴運(yùn)動(dòng)與4磅啞鈴運(yùn)動(dòng)想象進(jìn)行配對(duì)樣本

t

檢驗(yàn)。結(jié)果顯示在2磅啞鈴運(yùn)動(dòng)與運(yùn)動(dòng)想象任務(wù)下差異顯著的通道包括:ch7,ch13,ch14,ch15,ch20,ch27,ch28,ch40;在 4磅啞鈴運(yùn)動(dòng)與運(yùn)動(dòng)想象任務(wù)下差異顯著的通道包括:ch1,ch3,ch4,ch5,ch6,ch7,ch13,ch14,ch15,ch18,ch20,ch23,ch26,ch27,ch28,ch29,ch33,ch34,ch35,ch36,ch39,ch40,ch41,ch43,ch44,ch45。詳見圖9。這表明,對(duì)于女生來(lái)說(shuō),運(yùn)動(dòng)執(zhí)行任務(wù)的腦激活水平顯著高于運(yùn)動(dòng)想象任務(wù)。

3.5 男、女性在運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象任務(wù)下激活優(yōu)勢(shì)腦的分析

本研究對(duì)左右腦通道下的 beta值進(jìn)行配對(duì)樣本

t

檢驗(yàn),以比較男女性在4磅啞鈴運(yùn)動(dòng)與運(yùn)動(dòng)想象下左右腦的激活情況。詳見表4。

圖8 運(yùn)動(dòng)執(zhí)行任務(wù)與運(yùn)動(dòng)想象任務(wù)各通道激活水平的比較(男性)

圖9 運(yùn)動(dòng)執(zhí)行任務(wù)與運(yùn)動(dòng)想象任務(wù)各通道激活水平的比較(女性)

表4 男、女性在不同任務(wù)下左右腦通道差異的比較:t(dcohen)

結(jié)果發(fā)現(xiàn),男性被試在4磅啞鈴運(yùn)動(dòng)下左右半球差異顯著的通道所對(duì)應(yīng)的皮層包括左側(cè)的體感皮層、主運(yùn)動(dòng)皮層、輔助運(yùn)動(dòng)皮層和前運(yùn)動(dòng)皮層,左半球的激活水平強(qiáng)于右半球;女性被試在4磅啞鈴運(yùn)動(dòng)下左右半球差異顯著的區(qū)域包括左側(cè)的體感皮層、體感聯(lián)合皮層、主運(yùn)動(dòng)皮層、輔助運(yùn)動(dòng)皮層和前運(yùn)動(dòng)皮層、緣上回、角回,同樣左腦的激活水平高于右腦??梢?男性、女性在同等重量的運(yùn)動(dòng)執(zhí)行任務(wù)下左半球皮層的激活情況高于右半球,其中男性主要集中在運(yùn)動(dòng)皮層,而女性表現(xiàn)的更為寬泛。男性和女性在4磅啞鈴運(yùn)動(dòng)想象任務(wù)下左右半球間各通道差異不顯著,這說(shuō)明無(wú)論被試是男性還是女性,在運(yùn)動(dòng)想象任務(wù)下左半球皮層激活情況與右半球皮層激活情況相似,不存在優(yōu)勢(shì)腦。

4 討論

本研究發(fā)現(xiàn)運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象都激活了主運(yùn)動(dòng)皮層;除了男性在想象舉4磅啞鈴任務(wù)下僅激活主運(yùn)動(dòng)皮層、前運(yùn)動(dòng)皮層和輔助運(yùn)動(dòng)皮層外,其余無(wú)論男性還是女性在運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象任務(wù)下都激活了這4個(gè)探測(cè)皮層,且運(yùn)動(dòng)執(zhí)行的激活水平強(qiáng)于運(yùn)動(dòng)想象。從整體趨勢(shì)上來(lái)看,運(yùn)動(dòng)強(qiáng)度影響運(yùn)動(dòng)執(zhí)行任務(wù)相關(guān)運(yùn)動(dòng)區(qū)域的激活水平,即運(yùn)動(dòng)強(qiáng)度越強(qiáng),激活水平越高;在運(yùn)動(dòng)想象任務(wù)下,不同強(qiáng)度的運(yùn)動(dòng)想象任務(wù)間大腦皮層激活水平無(wú)顯著差異。另外男性和女性在運(yùn)動(dòng)執(zhí)行任務(wù)中的左半球皮層的激活水平都高于右半球皮層,而在運(yùn)動(dòng)想象任務(wù)中沒有表現(xiàn)出這一單側(cè)化現(xiàn)象。

4.1 運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象的大腦皮層激活

早期觀點(diǎn)認(rèn)為運(yùn)動(dòng)系統(tǒng)具有一定的等級(jí),根據(jù)不同大腦區(qū)域的運(yùn)動(dòng)控制功能來(lái)說(shuō)可以分成兩部分:運(yùn)動(dòng)計(jì)劃(前運(yùn)動(dòng)中心)和傳送運(yùn)動(dòng)指令到效應(yīng)器的運(yùn)動(dòng)中心。前運(yùn)動(dòng)中心主要包括一些皮層區(qū)域,即輔助運(yùn)動(dòng)皮層、前運(yùn)動(dòng)皮層、扣帶運(yùn)動(dòng)區(qū)域(Jones,Burton,&Porter,1975),和一些皮層下結(jié)構(gòu),例如紋狀體、小腦等(Yamamoto,Samejima,&Oka,1990)。運(yùn)動(dòng)中心主要指的是主運(yùn)動(dòng)皮層。前運(yùn)動(dòng)中心將運(yùn)動(dòng)執(zhí)行指令發(fā)送給主運(yùn)動(dòng)皮層。主運(yùn)動(dòng)皮層的傳入信息在中央前回的細(xì)胞層中進(jìn)行整合,調(diào)節(jié)該區(qū)域的加熱速度(Yamamoto et al.,1990),繼而將運(yùn)動(dòng)指令傳出到機(jī)體肌肉(Georgopoulos,Ashe,Smyrnis,&Taira,1992)。即主運(yùn)動(dòng)區(qū)的功能在于給效應(yīng)器傳遞運(yùn)動(dòng)指令,更多表現(xiàn)在運(yùn)動(dòng)執(zhí)行上。這一觀點(diǎn)得到部分研究的支持(Binkofski et al.,2000;Hanakawa et al.,2003)。

然而,本研究在運(yùn)動(dòng)執(zhí)行任務(wù)和運(yùn)動(dòng)想象任務(wù)時(shí)都發(fā)現(xiàn)了主運(yùn)動(dòng)區(qū)的激活,與一些研究結(jié)果相一致(Gao,Duan,&Chen,2011;Leonardo et al.,1995;Lotze et al.,1999;Nair,Purcott,Fuchs,Steinberg,&Kelso,2003)。Jones 等(1975)和 Donoghue,Leibovic和Sanes (1992)還發(fā)現(xiàn)中央前回與前運(yùn)動(dòng)中心的皮層或皮層下結(jié)構(gòu)存在復(fù)雜的傳入-傳出關(guān)系。這些研究使傳統(tǒng)觀點(diǎn)面臨巨大的挑戰(zhàn)。

研究者們對(duì)主運(yùn)動(dòng)皮層(BA4)進(jìn)行了細(xì)分,分成了兩部分。接近前運(yùn)動(dòng)皮層與輔助運(yùn)動(dòng)皮層(BA6)的部分為 BA4a區(qū),是運(yùn)動(dòng)想象主要激活的位置;后面部分為BA4p區(qū),與純粹的運(yùn)動(dòng)執(zhí)行關(guān)系密切(Stippich,Ochmann,&Sartor,2002)。換句話說(shuō),無(wú)論主運(yùn)動(dòng)皮層怎樣劃分,其功能也不僅僅局限于運(yùn)動(dòng)執(zhí)行上,主運(yùn)動(dòng)皮層還具有運(yùn)動(dòng)計(jì)劃、運(yùn)動(dòng)控制的功能。

運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象也激活了輔助運(yùn)動(dòng)皮層(SMA)、前運(yùn)動(dòng)皮層(PMC)、體感聯(lián)合皮層等區(qū)域。研究者們(Stephan et al.,1995)認(rèn)為輔助運(yùn)動(dòng)皮層與前運(yùn)動(dòng)皮層在運(yùn)動(dòng)想象中起關(guān)鍵作用,因?yàn)檩o助運(yùn)動(dòng)皮層與運(yùn)動(dòng)計(jì)劃有關(guān)。想象任務(wù)的類型與前運(yùn)動(dòng)皮層的激活位置有關(guān),Binkofski等(2000)發(fā)現(xiàn)視覺想象激活腹側(cè)前運(yùn)動(dòng)皮層,動(dòng)覺想象激活背側(cè)前運(yùn)動(dòng)皮層。Wolbers等(2003)發(fā)現(xiàn)體感聯(lián)合皮層與運(yùn)動(dòng)軌跡有關(guān),本研究的實(shí)驗(yàn)任務(wù)是舉啞鈴,存在空間上的移動(dòng)。雖然各個(gè)區(qū)域都具有一定的功能作用,但具體、清晰的內(nèi)部功能聯(lián)接還需要繼續(xù)挖掘。

4.2 運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象大腦皮層的激活水平

本研究發(fā)現(xiàn),不同強(qiáng)度的運(yùn)動(dòng)執(zhí)行任務(wù)下主運(yùn)動(dòng)皮層的激活水平不同,運(yùn)動(dòng)強(qiáng)度越大,激活水平越高;然而,運(yùn)動(dòng)想象任務(wù)沒有因運(yùn)動(dòng)想象強(qiáng)度的變化而影響皮層激活水平。原因可能是主運(yùn)動(dòng)皮層激活水平的變化是由體覺信息傳入引起的。運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象最主要的差異就是一個(gè)存在、一個(gè)不存在肌肉收縮。在肌肉收縮的這個(gè)過程中,主運(yùn)動(dòng)皮層向運(yùn)動(dòng)神經(jīng)元與體感皮層傳遞運(yùn)動(dòng)指令,使體感皮層接受從肌梭和皮膚感受器上傳入的反饋信號(hào)。在本研究中想象強(qiáng)度與皮層激活水平之間關(guān)系不顯著,可能就是由于缺少外周反應(yīng)的傳入信息導(dǎo)致的(Mizuguchi et al.,2014)。

然而,近期 Mizuguchi,Umehara,Nakata和Kanosue (2013)的研究發(fā)現(xiàn)右手想象力量的加強(qiáng)伴隨著左半球皮層脊髓束興奮性的增強(qiáng)。這說(shuō)明左側(cè)主運(yùn)動(dòng)皮層與想象強(qiáng)度是存在一定關(guān)聯(lián)的。但在Mizuguchi 等(2014)探討前運(yùn)動(dòng)-頂葉區(qū)域與想象強(qiáng)度水平間關(guān)系時(shí),沒有發(fā)現(xiàn)顯著的主運(yùn)動(dòng)皮層激活。本研究在已控制了相關(guān)影響變量(例如被試想象力、任務(wù)類型等)后,雖發(fā)現(xiàn)運(yùn)動(dòng)想象任務(wù)都能夠激活主運(yùn)動(dòng)皮層,但想象強(qiáng)度不影響運(yùn)動(dòng)想象任務(wù)下主運(yùn)動(dòng)皮層的激活水平。

4.3 研究局限與展望

我們推測(cè)運(yùn)動(dòng)強(qiáng)度不影響主運(yùn)動(dòng)皮層激活水平的原因可能是這兩種運(yùn)動(dòng)想象任務(wù)間的想象強(qiáng)度差異不夠大。在《運(yùn)動(dòng)想象自評(píng)問卷》中被試認(rèn)為這兩種強(qiáng)度的運(yùn)動(dòng)想象存在中等以上程度的差異,如果我們?cè)黾酉胂髲?qiáng)度的差異程度,是否能夠引起主運(yùn)動(dòng)皮層的活動(dòng)變化?這是我們進(jìn)一步想要探索的。本研究的另一個(gè)局限是:固定的任務(wù)執(zhí)行順序,即先執(zhí)行運(yùn)動(dòng)執(zhí)行任務(wù),再執(zhí)行運(yùn)動(dòng)想象任務(wù),沒有對(duì)實(shí)驗(yàn)順序效應(yīng)進(jìn)行抵消平衡。我們也將會(huì)在今后研究中對(duì)這一局限進(jìn)行修正。

此外,越來(lái)越多的研究者證明了基于fNIRS的神經(jīng)反饋訓(xùn)練能夠調(diào)節(jié)運(yùn)動(dòng)想象水平(Chiew,LaConte,&Graham,2012;Johnson et al.,2012;Kanoh,Susila,Miyamoto,Yoshinobu,&Kawashima,2011;Mihara et al.,2012)。在接下來(lái)的工作中,我們將會(huì)通過神經(jīng)反饋技術(shù)訓(xùn)練被試對(duì)不同強(qiáng)度的運(yùn)動(dòng)想象任務(wù)的執(zhí)行控制力,以期更為客觀的探究想象強(qiáng)度對(duì)相關(guān)皮層的影響作用。也會(huì)為神經(jīng)修復(fù)領(lǐng)域帶來(lái)一定的實(shí)證價(jià)值。

5 結(jié)論

運(yùn)動(dòng)執(zhí)行與運(yùn)動(dòng)想象都顯著激活主運(yùn)動(dòng)皮層。另外,運(yùn)動(dòng)強(qiáng)度影響運(yùn)動(dòng)執(zhí)行任務(wù)下主運(yùn)動(dòng)皮層的激活水平;運(yùn)動(dòng)想象任務(wù)下主運(yùn)動(dòng)皮層的激活情況不受想象強(qiáng)度的調(diào)節(jié)。

Amedi,A.,Malach,R.,&Pascual-Leone,A.(2005).Negative BOLD differentiates visual imagery and perception.

Neuron,48

(5),859-872.Binkofski,F.,Amunts,K.,Stephan,K.M.,Posse,S.,Schormann,T.,Freund,H.J.,...Seitz,R.J.(2000).Broca's region subserves imagery of motion:A combined cytoarchitectonic and fMRI study.

Human Brain Mapping,11

(4),273-285.Braun,S.M.,Beurskens,A.J.,Borm,P.J.,Schack,T.,&Wade,D.T.(2006).The effects of mental practice in stroke rehabilitation:A systematic review.

Archives of Physical Medicine and Rehabilitation,87

(6),842-852.Brickman,A.M.,Paul,R.H.,Cohen,R.A.,Williams,L.M.,MacGregor,K.L.,Jefferson,A.L.,...Gordon,E.(2005).Category and letter verbal fluency across the adult lifespan:Relationship to EEG theta power.

Archives of Clinical Neuropsychology,20

(5),561-573.Chang,Y.,Lee,J.J.,Seo,J.H.,Song,H.J.,Kim,Y.T.,Lee,H.J.,...Kim,J.G.(2011).Neural correlates of motor imagery for elite archers.

NMR in Biomedicine,24

(4),366-372.Chiew,M.,LaConte,S.M.,&Graham,S.J.(2012).Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery.

NeuroImage,61

(1),21-31.Cooper,R.J.,Selb,J.,Gagnon,L.,Phillip,D.,Schytz,H.W.,Iversen,H.K.,...Boas,D.A.(2012).A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy.

Frontiers in Neuroscience

,

6

,147.Cui,X.,Jeter,C.B.,Yang,D.N.,Montague,P.R.,&Eagleman,D.M.(2007).Vividness of mental imagery:Individual variability can be measured objectively.

Vision Research,47

(4),474-478.Cumming,J.,&Hall,C.(2002).Deliberate imagery practice:The development of imagery skills in competitive athletes.

Journal of Sports Sciences,20

(2),137-145.Decety,J.,&Grèzes,J.(2006).The power of simulation:Imagining one's own and other's behavior.

Brain Research,1079

(1),4-14.Decety,J.,Jeannerod,M.,Durozard,D.,&Baverel,G.(1993).Central activation of autonomic effectors during mental simulation of motor actions in man.

The Journal of Physiology,461

(1),549-563.Decety,J.,Jeannerod,M.,Germain,M.,&Pastene,J.(1991).Vegetative response during imagined movement is proportional to mental effort.

Behavioural Brain Research,42

(1),1-5.Decety,J.,Jeannerod,M.,&Prablanc,C.(1989).The timing of mentally represented actions.

Behavioural Brain Research,34

(1),35-42.Dechent,P.,Merboldt,K.-D.,&Frahm,J.(2004).Is the human primary motor cortex involved in motor imagery?.

Cognitive Brain Research,19

(2),138-144.Derosière,G.,Alexandre,F.,Bourdillon,N.,Mandrick,K.,Ward,T.E.,&Perrey,S.(2013).Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation.

NeuroImage, 85

,471-477.Donoghue,J.P.,Leibovic,S.,&Sanes,J.N.(1992).Organization of the forelimb area in squirrel monkey motor cortex:Representation of digit,wrist,and elbow muscles.

Experimental Brain Research,89

(1),1-19.Fiorio,M.,Tinazzi,M.,&Aglioti,S.M.(2006).Selective impairment of hand mental rotation in patients with focal hand dystonia.

Brain,129

(1),47-54.Fourkas,A.D.,Ionta,S.,&Aglioti,S.M.,(2006).Influence of imagined posture and imagery modality on corticospinal excitability.

Behavioural Brain Research,168

(2),190-196.Fusi,S.,Cutuli,D.,Valente,M.R.,Bergonzi,P.,Porro,C.A.,&Di Prampero,P.E.(2005).Cardioventilatory responses during real or imagined walking at low speed.

Archives Italiennes de Biologie,143

(3-4),223-228.Gao,Q.,Duan,X.J.,&Chen,H.F.(2011).Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality.

NeuroImage,54

(2),1280-1288.Georgopoulos,A.P.,Ashe,J.,Smyrnis,N.,&Taira,M.(1992).The motor cortex and the coding of force.

Science,256

(5064),1692-1695.Gerardin,E.,Sirigu,A.,Lehéricy,S.,Poline,J.-B.,Gaymard,B.,Marsault,C.,...Le Bihan,D.(2000).Partially overlapping neural networks for real and imagined hand movements.

Cerebral Cortex,10

(11),1093-1104.Gregg,M.,Hall,C.,&Butler,A.(2010).The MIQ-RS:A suitable option for examining movement imagery ability.

Evidence-Based Complementary and Alternative Medicine,7

(2),249-257.Guillot,A.,Collet,C.,&Dittmar,A.(2004).Relationship between visual and kinesthetic imagery,field dependenceindependence,and complex motor skills.

Journal of Psychophysiology,18

(4),190-198.Guillot,A.,Collet,C.,Nguyen,V.A.,Malouin,F.,Richards,C.,&Doyon,J.(2008).Functional neuroanatomical networks associated with expertise in motor imagery.

NeuroImage,41

(4),1471-1483.Guillot,A.,Haguenauer,M.,Dittmar,A.,&Collet,C.(2005).Effect of a fatiguing protocol on motor imagery accuracy.

European journal of Applied Physiology,95

(2-3),186-190.Hanakawa,T.,Immisch,I.,Toma,K.,Dimyan,M.A.,van Gelderen,P.,&Hallett,M.(2003).Functional properties of brain areas associated with motor execution and imagery.

Journal of Neurophysiology,89

(2),989-1002.Hétu,S.,Grégoire,M.,Saimpont,A.,Coll,M.-P.,Eugène,F.,Michon,P.E.,&Jackson,P.L.(2013).The neural network of motor imagery:An ALE meta-analysis.

Neurosience and Biobehavioral Review,37

,930-949.Hock,C.,Villringer,K.,Müller-Spahn,F.,Wenzel,R.,Heekeren,H.,Schuh-Hofer,S.,...Dirnagl,U.(1997).Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer's disease monitored by means of near-infrared spectroscopy (NIRS)-correlation with simultaneous rCBF-PET measurements.

Brain Research,755

(2),293-303.Holper,L.,&Wolf,M.(2011).Single-trial classification of motor imagery differing in task complexity:A functional nearinfrared spectroscopy study.

Journal of NeuroEngineering and Rehabilitation,8

,34.Hoshi,Y.,Kobayashi,N.,&Tamura,M.(2001).Interpretation of near-infrared spectroscopy signals:A study with a newly developed perfused rat brain model.

Journal of Applied Physiology,90

(5),1657-1662.Jackson,P.L.,Lafleur,M.F.,Malouin,F.,Richards,C.,&Doyon,J.(2001).Potential role of mental practice using motor imagery in neurologic rehabilitation.

Archives of Physical Medicine and Rehabilitation,82

(8),1133-1141.Jang,K.E.,Tak,S.,Jung,J.,Jang,J.,Jeong,Y.,&Ye,J.C.(2009).Wavelet minimum description length detrending for near-infrared spectroscopy.

Journal of Biomedical Optics,14

(3),034004.Jeannerod,M.(1994).The representing brain:Neural correlates of motor intention and imagery.

Behavioral and Brain Sciences,17

(2),187-201.

Jeannerod,M.(2006).Motor cognition:What actions tell the self (pp.24).Oxford:Oxford University Press.

Johnson,K.A.,Hartwell,K.,LeMatty,T.,Borckardt,J.,Morgan,P.S.,Govindarajan,K.,...George,M.S.(2012).Intermittent “Real-time” fMRI feedback is superior to continuous presentation for a motor imagery task:a pilot study.

Journal of Neuroimaging,22

(1),58-66.Johnson-Frey,S.H.(2004).Stimulation through simulation?Motor imagery and functional reorganization in hemiplegic stroke patients.

Brain and Cognition,55

(2),328-331.Jones,E.G.,Burton,H.,&Porter,R.(1975).Commissural and cortico-cortical" columns" in the somatic sensory cortex of primates.

Science,190

(4214),572-574.Kanoh,S.,Susila,I.P.,Miyamoto,K.,Yoshinobu,T.,&Kawashima,R.(2011).The effect of neurofeedback training on cortical activity during motor imagery revealed by NIRS and fMRI.

International Journal of Bioelectromagnetism,13

(2),82-83.Kuhtz-Buschbeck,J.P.,Gilster,R.,Wolff,S.,Ulmer,S.,Siebner,H.,&Jansen,O.(2008).Brain activity is similar during precision and power gripping with light force:An fMRI study.

NeuroImage,40

(4),1469-1481.Kuhtz-Buschbeck,J.P.,Mahnkopf,C.,Holzknecht,C.,Siebner,H.,Ulmer,S.,&Jansen,O.(2003).Effectorindependent representations of simple and complex imagined finger movements:A combined fMRI and TMS study.

European Journal of Neuroscience,18

(12),3375-3387.Langheim,F.J.P.,Callicott,J.H.,Mattay,V.S.,Duyn,J.H.,&Weinberger,D.R.(2002).Cortical systems associated with covert music rehearsal.

NeuroImage,16

(4),901-908.Leff,D.R.,Orihuela-Espina,F.,Elwell,C.E.,Athanasiou,T.,Delpy,D.T.,Darzi,A.W.,&Yang,G.Z.(2011).Assessment of the cerebral cortex during motor task behaviours in adults:A systematic review of functional near infrared spectroscopy (fNIRS) studies.

NeuroImage,54

(4),2922-2936.Leonardo,M.,Fieldman,J.,Sadato,N.,Campbell,G.,Iba?ez,V.,Cohen,L.,...Hallett,M.(1995).A functional magnetic resonance imaging study of cortical regions associated with motor task execution and motor ideation in humans.

Human Brain Mapping,3

(2),83-92.Lissek,S.,Hausmann,M.,Knossalla,F.,Peters,S.,Nicolas,V.,Güntürkün,O.,&Tegenthoff,M.(2007).Sex differences in cortical and subcortical recruitment during simple and complex motor control:An fMRI study.

NeuroImage,37

(3),912-926.Liu,B.G.,Zhou,J.,&Li,F.F.(2011).Functional near-infrared spectroscopy:An emerging functional neuroimaging technology.

Journal of Psychological Science,34

(4),943-949.[劉寶根,周兢,李菲菲.(2011).腦功能成像的新方法——功能性近紅外光譜技術(shù) (fNIRS).

心理科學(xué),34

(4),943-949.]Loporto,M.,McAllister,C.,Williams,J.,Hardwick,R.,&Holmes,P.,(2012).Investigating central mechanisms underlying the effects of action observation and imagery through transcranial magnetic stimulation.

Journal of Motor Behavior,43

(5),361-373Lotze,M.,&Halsband,U.(2006).Motor imagery.

Journal of Physiology-Paris,99

(4-6),386-395.Lotze,M.,Montoya,P.,Erb,M.,Hülsmann,E.,Flor,H.,Klose,U.,...Grodd,W.(1999).Activation of cortical and cerebellar motor areas during executed and imagined hand movements:An fMRI study.

Journal of Cognitive Neuroscience,11

(5),491-501.Lotze,M.,Scheler,G.,Tan,H.-R.M.,Braun,C.,&Birbaumer,N.(2003).The musician's brain:Functional imaging of amateurs and professionals during performance and imagery.

NeuroImage,20

(3),1817-1829.Meister,I.G.,Krings,T.,Foltys,H.,Boroojerdi,B.,Müller,M.,T?pper,R.,&Thron,A.(2004).Playing piano in the mind-an fMRI study on music imagery and performance in pianists.

Cognitive Brain Research,19

(3),219-228.Mellet,E.,Petit,L.,Mazoyer,B.,Denis,M.,&Tzourio,N.(1998).Reopening the mental imagery debate:Lessons from functional anatomy.

NeuroImage,8

(2),129-139.Mihara,M.,Miyai,I.,Hattori,N.,Hatakenaka,M.,Yagura,H.,Kawano,T.,...Kubota,K.(2012).Neurofeedback using realtime near-infrared spectroscopy enhances motor imagery related cortical activation.

PLoS ONE,7

(3),e32234.Milton,J.,Small,S.L.,&Solodkin,A.(2008).Imaging motor imagery:Methodological issues related to expertise.

Methods,45

,336-341.Mizuguchi,N.,Nakata,H.,&Kanosue,K.(2014).Activity of right premotor-parietal regions dependent upon imagined force level:An fMRI study.

Frontiers in Human Neuroscience,8

,00810.Mizuguchi,N.,Umehara,L.,Nakata,H.,&Kanosue,K.(2013).Modulation of corticospinal excitability dependent upon imagined force level.

Experimental Brain Research,230

(2),243-249Munzert,J.,Lorey,B.,&Zentgraf,K.(2009).Cognitive motor processes:The role of motor imagery in the study of motor representations.

Brain Research Reviews,60

(2),306-326.Murphy,S.M.(1994).Imagery interventions in sport.

Medicine and Science in Sports and Exercise,26

(4),486-494Nair,D.G.,Purcott,K.L.,Fuchs,A.,Steinberg,F.,&Kelso,J.A.S.(2003).Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences:A functional MRI study.

Cognitive Brain Research,15

(3),250-260.Pascual-Leone,A.,Nguyet,D.,Cohen,L.G.,Brasil-Neto,J.P.,Cammarota,A.,&Hallett,M.(1995).Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills.

Journal of Neurophysiology,74

(3),1037-1045.Personnier,P.,Ballay,Y.,&Papaxanthis,C.(2010).Mentally represented motor actions in normal aging:III.Electromyographic features of imagined arm movements.

Behavioural Brain Research,206

(2),184-191.Raffin,E.,Mattout,J.,Reilly,K.T.,&Giraux,P.(2012).Disentangling motor execution from motor imagery with the phantom limb.

Brain,135

,582-595.Rogers,R.G.(2006).Mental practice and acquisition of motor skills:Examples from sports training and surgical education.

Obstetrics and Gynecology Clinics of North America,33

(2),297-304.Roure,R.,Collet,C.,Deschaumes-Molinaro,C.,Delhomme,G.,Dittmar,A.,&Vernet-Maury,E.(1999).Imagery quality estimated by autonomic response is correlated to sporting performance enhancement.

Physiology and Behavior,66

(1),63-72.Schuster,C.,Hilfiker,R.,Amft,O.,Scheidhauer,A.,Andrews,B.,Butler,J.,...Ettlin,T.(2011).Best practice for motor imagery:A systematic literature review on motor imagery training elements in five different disciplines.

BMC Medicine,9

(1),75.Sharma,N.,Jones,P.S.,Carpenter,T.A.,&Baron,J.-C.(2008).Mapping the involvement of BA 4a and 4p during motor imagery.

NeuroImage, 41

(1),92-99.Sharma,N.,Pomeroy,V.M.,&Baron,J.-C.(2006).Motor imagery a backdoor to the motor system after stroke?.

Stroke,37

(7),1941-1952.Shibusawa,M.,Takeda,T.,Nakajima,K.,Ishigami,K.,&Sakatani,K.(2009).Functional near-infrared spectroscopy study on primary motor and sensory cortex response to clenching.

Neuroscience Letters,449

(2),98-102.Shibusawa,M.,Takeda,T.,Nakajima,K.,Jun,H.D.,Sekiguchi,S.,Ishigami,K.,&Sakatani,K.(2010).Functional near-infrared spectroscopy study on primary motor and somatosensory cortex response to biting and finger clenching.In E.Takahashi &D.F.Bruley (Eds.),

Oxygen transport to tissue XXXI: Advances in experimental medicine and biology

(Vol.662,pp.485-490).New York:Springer.Shibuya,K.,&Kuboyama,N.(2007).Human motor cortex oxygenation during exhaustive pinching task.

Brain Research, 1156

,120-124Shibuya,K.,Kuboyama,N.,&Tanaka,J.(2014).Changes in ipsilateral motor cortex activity during a unilateral isometric finger task are dependent on the muscle contraction force.

Physiological Measurement,35

(3),417-428.Shibuya,K.,&Tachi,M.(2006).Oxygenation in the motor cortex during exhaustive pinching exercise.

Respiratory Physiology and Neurobiology, 153

,261-266Singh,A.K.,&Dan,I.(2006).Exploring the false discovery rate in multichannel NIRS.

NeuroImage, 33

(2),542-549.Solodkin,A.,Hlustik,P.,Chen,E.E.,&Small,S.L.(2004).Fine modulation in network activation during motor execution and motor imagery.

Cerebral Cortex,14

(11),1246-1255.Stephan,K.M.,Fink,G.R.,Passingham,R.E.,Silbersweig,D.,Ceballos-Baumann,A.O.,Frith,C.D.,&Frackowiak,R.S.(1995).Functional anatomy of the mental representation of upper extremity movements in healthy subjects.

Journal of Neurophysiology,73

(1),373-386.Stippich,C.,Ochmann,H.,&Sartor,K.(2002).Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging.

Neuroscience Letters,331

(1),50-54.van der Meulen,M.,Allali,G.,Rieger,S.W.,Assal,F.,&Vuilleumier,P.(2014).The influence of individual motor imagery ability on cerebral recruitment during gait imagery.

Human Brain Mapping,35

(2),455-470.Virtanen,J.,Noponen,T.,&Meril?inen,P.(2009).Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals.

Journal of Biomedical Optics,14

(5),054032.Weiss,T.,Hansen,E.,Rost,R.,Beyer,L.,Merten,F.,Nichelmann,C.,&Zippel,C.(1994).Mental practice of motor skills used in poststroke rehabilitation has own effects on central nervous activation.

International Journal of Neuroscience,78

(3-4),157-166.Wilcox,T.,Bortfeld,H.,Woods,R.,Wruck,E.,&Boas,D.A.(2008).Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants:A preliminary methodological exploration.

Developmental Science,11

(3),361-370.Wolbers,T.,Weiller,C.,&Büchel,C.(2003).Contralateral coding of imagined body parts in the superior parietal lobe.

Cerebral Cortex,13

(4),392-399.Xu,B.L.,Fu,Y.F.,Shi,G.,Yin,X.X.,Wang,Z.D.,&Li,H.Y.(2014).Improving classification by feature discretization and optimization for fNIRS-based BCI.

Journal of Biomimetics Biomaterials and Tissue Engineering,19

(1),1000119.Yamamoto,T.,Samejima,A.,&Oka,H.(1990).The mode of synaptic activation of pyramidal neurons in the cat primary somatosensory cortex:An intracellular HRP study.

Experimental Brain Research,80

(1),12-22.Yang,J.J.,&Luo,Q.M.(2002).Near-infrared spectroscopy applied in neuroscience.

Progress in Physiological Science,33

(3),265-268.[楊炯炯,駱清銘.(2002).近紅外光學(xué)成像技術(shù)及其在神經(jīng)科學(xué)中的應(yīng)用.

生理科學(xué)進(jìn)展,33

(3),265-268.]Ye,J.C.,Tak,S.,Jang,K.E.,Jung,J.,&Jang,J.(2009).NIRS-SPM:Statistical parametric mapping for near-infrared spectroscopy.

NeuroImage,44

(2),428-447.Yin,X.X.,Xu,B.L.,Jiang,C.H.,Fu,Y.F.,Wang,Z.D.,Li,H.Y.,&Shi,G.(2015).NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI.

Medical Engineering and Physics, 37

,280-286.Yue,G.,&Cole,K.J.(1992).Strength increases from the motor program:Comparison of training with maximal voluntary and imagined muscle contractions.

Journal of Neurophysiology,67

(5),1114-1123.Zhang,H.,Xu,L.L,Wang,S.L.,Xie,B.Q.,Guo,J.,Long,Z.Y.,&Yao,L.(2011).Behavioral improvements and brain functional alterations by motor imagery training.

Brain Research, 1407

,38-46.

猜你喜歡
啞鈴皮層想象
快樂的想象
急性皮層腦梗死的MRI表現(xiàn)及其對(duì)川芎嗪注射液用藥指征的指導(dǎo)作用研究
細(xì)觀察 多想象 善表達(dá)
基于復(fù)雜網(wǎng)絡(luò)的磁刺激內(nèi)關(guān)穴腦皮層功能連接分析
我給爸爸當(dāng)“啞鈴”
這些并不是想象,有些人正在為擁抱付費(fèi)
那時(shí)我們?nèi)绾蜗胂笪磥?lái)
讀者(2017年15期)2017-07-14 19:59:34
基底節(jié)腦梗死和皮層腦梗死血管性認(rèn)知功能的對(duì)比
橫臥啞鈴形Rathke囊腫1例
去贅肉又強(qiáng)身的啞鈴操(上)
孝感市| 江都市| 武威市| 淄博市| 全椒县| 隆德县| 独山县| 古丈县| 台安县| 太保市| 锡林郭勒盟| 中阳县| 萨迦县| 麦盖提县| 滨海县| 汝城县| 广西| 浮山县| 仪征市| 永安市| 高青县| 偃师市| 青浦区| 衡水市| 峨边| 元阳县| 自贡市| 临沭县| 安陆市| 太谷县| 同仁县| 广安市| 常山县| 怀来县| 重庆市| 象州县| 堆龙德庆县| 溧水县| 铅山县| 泉州市| 都昌县|